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Abstract
Complex data sets with different types of entities and relationships can be elegantly modeled using
Heterogeneous Multilayer Networks (HeMLNs), where different sets of nodes are connected within
and across layers. To identify highly influential nodes in these networks, it is imperative that we
are able to define and compute centrality metrics directly on MLNs. Currently, MLNs are converted
into a single graph using aggregate and projection alternatives, and centrality and other metrics are
computed. However, this approach has been shown to lose information, and structure, and makes result
interpretation difficult.

In this paper, we extend the simple graph degree centrality definition to HeMLNs and use the novel
decoupling approach. For this, we propose heuristics to develop algorithms for identifying degree
centrality nodes in heterogeneous MLNs. The proposed heuristics improve the accuracy with respect to
ground truth when additional information from each layer is used to improve accuracy with respect to
ground truth. However, identifying that additional minimal information is the challenge. We provide
intuition behind the heuristics proposed and provide extensive experimental results using large and
diverse synthetic and real-world data sets to demonstrate improved accuracy, precision, and efficiency
across graph characteristics. We have also shown that the decoupling approach is significantly more
efficient than the computation of ground truth.
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1. Motivation

Graphs represent relationships between entities in a system using nodes and edges. This
representation allows us to model and perform various types of analysis depending on the
relationships in the data. For example, the individuals in a friendship network can be related
to their residential cities in a transport network; authors can be related if they publish at the
same conferences, etc. As graph data sets are becoming larger and more complicated in the
real world, we need to expand not only the analysis methodologies but also representations in
appropriate ways.

One way to handle both the size and complexity of relationships in a data set is to use
alternative modeling approaches, such as multilayer networks [1, 2, 3, 4]. Instead of a single
graph trying to capture all the relationships, a separate layer is used for each relationship
making the representation or the model easy to understand. Even the relationships between the

SEBD 2023: 31st Symposium on Advanced Database System, July 02–05, 2023, Galzignano Terme, Padua, Italy
$ kiran.mukunda@mavs.uta.edu (K. Mukunda); abhishek.santra@mavs.uta.edu (A. Santra); sharmac@cse.uta.edu
(S. Chakravarthy)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:kiran.mukunda@mavs.uta.edu
mailto:abhishek.santra@mavs.uta.edu
mailto:sharmac@cse.uta.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


nodes in different layers can be captured in this model. Hence, MLNs are becoming popular for
big data analysis. However, the downside is that there are not many algorithms for computing
the analysis objectives (e.g., community, centrality, substructure, etc.) on MLNs directly. They
are typically converted into a single graph representation to use existing algorithms. Research
in this direction is becoming important due to the benefits of MLNs for modeling, efficient
analysis, and the ability to handle large data sets in a flexible manner. All these are illustrated
in this paper for degree centrality computation of heterogeneous MLNs.

Figure 1: MLN Types

There are two distinct types of multilayer
networks: Homogeneous and Heterogeneous.
If each layer of a MLN has a common set of en-
tities, they are homogeneous MLN (HoMLNs).
For example, the US Airline data set can be
modeled using a HoMLN, where nodes in
each layer represent the cities and edges cor-
respond to the flights between cities as shown
in Figure 1 (a). The other type of multilayer
network is the heterogeneous MLN (HeMLN),
where the sets of entities are different across
layers. IMDb data set requires HeMLNs to
model actors, directors, and movies as differ-
ent layers along with their inter-layer edges

as shown in Figure 1 (b) to capture relationships, such as directs-an-actor, directs-a-movie, etc.
Current approaches to centrality detection in MLNs, such as type-independent [5] and

projection-based [6], do not support structure and semantics preservation without elaborate
mappings as they aggregate (or collapse) layers into a simple graph in different ways. As
observed in the literature, without additional mappings, currently-used aggregation approaches
are likely to result in some information loss [2], distortion of properties [2], or hide the effect
of different entity types and/or different intra- or inter-layer relationships as elaborated in [7].
Furthermore, structure and semantics preservation is critical for understanding the layer to
which the nodes of interest belong during drill-down analysis of results. From an analysis
perspective, lack of structure and semantics makes the drill-down and visualization of results
extremely difficult (or even impossible) and hence their understanding. In our approach, analysis
results clearly show the structure and ease of drill-down to see patterns in terms of original
layers, labels, and relationships.

