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Abstract 
In this study, we introduce a generic experimental framework for measuring the degree of 
attribution methodologies generality and precision in terms of machine learning 
interpretability. In addition, we detail a way for gauging the consistency of two attribution 
approaches. In our experimental work, we concentrate on two well-known model-independent 
attribution techniques, namely SHAP and LIME, and evaluate them using two applications in 
the attack detection sector. Our introduced methodology demonstrates the lack of precision, 
generality, and consistency in both LIME and SHAP. As a result, attribution research needs 
to be examined more carefully.
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1. Introduction

Machine learning models are commonly used for solving different types of problems. From 
“simple” movie recommendation systems and personal voice assistants, to more “sensitive” domains 
that involve taking “high” impact decisions, such as mortgage approval models and healthcare 
decision support systems. Therefore, it became inevitable to democratize Artificial Intelligence (A.I.)
in our society [1]. Regardless of the adoption expansion of ML models, the logic and mechanisms 
behind these models is still unknown to end users and experts, i.e. making these models be considered 
black boxes [2]. Therefore, depending on these ML algorithms for decision-making tasks that are 
sophisticated such as in aircraft collision detection systems without well understanding these models 
can lead to serious consequences [3]. Hence, in order to solve this problem, many interpretable models 
and explanation methods [2] have been proposed.

Being social impact of ML algorithms significantly increasing, the need for understanding the 
mechanism behind the decision-making process is also increasing along with it [4]-[7].

A big number of studies targeting this problem has been done. Specifically, Explainable Artificial 
Intelligence (X.A.I.) i.e. a field of study aiming at interpretable ML models development in order to 
make a transition to transparent A.I. [2], i.e. producing more explainable models and methods that 
explain existing black box models without compromising their predictive performance. Defense 
Advanced Research Projects Agency (DARPA) is a remarkable initiative in this research field, funded 
by the U.S. Department of Defense, which created the X.A.I. program for funding academic and 
military research [8]. Likely, “Preparing for the Future of Artificial Intelligence”- is a report published 
by the White House Office of Science and Technology Policy (OSTP) which represents another example 
of governmental initiatives emphasizing that A.I. systems should be open, transparent, and 
understandable for interrogating the assumptions behind the models decisions [9]. Many countries 
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outside of the U.S.A. have already taken the initiative towards transparent A.I. . i.e., the French Strategy 

for Artificial Intelligence, The United Kingdom’s Academy of Sciences, and Portugal government, have 

published their roadmap towards interpretable A.I. [10]-[12]. The European Union announced that 

“A.I. systems should be developed in a manner which allows humans to understand (the basis of) their 

actions” in order to increase transparency and minimize the risk of bias error [13]. 

Interpretable A.I. practices in various A.I.-related fields have already became common in the Tech 

industry. Additionally, numerous companies are interested in interpretability in order to commercialize 

interpretable A.I. products as investments in this field. Google is promoting interpretability by including 

as a core part of their user experience the interpretability planning and treating, designing interpretable 

models, understanding and communicating their trained models explanations to the users [14]. FICO, 

is a credit score company that also addressed interpretability in credit scoring systems [15] as it has 

published a white paper with the title of “Developing Transparent Credit Risk Scorecards More 

Effectively: An Explainable Artificial Intelligence Approach”. 

In this paper, the main focus is outcome (e.g., classification result) explanations of machine learning 

models for a specific instance and the explanation methods, by using and experimental A.I. framework 

that is straightforwardly composed by some well-known tools for ML-based A.I. explainability. This 

category of methods include rule-based methods (explain instances with simple logic rules) and 

attribution methods (which give an importance score for each input feature of the complex machine 

learning model). Rule-based outcome explanation methods, [16] are the first to introduce precision and 

generality as a requirement. i.e., Precision enforces that, if a rule explains an instance with a specific 

classification outcome (e.g., class 1), it should never explain other instances with a different 

classification outcome (e.g., class 0). And generality suggesting that, if a rule explains an instance with 

a particular classification outcome (e.g., class 1), it should also likely explain other instances having 

the same classification outcome. This makes precision and generality two important requirements that 

raise human trust in ML models explanations. However, these requirements are not tested or even 

implied in attribution methods, but they are defined and measured only on rules. 

