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Abstract
The process of comparing a candidate’s curriculum vitae (CV) or resume against a job description or
a list of employment requirements is known as resume matching. The goal of this procedure is to
determine how closely a candidate’s abilities, credentials, experience, and other pertinent qualities meet
the requirements of the position. There are employment courses that teach the applicants how to find
the main requirements in a job description, and to describe their experience with an emphasis on these
parts. On the other hand, Human Relations specialists are taught to extract the main information from
hundreds of submitted resumes to find the best fit for their organization.

Typically, an automated system compares the text of the resume and vacancies and then gives a score
or ranking indicating how closely the two match. However, this process may be time-consuming with a
large number of applicants and lengthy vacancy descriptions.

In this paper, we introduce a novel dataset of software developer resumes extracted from Telegram.
Additionally, we derived ground truth rankings for a subset of the resumes in this dataset with the
assistance of expertly-guided human annotators. Furthermore, we propose an approach to simplify and
enhance existing practices in resume vacancy matching, intending to streamline the recruitment process
for both employers and applicants. We evaluate our approach and demonstrate its superiority over the
leading resume-matching algorithm, OKAPI BM25 [1].

Keywords
resume matching, extractive summarization, semantic vectors

1. Introduction

Employment is an indicator controlled at the government level, which affects the country’s
economic growth rate. The job search and hiring process is a part of the employment. Public
and private companies provide their services to facilitate each stage for both the applicant and
the employer. However, despite the involvement of many specialists and prepared manuals, it
takes a lot of time. COVID has complicated and lengthened the resume-matching process due to
the influx of job applications, increased competition, and the need for additional considerations
such as remote work capabilities and health safety measures
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But how to know if a resume fits the job? Employment courses teach how to highlight the
main thing in a job description and describe an experience in this regard. Such examination is
subjective and may be unreliable. On the job seeker’s side filters are available from the selection
of vacancies, such as work experience, location, and desired salary (the salary is often not
indicated on the job search sites.) It is possible to specify synonyms, as well as words that
should not occur. Sorting is available by date or by the highest match to a basic or advanced
query. Even after these adjustments, a lot of extra effort may be required to find a suitable
vacancy. Therefore, using automatic tools for a vacancy or resume ranking can be beneficial for
both sides. However, several ethical concerns arise including bias and discrimination, lack of
transparency, limited context, exclusion of certain candidates, and the lack of human connection
and empathy [2].

In this paper, we present a new dataset of tech-related resumes extracted from Telegram [3].
The data is anonymized and contains software developer resumes. With the aid of two human
annotators who followed expert recommendations, we also determined the ranking of five
developer job vacancies for 20 resumes in this dataset. We also propose a method to simplify
and improve existing practices in the area of resume vacancy matching by representing both
resumes and vacancies as semantic vectors and using their similarity to rank the documents
and perform a case study by evaluating our method on the annotated part of our dataset. We
address the following research questions to study how resume-vacancy matching can be made
better, faster, and simpler:
RQ1: does summarization of resumes and vacancies improve ranking results?
RQ2: does text preprocessing improve ranking results?
RQ3: do semantic vectors produce better rankings than OKAPI BM25 algorithm?
The rest of the paper is structured as follows. Section 2 addresses related work, while Section
3 describes vacancy and resume data structure, collection, and annotation details. Section 4
describes text processing, construction of semantic vectors, competing methods, and the metrics
we use to compare resume-vacancy rankings. In Section 5 we describe the evaluation setup and
evaluation results. Finally, Section 6 describes conclusions and future work.