Centrality nodes are the most influential nodes in a network or graph. Different centrality
metrics, such as degree, betweenness (multiple types), closeness, eigenvector, katz centrality,
page rank, and percolation centrality are defined for single graphs for various purposes. Some
of them are local (e.g., degree) and some are global (e.g., betweenness, closeness) properties of
the network. Typically, it takes more effort to compute global measures as compared to local
ones. Main memory algorithms exist for computing the above metrics which we leverage in
our decoupling-based approach. In this paper, we focus on degree centrality metric. In general,
degree centrality defines the relative importance of a node within the given network based on
the number of edges incident on it, that is its immediate or 1-hop neighborhood. It can be used
to infer the hubs of an airline network. Although there are algorithms for computing it for a



graph, to the best of our knowledge, there is no proper definition and algorithm that can be
applied directly to MLNs. Using aggregation or projection has a number of disadvantages as
discussed earlier. Hence, the focus of this paper is to develop such algorithms using a novel
technique termed the decoupling approach.

Contributions of this paper are:

• Degree Centrality definition for Heterogeneous MLNs
• Two heuristics to improve accuracy, precision, and efficiency of computed results based

on decoupling-based approach
• Algorithms for computing degree centrality nodes directly on HeMLNs
• Experimental analysis on a number of large (200K vertices and 12 Million edges)

synthetic, and real-world graphs with diverse characteristics
• Accuracy, Precision, and Efficiency comparisons with ground truth and naive ap-

proach

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3
introduces the decoupling approach used for MLN analysis and discusses its advantages and
challenges. Section 4 gives the degree centrality definition for HeMLNs. Section 4.1 discusses
ground truth, naive approach, and the challenges involved in developing techniques for centrality
detection. Section 4.2 and 4.3 give the details of the proposed heuristics. Section 5 describes the
experimental setup, data sets, and result analysis. Conclusions are in Section 6.

2. Related Work

The concept of centrality of a graph was first proposed by Bavelas in 1948 [8] and it has
been researched extensively thereafter. Traditionally, these centrality measures have been
implemented as main memory algorithms. With the advent of social media and web 2.0, the
amount of data being used for analysis has exploded in volume which has challenged the
computation of these on large data sets. Here we summarize the computation of centrality on
simple graphs. Our focus, however, is to develop algorithms for centrality on heterogeneous
multilayer networks using the decoupling-based framework proposed in [9].

Degree of a node is defined as the total number of edges that are incident on it. It was used as
a centrality measure by Shah in 1954. If the network is directed, then the total number of edges
that are directed towards the node is called indegree and that are directed outwards from the
node is called outdegree [10, 11]. To normalize, the degree of a node is divided by the maximum
number of nodes it can have edges with, that is |𝑉 | − 1 for an undirected graph.

While the above algorithms are focused on a single graph, there is a need to extend them
to MLN. There has been some work to detect degree centrality in homogeneous multilayer
networks (also called multiplexes), where the same set of nodes are connected in multiple
layers/networks [12, 13]. In this paper, we focus on computing degree centrality directly on
heterogeneous MLNs where each layer has a different set of nodes that are connected by intra-
and inter-layer edges. Further, we use the decoupling approach due to its advantages.



3. Decoupling Approach For Multilayer Networks (or MLNs)

Multilayer networks consist of multiple layers of simple graphs where each layer represents
a feature of its entities and their relationships in the graph. MLNs are being used to model
and analyze large and complex data sets from diverse domains, such as social networks for
community detection [1], anomaly detection [14], biological networks to analyze the patterns
of human brains [15], finding solutions to oil leakages [16], and so on. However, most algo-
rithms convert the MLN (or a subset of it) into a simple graph using aggregation or projection
techniques, leading to a loss of structure, semantics, and information from the final analysis
results. Moreover, the existing single graph algorithms cannot be applied directly on the MLNs.

Figure 2: Decoupling Approach for HeMLN Degree Hubs

In this paper, we use a novel
decoupling-based framework
adopted by a few of the re-
cent works, which preserves
the structure and semantics of
HeMLNs [17, 18] while per-
forming analysis on complex
data sets without losing any
information, unlike the tradi-
tional approach. The network

decoupling approach has been illustrated with respect to the degree centrality computation
in Figure 2. It consists of two functions: analysis (Ψ) and composition (Θ). Using the analysis
function, each layer in the network is independently analyzed. Then, the partial results from any
two layers are combined with the inter-layer edges and processed by the composition function
to produce the results for the two layers. This binary composition can be easily extended to n
layers by applying it repeatedly on previous results. It is also possible to analyze each layer in
parallel to improve the efficiency [9].