Machine Learning models are like black boxes that can only classify instances, where it is unknown 

how the classification procedure is performed. Hence, this paper provides an overview of model 

agnostic attribution methods along with a methodology on how to evaluate these method based on the 

precision and the generality of the attribution, and how to measure consistency between different 

generic attribution methods. 

2. Model Agnostic Explanation Methods: An Introduction 

Model agnostic methods separate the explanation from the ML model, which gives flexibility in 

using any interpretable ML method regardless of how the ML model is defined i.e., a model agnostic 

method uses the ML model as an oracle model. This category covers some basic approaches such as 

Dependency Plot (PDP) [17], Individual Conditional Expectation (ICE) [18], feature interaction based 

on H-statistic [19], and local surrogate models. Differently from other models, local surrogate ones 

focus on explaining a specific outcome of a single instance. Several related works in the field of machine 

learning are reported in [20]-[34]. 

We report in the following two relevant local surrogate models that are also attribution methods, i.e. 

LIME and SHAP, which provide for each feature of the classification model inputs an importance 

score. 

2.1. The First Explainability Tool: LIME 

In order to explain an outcome of a model, LIME learns an interpretable model locally around the 

instance and modifies the data sample of a single instance by tweaking its feature values and observing 

how the changes affect the resulting output. 

The main idea behind LIME is that: in order to understand the prediction sensitivity w.r.t. each 

feature of a particular instance, a “local sensitivity analysis” is performed on every outcome made by 

each individual instance that is passed on to the model. Figure 1 shows how LIME works theoretically. 

 



 
Figure 1: LIME [35] 

 

The blue/orange background represents the original decision function i.e. clear to see that it is not 

linear, and the instance to explain is the largest red X mark 𝐼. LIME simply generates new instances in 

the neighborhood of 𝐼 (i.e. perturbations) and assigns them weights based on their proximity to 𝐼. The 

weights are represented in Figure 1 by the sizes of the symbols i.e. blue circles and red X marks. Based 

on the model’s outcome confidence on these perturbations, LIME approximates the complex model 

well by learning a linear model i.e. presented with a red line in Figure 1 locally around 𝐼. It should be 

noted that, in this case, the explanation that LIME produces at a local point p is true only locally around 

the instance 𝐼 and not globally. The generic formula that returns this explanation is the following: 

𝜃(𝑝) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑠∈𝑆𝐹(𝑐, 𝑠, 𝛿𝑝) + ε(𝑠) (1) 

where 𝑐 is the real function (known as the black box model i.e. the complex machine learning model to 

explain), 𝑠 is a surrogate model i.e. the simple model used to approximate 𝑐 locally around 𝐼 where 𝛿𝑝 

defines this locality. This formulation can be applied with different surrogate explanation families 𝑆, 

fidelity functions 𝐹, and complexity measures 𝜀. LIME assumes that complexity is opposed to 

explainability as 𝑠 usually belongs to the family of linear functions i.e. low in complexity. The loss 

function 𝐹 (i.e. fidelity function) minimizes the local mismatch between the complex machine learning 

model 𝑐 and the approximating function 𝑠 (i.e. the simple model), which is the well-known root mean 

square error loss function RMSE. Where, typically, 𝑠 is a linear combination of the input features of 

the predictive model. 

LIME is considered as an attribution method by making use of a linear model, where the coefficients 

of this linear model are determining the importance scores for each feature. 

2.2. The Second Explainability Tool: SHAP 

SHAP (SHaply Additive exPlanations) [36] is a unified approach introduced for interpreting model 

prediction from different interpretable techniques i.e. LIME [35], Shapley Sampling Values [37], 

DeepLIFT [38], QII [39], Layer-wise Relevance Propagation [40], Shapley Regression Values [41] by 

defining the class of additive feature attribution methods. SHAP assigns an importance value for each 

input feature by employing game theory in order to compute the attribution, particularly, by using the 

Shapley values. Which indicate the reward received by each player in a cooperative game for his 

participation in the coalition. Let 𝑅 be the set of all the input features of the ML model, given an instance 

𝑝 and a complex ML model 𝑐 and by adopting Shapely values we obtain for each feature 𝑖 ∈ 𝑇 an 

attribution score 𝜓𝑖
𝑐(𝑝) as follows: 

𝜓𝑖(𝑐, 𝑝) = ∑
|𝑇|! (|𝑇| − |𝑅| − 1)!