2. Related work

The task addressed in this paper belongs to the ranking and best-matching problem groups.
Pudasaini et al. [4] strive to assist employers and applicants in making the right choice. They
use word embeddings [5] and bag-of-words (BOW) model as text representations and compute
job description and resume similarity as cosine similarity [6] and Gale-Shapley algorithm[7]
that solves a stable matching problem. Tejaswini et al. [8] used the BOW model with TF-IDF
weights [9] to represent the text, and the K-Nearest Neighbors (KNN) algorithm was applied
to identify the resumes which are closely matching with the Job description. Kawan and
Mohanty [10] have presented an approach for resume categorization using 600 resumes which
were divided into three subfields – Work Experience, Academia, and Skills Certification. They
used a support vector machine (SVM) as a model and TF-IDF vectors to represent the text.
Joseph [11] focused on the problem of learning an end-user-specific ranking for CVs. They
transformed all the data to text format by Textract [12] and deleted stop words using NLTK



Python package [13]. KNN algorithm was used to rank the CVs, and the dataset includes about
10,000 resumes enriched by the candidate’s social profiles like LinkedIn and Github. Stefanovič
et al. [14] use word-level n-grams-based [15] approach to finding similarity between texts by
observing four similarity measures: cosine similarity, Dice similarity [16], extended Jaccard’s
similarity and overlap.

OKAPI BM25 is a similarity/scoring/ranking model which defines how matching documents
are scored. It is one of the most accurate computational methods using a bag-of-words paradigm
and was proven a useful baseline for resume ranking experiments [17]. The OKAPI BM25
algorithm takes into account the TF-IDF weight of every word in a query and calculates a score
for each document in the collection based on the relevance of the document to the query. The
document with the highest score is ranked at the top of the search results.

3. The data

3.1. Vacancies

We downloaded job postings titled ’software developer’ in the United States during August
2019 [18]. This data was extracted using JobsPikr - a job data delivery platform that extracts job
data from job boards across the globe [19]. JobsPikr crawls over 70,000 employer websites daily
to process over one million job postings; its API provides access to a database of over 500 million
jobs over the past 3 years [20]. We denote the dataset EDES for SoftwarE DEveloper vacancies
DataSet. The data was downloaded in .csv format, and it contains 10,000 vacancies with a
combined size of 41.51 MB. The following data issues were found: (1) the same vacancy can
appear more than once with a different unique id, and (2) portions of text in the job description
field are repeated in many cases. We extracted the names of vacancies using the ’find-job-
titles’ library [21]. From the entire array of vacancies, we select those which include the word
’developer’ or ’full-stack’.

3.2. Resumes

As we did not succeed to find a good-quality resume dataset, we have constructed our own by
downloading real resumes from the Telegram [3] group ”HighTech Israel Jobs” [22] that freely
publishes resumes and vacancies. We denote this dataset TERT for TElegram Resume dataseT.

All resumes in the group are written in a free format. Most often they consist of one page,
but some have two or more pages. There is no clear structure, marks, or mandatory sections.
The original resumes are in Russian and English; it also happens that one person uploads
several versions of his resume. In addition, there are vacancies in the original dataset for both
developers and testers, designers, project managers, etc. In connection with the above, the
following data pre-processing steps were made.

1. Exclusion of duplicate records from the dataset with the help of the ’hashlib’ library [23].
2. Exclusion resumes that are not in English with the help of the ’langdetect’ library [24] -

we keep the English-language files only.
3. Exclusion of resumes of non-developers.

More than 90% of the resumes were eliminated at the third stage because the dataset



Table 1
The TERT dataset

Before pre-processing After pre-processing
format amount size amount size
doc 3 175KB 0 0MB
docx 32 1,58MB 13 0.99MB
pdf 184 38,4MB 53 7,91MB

contained a lot of resumes of testers, project managers, etc. We used a custom-made list
of keywords to search for in candidates’ resumes using the ’flashtext’ library [25].

4. Anonymization.
Even though the resumes are published in an open Telegram group, we masked the names,
phone numbers, and addresses of applicants.

Statistics for resume files in the TERT dataset before and after preprocessing appear in Table
1. Files in the .doc format were eliminated because they contained resumes of non-developers
– Product and Marketing Managers, DevOps Engineers, QA Automation Engineers, and so
on. The data is freely available on Google Drive at https://drive.google.com/drive/folders/
1VvrL5q6rczFZt_M713N3ejsQX85KJu65?usp=share_link.