Further, due to the layer-wise analysis, each graph is small, which requires less memory
for computing layer-wise results. Each layer is analyzed once, and the existing single graph
algorithms can be used for analyzing individual layers. The results obtained are then used by
the composition function. This approach is also application-independent.

In this approach, the major challenge is to develop the composition algorithm. For accuracy
guarantees, it becomes critical to determine the minimal additional information required from
each layer during analysis phase to be used for composition, without effecting overall efficiency.

4. Degree Centrality: HeMLN Definition and Heuristics

Degree centrality tells us about the relative importance of a node within the network based on
the number of edges it has. While degree centrality is defined for a single graph, there are no
definitions/algorithms for HeMLNs that we are aware of1. We first define the degree centrality
measure for HeMLNs. Note that there are multiple ways to define the degree centrality for a

1On the other hand, degree centrality for HoMLNs is defined in [13] as cross-layer degree centrality (or CLDC)
which corresponds to degree centrality definition using the Boolean OR operation in [12].



HeMLN. We take the traditional aggregation approach to define them. This definition extends
the definition for single graphs to MLNs using union (or Boolean OR) aggregation.

Definition 1. A heterogeneous multilayer network 𝐻𝑒𝑀𝐿𝑁(𝐺,𝑋), is defined by two sets of
graphs. The set 𝐺 = {𝐺1, 𝐺2, . . . , 𝐺𝑛} contains simple graphs, where 𝐺𝑖(𝑉𝑖, 𝐸𝑖) is defined
by a set of vertices 𝑉𝑖 and a set of edges 𝐸𝑖. An edge 𝑒(𝑣, 𝑢) ∈ 𝐸𝑖, connects vertices 𝑣 and 𝑢,
where 𝑣, 𝑢 ∈ 𝑉𝑖. The set 𝑋 = {𝑋1,2, 𝑋1,3, . . . , 𝑋𝑛−1,𝑛} consists of bipartite graphs. Each graph
𝑋𝑖,𝑗(𝑉𝑖, 𝑉𝑗 , 𝐿𝑖,𝑗) is defined by two sets of vertices 𝑉𝑖 and 𝑉𝑗 and a set of edges (or links) 𝐿𝑖,𝑗 , such
that for every link 𝑙(𝑎, 𝑏) ∈ 𝐿𝑖,𝑗 , 𝑎 ∈ 𝑉𝑖 and 𝑏 ∈ 𝑉𝑗 , where 𝑉𝑖 (𝑉𝑗) is the vertex set of graph 𝐺𝑖

(𝐺𝑗). For a HeMLN, the set 𝑋 is defined only for those layers that have inter-layer edges. For
HeMLNs, 𝑉𝑖’s are disjoint and some 𝑋’s may be empty.

Definition 2. Degree centrality of a node, z, in a 𝐻𝑒𝑀𝐿𝑁(𝐺,𝑋) with n layers where |V| =
Σ𝑛
𝑖=1|𝑉𝑖| is defined as,

𝐻𝑒𝑀𝐿𝑁𝐷𝐶(𝑧) =
𝑑𝑒𝑔𝑟𝑒𝑒(𝑧)

|𝑉 | − 1
(1)

where, 𝑑𝑒𝑔𝑟𝑒𝑒(𝑧) denotes the number of 1-hop neighbors of node 𝑧 in the MLN. The high-
degree centrality nodes (also called degree hubs) are the ones that have more than or equal to the
average value.

The above definition of degree centrality covers both single graphs and HeMLNs. In this
paper, we focus on detecting the degree centrality hubs using the decoupling-based approach
for undirected graphs using the above definition.

4.1. Ground Truth, Naive Approach for Baseline Accuracy, and Challenges

Figure 3: Degree Hubs (marked in yellow) in the
individual layers vs. entire HeMLN

The ground truth for the HeMLN is com-
puted on the ground truth graph as per cen-
trality definition given above. This graph is
the union (or Boolean OR on the edges of
the layers and includes inter-layer edges) of
HeMLN layers resulting in a single graph. Ex-
isting algorithms are used for computing the
degree centrality nodes of the ground truth
graph. This can be done for any k layers of the
HeMLN. The composition step, being binary,
uses two layers. Results of the heuristic-based
algorithms using the decoupling approach are
validated against this ground truth.