𝑅!
𝑇⊆𝑅∖{𝑖}

[𝑐𝑓(𝑝𝑇∪{𝑖}) − 𝑐𝑓(𝑝𝑇)] 
(2) 

where 𝑐𝑓 represents the confidence value of the complex ML model 𝑐 for a particular outcome (e.g., a 

specific class) and 𝑝𝑇 is the instance 𝑝 having each value 𝑝[𝑟] of the feature 𝑟 ∈ 𝑅 \𝑇 substituted with 

the mean value of all 𝑟 values had among all the possible instances. This score indicates the relevance 



of the particular value assigned to each feature 𝑟 for the classification compared to the mean value of 

the feature in the instance 𝑝. 

Clearly, we see that the complexity of computing the feature score is exponential in the number of 

features. Therefore, approximations are provided in order to overcome such complexity. 

Kernel SHAP [36], being one of these approximations, founds on fitting a linear model i.e. defined 

as follows: 

𝑠(𝑇) = 𝜓0 + ∑ 𝜓𝑗

𝑗∈𝑇

 (3) 

This fitting procedure aims to minimize the loss function i.e. defined as follows: 

∑ 𝜉(𝑇)(𝑠(𝑇) − 𝑐𝑓(𝑝𝑇))2

𝑇⊆𝑅

 (4) 

where 𝜉(𝑇) is the kernel, and it is defined as𝜉(𝑇) =
|𝑅|−1

(
|𝑅|
|𝑇|

)|𝑇|(|𝑅|−|𝑇|)
. 

The speed up is obtained by optimizing the loss function ∑ 𝜉(𝑇)(𝑠(𝑇) − 𝑐𝑓(𝑝𝑇))2
𝑇∈𝐴    considering 

only a random sub-samples 𝐴 ⊂ {𝑇|𝑇 ⊆ 𝑅}. 
All which allows this kernel to align SHAP with LIME. 
[42] provides a fast algorithm computation for SHAP in the context of explaining decision tree-

based machine learning models, e.g., Random Forest. 

3. How To Measure Precision, Generality, and Consistency of Attribution 
Models 

In this Section, we describe how Precision, Generality, and Consistency are measured in attribution 

models using our methodology. In [16], precision and generality measurement methods for rules are 

already defined, but still not for attributions. In this Section, additionally, we propose a method for 

consistency measurement between two generic attribution techniques. 

3.1. Measuring Precision 

It is enforced by Precision that, if a rule explains an instance with a specific classification outcome 

(e.g., class 1), it should never explain other instances with a different classification outcome (e.g., class 

0). Thus, it is intuitive that, it is inconsistent and not trustable by a human to provide a rule that explains 

two different outcomes of a machine learning model. [16], measures inversely the precision of a rule 𝑙 
that explains an outcome 𝑡 by the percentage of instances that obtain from the machine learning model 

a different outcome from 𝑡 and 𝑙 applies to those instances. In order to define precision to the attribution 

results, we introduce first two functions. (𝑖) 𝑠𝑒𝑙(𝑇, 𝑝) which returns in ℝ|𝑇| a vector i.e. the selection 

of the values of the feature in 𝑇. Given 𝑇 = 𝑖1, … , 𝑖𝑘 the subset of features for each 𝑗 ∈
{1, … , 𝑘}, 𝑠𝑒𝑙(𝑇, 𝑝)[𝑗] = 𝑝[𝑖𝑗]. (𝑖𝑖) 𝑡𝑜𝑝𝑘: ℝ𝑛 → 2|𝑘| which returns the top-k feature according to 

attribution vector 𝑎𝑡𝑡. Let 𝑃𝑡 be the set of instances receiving the outcome 𝑡 and 𝑃¬𝑡 be the set of 

instances not receiving it, given an instance 𝑝 ∈ 𝑃𝑡 and its attribution 𝑎𝑡𝑡𝑝, we can inversely measure 

the attribution precision using the Reverse Precision (RP) as follows: 