3.3. Human annotation

To determine the success of our methods, we need an evaluation system. In projects with similar
tasks, authors used historical data about vacancies and selected candidates accordingly [11].
This is the easiest evaluation method; however, in our work, we cannot use it due to a lack of
data. Another way to evaluate the system’s efficiency is to compare the rankings produced
by it to human rankings or rankings produced by another method that is known, widely
used, and proven effective. We utilized this approach and selected a random subset of the
TERT dataset containing 20 resumes and a subset of the EDES dataset containing five relevant
vacancies (we took into account the time and effort load on our annotators). Our annotators have
received detailed guidelines from Mrs. Yaarit Katzav, a manager of recruitment, organizational
development, and welfare in an HR department of a large academic institution. Mrs. Katzav
is a senior HR manager with over 13 years of experience who is responsible, among other
things, for recruiting information systems engineers. The guidelines are available at https:
//drive.google.com/drive/folders/1VvrL5q6rczFZt_M713N3ejsQX85KJu65?usp=share_link.

4. Method

4.1. Text representations

We used the following text representations in our work: (1) tf*idf vectors, where every resume
and vacancy is treated as a separate document; (2) word and character n-gramswith 1 ≤ 𝑛 ≤ 3; (3)
BERT sentence vectors obtained from a pre-trained English BERTmodel ’bert-base-uncased’ [26];
(4) concatenation of all of the above (tf-idf, character and word n-grams, and BERT sentence
vectors).
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4.2. The pipeline

To match CVs and vacancies, we perform the following steps. First, we optionally preprocess
the text by removing numbers and converting it to lowercase. Next, we either summarize the
vacancies using BERT-based extractive summarization [27] with a pre-trained English model
bert-base-uncased or leave them unchanged. Then, we represent the text of vacancies and
CVs using the methods described below in Section 4.1. The maximum size of a summary is set
to 10 sentences, and the ELBOW method of BERT summarizer is used to determine the optimal
summary length.

Then we represent texts by numeric vectors obtained from the chosen text representation 𝑇.
Therefore, we have a resume 𝑅 represented by vector R𝑇 and a vacancy 𝑉 by vector 𝑉𝑇. Then we
compute a match score of a resume and a vacancy as cosine similarity between those vectors.
To obtain the final ranking, we sort cosine similarity scores in decreasing order. A pipeline of
our approach is given in Figure 1.
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Figure 1: Vacancy ranking pipeline

4.3. OKAPI BM25 and a BERT-based baseline

OKAPI BM25[28] is a similarity/scoring/ranking model which defines how matching documents
are scored; BM stands for “best matching”. It is one of the most accurate computational methods
using a bag-of-words paradigm and has proven a useful method for experiments and features
for ranking [17, 29, 30]. A score of a document 𝐷 is computed as

score(𝐷, 𝑄) =
𝑛
∑
𝑖=1

IDF (𝑞𝑖)
̇𝑓 (𝑞𝑖, 𝐷) ̇(𝑘1 + 1)

𝑓 (𝑞𝑖, 𝐷) + 𝑘1 ̇(1 − 𝑏 + 𝑏
̇|𝐷|

avgdl )
(1)

where 𝐷 is the document, 𝑄 is the query that consists of words 𝑞1, … , 𝑞𝑛 𝑓 (𝑞𝑖, 𝐷) is the number
of times that a word 𝑞𝑖 occurs in the document 𝐷. The average document length in the text
collection is avgdl, and IDF is the IDF measure of a query word 𝑞𝑖. Parameters 𝑘1 and 𝑏 are
empirically-set/ 𝑘1 is the term frequency saturation characteristic - the higher the value, the
slower the saturation. In OKAPI BM25 𝑘1 = 1.2. Parameter 𝑏 (with range [0.0, 1.0] ) in the
denominator is multiplied by the ratio of the document length. In OKAPI BM25 𝑏 = 0.75. The
coefficient values are default in the BM25Similarity method of Apache [31]. These values are
also included in the range of recommended coefficient values [32].