The naive approach for computing degree centrality hubs of the HeMLN using the decou-
pling approach is used as a baseline for comparing and improving the accuracy and precision
with proposed heuristic-based approaches. Naive composition takes hubs (computed indepen-
dently) from each layer, performs union of those hubs (due to OR aggregation), and considers
them to be the hubs for the corresponding two-layer HeMLN. This baseline approach does not
use any additional information from the layers. However, based on observations 1 and 2 below,



results from the naive approach are not likely to match the ground truth results due to the pres-
ence of false positives and false negatives, respectively. This is considered a minimum/baseline
accuracy that we can further improve by using selective additional information from each layer
and inter-layer edges during composition.

Observation 1. A node that is a hub in either layer 𝐺𝑥 or 𝐺𝑦 , may not be a hub in the HeMLN
of 𝐺𝑥, 𝐺𝑦 , and 𝑋𝑥,𝑦

Example: It can be clearly observed from Figure 3 that node 𝐶 despite being a hub in layer 𝐺𝑥,
does not have enough inter-layer edge connectivity with the nodes in layer 𝐺𝑦 , and thus ceases
to be a hub in the HeMLN of 𝐺𝑥, 𝐺𝑦 , and 𝑋𝑥,𝑦 .

Observation 2. A node that is not a hub in either layer 𝐺𝑥 or 𝐺𝑦 , may become be a hub in the
HeMLN of 𝐺𝑥, 𝐺𝑦 , and 𝑋𝑥,𝑦

Example: Again, from Figure 3, it can be observed that node 𝐹 despite being a node that has
low 1-hop connectivity with other nodes in layer 𝐺𝑥 (that is a non-hub), has many inter-layer
edges with the nodes in layer 𝐺𝑦 , and thus becomes a hub in the HeMLN of 𝐺𝑥, 𝐺𝑦 , and 𝑋𝑥,𝑦 .

The above observations clearly indicate why false positives and false negatives can be gen-
erated by the naive composition depending on layer characteristics and inter-layer edges.
Therefore, in order to obtain, in general, accuracy closer to the ground truth (or always match-
ing the ground truth), the challenge is to identify the additional information that needs to
be maintained from the layers. Our goal is to develop heuristics for composition functions
that maximize accuracy (expressed as Jaccard coefficient with respect to ground truth) and the
computation cost is still significantly below the ground truth computation cost. We test results
from heuristic-based algorithms with the ground truth and naive approach. Our heuristics can
be applied repeatedly to the results and composed with other layers. This will involve ordering
of computation to maximize accuracy. Due to space constraints, in this paper, we validate
results on two layers. In general, heuristics can be applied as a binary function for any number
of layers.

4.2. Heuristic HeMLN-PG for Precision Guarantee

The question is what additional information from layers can we use that can guarantee reduction
or elimination false positives and negatives. What can we gain if we keep the degree value of
all the hubs from each layer as well as the information to compute the average degree? It turns
out that this can totally eliminate false positives as indicated by the following lemma.

Lemma 1. By keeping the number of 1-hop neighbors (or only degree information) for all hubs
along with the number of vertices and edges in layers 𝐺𝑥 and 𝐺𝑦 , false positives can be completely
eliminated in the computation of degree hubs in the HeMLN generated by 𝐺𝑥, 𝐺𝑦 , and 𝑋𝑥,𝑦 using
the decoupling approach.

Proof. Based on observation 2, a non-hub from a layer may become a hub in the HeMLN and is
not detected as such. This results in a false negative. With the information kept only for hubs,
this can happen. However, a false positive is one where a layer hub becomes a non-hub in the



HeMLN, but is detected as a hub. This cannot happen if degree information for all hubs (from
each layer) is kept and their degrees are updated correctly using inter-layer edges. Also, the
average degree of the HeMLN can be correctly computed using node, edge information from
each layer, and inter-layer edges. Hence, whether a previous layer hub can still be a HeMLN
hub or not can be correctly determined without generating any false positives.

Based on lemma 1, heuristic HeMLN-PG is proposed. Algorithm 1 presents the composition
function algorithm.

Algorithm 1 Composition Algorithm Θ for Heuristic HeMLN-PG

INPUT:
𝐷𝐻𝑖, |𝑉𝑖|, |𝐸𝑖|, 𝐷𝐻𝑗 , |𝑉𝑗 |, |𝐸𝑗 |
𝑑𝑒𝑔𝑖 = {𝑢𝑖1 : 𝑑𝑒𝑔𝑖1, 𝑢𝑖2 : 𝑑𝑒𝑔𝑖2, ..., 𝑢𝑖𝑚 : 𝑑𝑒𝑔𝑖𝑚}
𝑑𝑒𝑔𝑗 = {𝑣𝑗1 : 𝑑𝑒𝑔𝑗1, 𝑣𝑗2 : 𝑑𝑒𝑔𝑗2, ..., 𝑣𝑗𝑘 : 𝑑𝑒𝑔𝑗𝑘}
𝑋𝑖,𝑗 = {(𝑢𝑖1, 𝑣𝑗1), (𝑢𝑖2, 𝑣𝑗2), ...}
ALGORITHM:

1: 𝐷𝐻𝑖,𝑗 ← ∅
2: for (𝑢, 𝑣) ∈ 𝑋𝑖,𝑗 do
3: if u ∈ 𝐷𝐻𝑖 || 𝑑𝑒𝑔𝑖[𝑢] == 1 then
4: 𝑑𝑒𝑔𝑖[𝑢] = 𝑑𝑒𝑔𝑖[𝑢] + 1
5: else
6: 𝑑𝑒𝑔𝑖[𝑢] = 1
7: end if

8: if v ∈ 𝐷𝐻𝑗 || 𝑑𝑒𝑔𝑗 [𝑣] == 1 then
9: 𝑑𝑒𝑔𝑗 [𝑣] = 𝑑𝑒𝑔𝑗 [𝑣] + 1

10: else
11: 𝑑𝑒𝑔𝑗 [𝑣] = 1
12: end if
13: end for
14: 𝑎𝑣𝑔𝐷𝑒𝑔𝑖,𝑗 = 2*(|𝐸𝑖|+|𝐸𝑗 |+|𝑋𝑖,𝑗 |)

|𝑉𝑖|+|𝑉𝑗 |
15: for 𝑑𝑒𝑔[𝑢] ∈ 𝑑𝑒𝑔𝑖 ∪ 𝑑𝑒𝑔𝑗 do
16: if 𝑑𝑒𝑔[𝑢] ≥ 𝑎𝑣𝑔𝐷𝑒𝑔𝑖,𝑗 then
17: 𝐷𝐻𝑖,𝑗 ← 𝐷𝐻𝑖,𝑗 ∪ 𝑢
18: end if
19: end for

During analysis, for each layer 𝐺𝑖, in addition to degree hubs (𝐷𝐻𝑖), we collect their degree
values (𝑑𝑒𝑔𝑖[]), total number of nodes (|𝑉𝑖|), and edges (|𝐸𝑖|) as additional information to be
used during composition.

In the composition function, for each inter-layer edge ((𝑢, 𝑣) ∈ 𝑋𝑖,𝑗), the degree value of
both the nodes (𝑑𝑒𝑔𝑖[𝑢], 𝑑𝑒𝑔𝑗 [𝑣]) on which the edge is incident upon is incremented by 1. This
step will be able to calculate the correct degree of nodes that are hubs in the individual layers
and approximate the degree of other nodes as their original layer degree are unavailable. The
average degree of HeMLN (𝑎𝑣𝑔𝐷𝑒𝑔𝑖,𝑗) is calculated as two times the number of total edges in
the HeMLN (|𝐸𝑖| + |𝐸𝑗 | + |𝑋𝑖,𝑗 |) divided by the total number of nodes in the HeMLN (|𝑉𝑖| + |𝑉𝑗 |).
The estimated degree hubs for HeMLN are the ones whose final degree value after scanning all
inter-layer edges is greater than or equal to the average degree of the entire network. In order
to increase the degree for each inter-layer edge, a hash lookup is carried out on both nodes.