We use the method introduced in [33] as a neural baseline which we denote by BERT-rank.
This method improves the performance of neural ranking models by using cross-architecture
knowledge distillation.



Table 2
Comparison of rankings produced by two human annotators

comparing Krippendorf alpha Cohen’s kappa Spearman’s correlation
A1 vs A2 0.2191 0.1250 0.1309
A1 vs averageA 0.9557 0.9583 0.9513
A2 vs averageA 0.1847 0.1000 0.0873

4.4. Metrics

To evaluate how the results of the developed methods correspond to the survey ranking results,
it is necessary to calculate the correlation between automated and human rankings. Recall, F1,
and similar metrics are not suitable for comparing rankings because they only measure the
proportion of relevant items that are retrieved, without considering the order or position of
those items in the ranking. Krippendorff’s alpha is a measure of inter-rater reliability or the
degree of agreement among multiple raters ranging from 0 to 1 [34], computed with the help
of ReCal web service [35]. We also use Spearman’s rank correlation coefficient (a statistical
measure of the degree of association between two variables [36]) and Cohen’s kappa (a measure
that evaluates how much two raters agree beyond what would be expected by chance [37]).

5. Evaluation

5.1. Setup

Experiments were performed on Google Colab [38] with Pro settings. BERT-based extractive
summarizer [27] was used to produce resume summaries with ELBOW setting and maximum
size of a summary set to 10 sentences. Sklearn and scipy SW packages were used to compute
evaluation metrics and text representations.

5.2. Annotation and annotators’ agreement

Due to limited resources and the requirement to obtain at least two rankings for each resume, 20
resumes were randomly selected from the datasets. Every one of the 20 resumes was evaluated
against five relevant vacancies selected for this purpose. The evaluators were asked to arrange
the vacancies from the most relevant to the least relevant for a given resume.

To evaluate agreement among annotators (denoted by A1 and A2), we have compared their
rankings. We also compared the rankings of every annotator to their average rankings (denoted
by averageA). Full results of the test are shown in Table 2. We can see that agreement is low for
all of the reported parameters, which implies that the task of ranking is quite difficult even for
humans.

5.3. Methods and metrics

As a topline, we run the OKAPI BM25 algorithm [1]. We also run BERT-rank [33] as a baseline.
OKAPI BM25 is applied to original and preprocessed texts, before and after the summarization.



Table 3
OKAPI BM25 and BERT-rank results

Algorithm Text Krippendorf alpha Cohen’s kappa Spearman’s correlation
OKAPI BM25 preprocessed text 0.4486 0.1625 0.3859
OKAPI BM25 original text 0.3924 0.0875 0.3274
OKAPI BM25 summary 0.1509 0.0625 0.0810
OKAPI BM25 preprocessed summary -0.2902 -0.0750 -0.4354
BERT-rank summary -0.2203 -0.0375 -0.3627
BERT-rank preprocessed summary -0.2722 -0.1375 -0.4205

BERT-rank is applied to summarized texts only because of document size limitations of its
implementation [33].

For our vector-based method, we use the following text forms – original and preprocessed
full texts, and original and preprocessed summaries. We use text representations described in
Section 4.1: tf-idf vectors, word, and character n-grams, BERT sentence embeddings, and their
combinations.

5.4. OKAPI BM25 results

Table 3 contains the results produced by the OKAPI BM25 algorithm on four data types, arranged
by decreasing the value of Krippendorf’s alpha. We can see that preprocessing of text improves
its performance for all three metrics. Summarizing texts, however, decreases the performance,
but again preprocessed summaries produce a better ranking than those produced from the
original text. We can see the BERT-rank method produces a negative correlation in all three
metrics, and therefore this method is not suitable for our domain.