The proposed heuristic has been illustrated in figure 4 (top half). Here, the hubs from layer
𝐺𝑥 are nodes C (deg = 3) and E (deg = 4), and the hub from layer 𝐺𝑦 is node Q (deg = 3). The
degree of these nodes gets increased in the composition function for each inter-layer edge they
are a part of. The 6 inter-layer edges are marked (F, Q), (F, R), (F, S), (E, P), (E, S), (E, R), and (E, Q).
Therefore, we add to the degrees of nodes E, Q, F, P, R, and S. Since F, P, R, and S are not degree
hubs in the layers and we did not record their layer degree information, thus, their degrees
are initialized to 1 in the composition function, when the first corresponding inter-layer edge
is encountered. Heuristic HeMLN-PG identifies E, and Q as the degree hubs for the HeMLN



Figure 4: Illustration of Heuristic HeMLN-PG (top half) and Heuristic HeMLN-AG Flow (bottom half)
for the HeMLN with ground truth shown in Figure 3

as these nodes have degrees more than or equal to the average degree (≥3.4). In this case, a
false negative was generated in the form of node F, which also came out as a hub as part of the
ground truth (E, F, Q) in Figure 3.

HeMLN-PG will never generate false positives, as it is able to correctly calculate the degree
information of hubs which moreover gets compared against the correct value of the average
HeMLN degree. That is, the precision for this heuristic is always accurate.

4.3. Heuristic HeMLN-AG for Accuracy Guarantee

The major drawback of HeMLN-PG is that it may generate some false negatives as it does not
calculate the correct degree value of the nodes that are not layer-wise hubs, thus leading to
inconsistent recall values. However, if we keep degree information for all nodes in each layer,
this can be avoided. This leads to the following lemma.

Lemma 2. It is sufficient to maintain the number of 1-hop neighbors of each node (not just the
hubs) along with the number of nodes and edges in layers 𝐺𝑥 and 𝐺𝑦 to compute degree hubs in
the HeMLN generated by 𝐺𝑥, 𝐺𝑦 , and 𝑋𝑥,𝑦 accurately (i.e., to match the ground truth) using the
decoupling approach.

Proof. Using the inter-layer edges, the revised degree of each node in each layer can be correctly
computed. The average HeMLN degree can also be computed using the number of layer nodes,
intra-, and inter-layer edges. Hence, degree hubs for the HeMLN can be correctly computed.



Note that anything less than the above is not sufficient (although may not be necessary in
many cases) to compute degree hubs correctly. Any node can become a hub in the HeMLN
depending upon the number of inter-layer edges connected to it which is not available prior to
composition step. In order to understand this better, we conducted experiments using a
percentage of high degree nodes (instead of all nodes) and it turns out that a smaller
percentage – 25% to 50% – can give very high accuracy (shown in Fig. 9 of Section 5.)

The two heuristics also clearly indicate the relevance and amount of additional information
needed for the decoupling-based approach for improving accuracy. If only precision is required,
less additional information can be used. We will also show that even with the additional
information used for obtaining ground truth accuracy, the cost incurred by the decoupling-
based approach is significantly less than that of ground truth computation cost.

On the basis of lemma 2, the second heuristic has been proposed to eliminate both false
negatives and false positives to provide accuracy guarantee. In this case, from the analysis
phase along with the degree hubs information, we also retain the degree values of the remaining
nodes from each layer. We do not add any changes to the composition function, so it remains
the same as HeMLN-PG, where the degree of a node is updated if there is an inter-layer edge
incident to that node. Thus, we are able to correctly compute the degree value of every node using
this heuristic. This is also illustrated in the bottom half of Figure 4, where all the hub nodes (E,
F, Q) are correctly generated.

5. Experimental Analysis

5.1. Data Sets

Both synthetic and real-world data sets have been used for validating accuracy and performance
gain. Subgen [19] and Recursive-Matrix (R-MAT) ([20]) are used to create synthetic data sets. A
parallel version of R-MAT termed Parallel R-MAT (PaRMAT) has been used to create large data
sets.

Synthetic Graphs: Table 2 provides a list of synthetic data sets we used in our experiments
along with their characteristics. Graph sizes vary from 25K vertices and 100K edges to 200K
vertices and 10 Million edges. Their characteristics vary as well in terms of node distribution in
layers, sparsity, number of connected components, and average degree.

Layer #Nodes #Intra-Layer Edges Inter-Layer #Inter-Layer Edges
Actor 9486 996527 Actor-Director 32033

Director 4511 250845 Actor-Movie 31422
Movie 7952 8777618 Director-Movie 8581

(a) IMDb Data Set

Layer #Nodes #Intra-Layer Edges Inter-Layer #Inter-Layer Edges
Coauthor 16918 2483 Author-Paper 37142
Papers 10326 12044080 Author-Year 29984
Year 18 18 Paper-Year 10326

(b) DBLP Data Set

Table 1
Graph Characteristics of Real World Data Sets

Real-world Data Sets: In addition to the above, experiments have been performed on the
International Movie Database (IMDb), the DBLP Computer Science Bibliography, and data sets
from The Laboratory for Web Algorithmics [21, 22]. Only IMDb (Table 1a) and DBLP (Table 1b)
details have been provided due to space constraints.



Data Sets Layers #Nodes #Edges Node distri-
bution (%)

Average de-
gree

Max de-
gree

Min de-
gree

Dangling
nodes

#connected
components

Largest com-
ponent

Sparsity (%)

25KV100KE 25000 100000 8 465 0 4385 4422 20541 0.02
Layer 1 17572 49588 70 5.643979058 241 0 4065 4124 13388 0.02
Layer 2 7430 8757 30 2.357200538 134 0 3040 3128 4201 0.02
Interlayer 41655

25KV200KE 25000 200000 16 926 0 2309 2320 22671 0.03
Layer 1 17452 97894 70 11.21865689 636 0 2272 2287 15152 0.03
Layer 2 7550 18174 30 4.814304636 201 0 1962 1987 5536 0.03
Interlayer 83932

25KV300KE 25000 300000 24 1307 0 1399 1402 23597 0.05
Layer 1 17604 150466 70 17.09452397 925 0 1428 1434 16166 0.05
Layer 2 7398 25380 30 6.861313869 242 0 1459 1469 5921 0.05
Interlayer 124154

25KV400KE 25000 400000 32 1716 0 996 999 24000 0.06
Layer 1 17469 195675 70 22.40254165 935 0 1060 1063 16405 0.06
Layer 2 7533 36026 30 9.564848002 535 0 1145 1154 6372 0.06
Interlayer 168299

35KV400KE 35000 400000 22.85 1262 0 1966 1970 33028 0.03
Layer 1 24580 194754 70 15.8465419 656 0 2100 2107 22468 0.03
Layer 2 10422 36535 30 7.011130301 378 0 1985 2003 8401 0.03
Interlayer 168711

45KV400KE 45000 400000 17.77 1257 0 4115 4130 40857 0.02
Layer 1 31442 193573 70 12.3130208 664 0 4062 4082 27342 0.02
Layer 2 13560 37333 30 5.506342183 392 0 3419 3459 10059 0.02
Interlayer 169094

55KV400KE 55000 400000 14.5 1237 0 6130 6153 48824 0.01
Layer 1 38697 192727 70 9.960823836 832 0 5972 6017 32637 0.01
Layer 2 16305 37469 30 4.596013493 225 0 4815 4879 11361 0.01
Interlayer 169804

100KV1ME 100000 1000000 20 2150 0 8976 9003 90972 0.01
Layer 1 69984 496482 70 14.18844307 1529 0 8894 8923 61034 0.01
Layer 2 30018 86976 30 5.794923046 324 0 7567 7658 22268 0.01
Interlayer 416542

100KV2ME 100000 2000000 40 4041 0 4260 4265 95732 0.02
Layer 1 79890 1265733 80 31.69 3227 0 4455 4467 75413 0.02
Layer 2 20112 83864 20 8.34 630 0 4004 4038 16041 0.02
Interlayer 650403

100KV3ME 100000 3000000 60 5686 0 2353 2354 97647 0.03
Layer 1 90073 2451052 90 54.42 5160 0 2420 2421 87653 0.03
Layer 2 9929 27996 10 5.64 321 0 2572 2596 7306 0.03
Interlayer 520952

100KV4ME 100000 4000000 80 7349 0 1629 1630 98371 0.04
Layer 1 90108 3241201 90 71.94 6599 0 1722 1723 88386 0.04
Layer 2 9894 39890 10 8.06 409 0 1997 2013 7866 0.04
Interlayer 718909

200KV1ME 200000 1000000 10 1423 0 36881 37097 162684 0.00
Layer 1 160073 643022 80 8.03 1144 0 34761 35017 124794 0.00
Layer 2 39929 39062 20 1.96 209 0 19337 19813 19597 0.00
Interlayer 317916