5.5. Semantic vectors ranking results

Table 4 shows the results of ranking with semantic vectors for all the text forms and representa-
tions discussed in Section 4.1. We can see that the top four methods in this table outperform
OKAPI BM25 top method from Table 3. The top two methods use preprocessed text to produce
semantic vectors, which complies with the results obtained for the OKAPI BM25 algorithm. We
can also deduce that using summarization is not beneficial in this case because all semantic
vectors produced from summaries, preprocessed or not, show a negative correlation with the
ground truth results. BERT sentence embeddings alone do not produce good results. Character
n-grams and combined vectors of n-grams, tf-idf, and BERT sentence embeddings are responsi-
ble for the top four results. Additionally, Tables 3-4 indicate that the three metrics we use to
compare rankings strongly correlate one with another. Krippendorf’s alpha consistently shows
higher values than Cohen’s kappa and Spearman’s correlation, which be attributed to the fact
that it takes into account the ordinal nature of the rankings and considers the agreement beyond
chance [39]. In contrast, Cohen’s kappa focuses on the pairwise agreement between two raters
and may be less indicative when comparing rankings, and Spearman’s correlation does not
directly capture the level of agreement. Therefore, in this particular scenario, Krippendorf’s
alpha appears to be the preferable measure for comparing rankings.



Table 4
Semantic vectors results

Text Text Krippendorf Cohen’s Spearman’s
form representation alpha kappa correlation
preprocessed text char ngrams 0.5285 0.0750 0.4703
preprocessed text tfidf+char ngrams+word ngrams+BERT SE 0.4880 0.0625 0.4253
original text tfidf+char ngrams+word ngrams+BERT SE 0.4686 0.0625 0.4183
original text char ngrams 0.4686 0.0625 0.4183
preprocessed text tfidf 0.1117 0.0000 0.0082
original text tfidf 0.1117 0.0000 0.0082
summary char ngrams 0.0899 -0.0500 -0.0055
preprocessed text word ngrams 0.0497 -0.0250 -0.0627
original text word ngrams 0.0497 -0.0250 -0.0627
preprocessed text BERT SE 0.0491 -0.0250 -0.0574
summary tfidf+char ngrams+word ngrams+BERT SE 0.0314 -0.0625 -0.0705
preprocessed summary word ngrams -0.1009 -0.0375 -0.2236
preprocessed summary BERT SE -0.1323 -0.1500 -0.2623
preprocessed summary tfidf -0.2494 -0.1625 -0.3886
preprocessed summary tfidf+char ngrams+word ngrams+ BERT SE -0.2539 -0.0875 -0.3936
summary BERT SE -0.2798 -0.1625 -0.4282
preprocessed summary char ngrams -0.2809 -0.1250 -0.4236
original text BERT SE -0.2839 -0.0875 -0.4274
summary tfidf -0.2989 -0.1250 -0.4436
summary word ngrams -0.2989 -0.1000 -0.4436

6. Conclusions and limitations

In this paper, we presented a TERT dataset of hi-tech resumes obtained from a Telegram
group ”HighTech Israel Jobs”. We also evaluated this dataset with OKAPI BM25 and a neural
baseline and suggested a new method for vacancy ranking that relies on the semantic vector
representation of texts. We have observed that using summarization does not improve the
results of automated vacancy ranking for all the methods, thus answering research question RQ1
negatively. However, a simple text preprocessing does give an improvement in all three metrics
used to evaluate them, and we can answer positively to RQ2. We also find that using character
n-grams vectors as semantic representation, with or without text preprocessing, produces a
ranking superior to those of the OKAPI BM25, showing that the answer to RQ3 is positive as
well.

Our method as suggested applies to IT vacancies and resumes only, and it has not been
evaluated in other domains, specifically SW developers and full-stack SW engineers. In its
current form, it applies to resumes and vacancies written in English only.
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