200KV5ME 200000 5000000 50 6702 0 7373 7375 192625 0.01
Layer 1 119908 1792650 60 29.9 2993 0 7923 7938 111957 0.01
Layer 2 80094 805373 40 20.11 2701 0 8038 8060 72014 0.01
Interlayer 2401977

200KV10ME 200000 10000000 100 12486 0 2842 2844 197156 0.03
Layer 1 80085 1610469 40 40.22 2712 0 3716 3722 76359 0.03
Layer 2 119917 3584044 60 59.78 7566 0 3438 3440 116477 0.02
Interlayer 48055487

Table 2
Graph Characteristics of Large Synthetic Data Sets

5.2. Experimental Results of HeMLN Degree Centrality

Figure 5: Accuracy: HeMLN-PG and HeMLN-AG
consistently better than Naive

In this section, we present our experimen-
tal results and analysis of the performance
of the two proposed heuristics with respect
to accuracy (Jaccard Coefficient) and com-
putational costs.

Figure 5 establishes that both the pro-
posed heuristics give consistently higher ac-
curacy as compared to the baseline naive
approach with respect to the ground truth.



Figure 6 validates that even though heuristic HeMLN-PG is able to eliminate false pos-
itives and provide a precision guarantee, it is not able to eliminate false negatives but is
still no worse than the naive approach. All our experiments (as per lemma 2) validate that
heuristic HeMLN-AG gives 100% accuracy across all synthetic and real-world data sets
of diverse characteristics. Figure 7 shows selected results for heuristic HeMLN-AG due to
space constraints.

Figure 6: Precision and Recall Comparison of HeMLN-PG and HeMLN-AG

Finally, the efficiency evaluation of heuristic HeMLN-AG has been presented in Figure 8 as
compared to the ground truth evaluation. The time taken for HeMLN-AG is calculated as the
sum of the maximum time taken for the layers (as layer analysis is done in parallel) and the
composition time. The experiments validate that heuristic HeMLN-AG generated 100% accuracy
with savings in computation time ranging between 15% to 47% for synthetic data sets,
and between 3% to 68% for real-world data sets.

Figure 7: 100% Accuracy of Heuristic 2 across diverse data sets

We have applied HeMLN-AG as a binary function to compute the results of HeMLNs with
more than 2 layers. We have analyzed our results of HeMLN-AG up to three layers for real-world
data sets IMDb and DBLP and found out the accuracy of data sets remain 100% with significant
savings in computational times.



Figure 8: Significant Savings in Computational costs with HeMLN-AG

Figure 9: Impact of Additional Information on Accuracy

Effect of Additional In-
formation: We performed
experiments to understand
the effect of additional layer-
wise information. For heuris-
tic HeMLN-PG (only hub de-
grees maintained - one end of
the spectrum) and heuristic
HeMLN-AG (all node degrees
maintained - the other end of
the spectrum), it can be clearly observed that the increase in accuracy in HeMLN-AG comes at
the cost of an increase in the amount of information retained from each layer. Moreover, we
modified HeMLN-AG, to include from the layers the degree information of the top x% nodes
(sorted in the decreasing order of degree values) + the hub nodes. Figure 9 demonstrates for few
of the larger synthetic data sets (100KV1ME to 100KV4ME) how maintaining such additional
information gradually increases the accuracy until it reaches a saturation point. However,
more layer information increases composition phase cost as well. This validates the trade-off
between the savings in computational cost and the accuracy of the results.

6. Conclusions

In this paper, we defined degree centrality for heterogeneous multilayer networks. Based
on intuition of degree hubs, we proposed two heuristics for the decoupling approach - one
that provides precision guarantee and the other that provides accuracy guarantee. We
were able to prove the need for minimal additional information to obtain the guarantees, Each
may be useful for different applications. A large number of experiments were performed on
diverse synthetic and real-world data sets to validate accuracy, precision, and efficiency of our
algorithms. Information retained and accuracy versus efficiency trade-off was also demonstrated.
Acknowledgments: For this work, Drs. Sharma Chakravarthy and Abhishek Santra were partly
supported by NSF Grant CCF-1955798. Dr. Sharma Chakravarthy was also partly supported by
NSF Grant CNS-2120393.
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