𝑅𝑃𝑘(𝑝, 𝑎𝑡𝑡𝑝) =
|{𝑝̂|𝑝̂ ∈ 𝑃¬𝑡 , 𝑠𝑒𝑙(𝑇𝑡𝑥

𝑝
, 𝑝 ) = 𝑠𝑒𝑙(𝑇𝑡𝑥

𝑝
, 𝑝̂ )}|

|𝑃¬𝑡|
 

(5) 

where 𝑇𝑡𝑥
𝑝

= 𝑡𝑜𝑝𝑘(𝑎𝑡𝑡𝑝). It is intuitive that, using the reverse precision, we measure the percentage of 

instances that receive the outcome 𝑡 and have the same values of top-k features as the specifically 

explained instance. Given a particular outcome 𝑡 we can compute the average of the reverse precision 

scores at 𝑘 for each instance in 𝑃𝑡 as follows: 

𝑎𝑣𝑔𝑅𝑃𝑘(𝑃𝑡) =
Σ𝑝∈𝑃𝑡

𝑅𝑃𝑘(𝑝, 𝑎𝑡𝑡𝑝)

|𝑃𝑡|
 

(6) 



3.2. Measuring Generality 

It is suggested by Generality that, if a rule explains an instance with a particular classification 

outcome (e.g., class 1), it should also likely explain other instances having the same classification 

outcome. Given two instances 𝑝1 and 𝑝2 along with their attribution vectors 𝑎𝑡𝑡𝑝1
 and 𝑎𝑡𝑡𝑝2

, we define 

the function that measures how many top-k features does 𝑎𝑡𝑡𝑝1
 and 𝑎𝑡𝑡𝑝2

 have in common as follows: 

𝑐𝑜𝑚𝑚𝑜𝑛𝑘(𝑎𝑡𝑡𝑝1
, 𝑎𝑡𝑡𝑝2

) = |𝑡𝑜𝑝𝑘(𝑎𝑡𝑡1) ∩ 𝑡𝑜𝑝𝑘(𝑎𝑡𝑡2)|  (7) 

where the function 𝑡𝑜𝑝𝑘 is already defined in the precision Section. Given an instance 𝑝 ∈ 𝑃𝑡 the 

generality of its attribution 𝑎𝑡𝑡𝑝 in the context of the top ℎ neighbour instances in 𝑃𝑡 of 𝑝 is measured 

using the function 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦(𝑥, 𝑘, ℎ, 𝑎𝑔𝑔) defined as follows: 

𝑎𝑔𝑔({𝑐𝑜𝑚𝑚𝑜𝑛𝑘(𝑎𝑡𝑡𝑝, 𝑎𝑡𝑡𝑝)|𝑝̂ ∈ 𝑡𝑜𝑝𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ(𝑝, 𝑃𝑡)}) (8) 

where 𝑎𝑔𝑔 ∈  {𝑠𝑢𝑚, 𝑚𝑖𝑛, 𝑚𝑎𝑥} and 𝑡𝑜𝑝𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ(𝑥, 𝐼𝑎) return the top ℎ neighbour instances in 𝑃𝑡 

of 𝑝. These different aggregation functions can provide us with more information about the 

commonalities of the attributions and their distribution among the top ℎ neighbor instances. It should 

be noted that the function 𝑐𝑜𝑚𝑚𝑜𝑛𝑘 does not consider the values of the 𝑡𝑜𝑝𝑘 features from the 

attributions, i.e., justified by the fact that, in the 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦 function, we use the 𝑐𝑜𝑚𝑚𝑜𝑛 function 

only among the nearest neighbors, then we assume the similarity requirement of the values of these 

instances. Given a particular outcome 𝑡  the average of the generality scores at 𝑘 for the top-ℎ neighbour 

instances for each instance in 𝑃𝑡 is computed as follows: 

𝑎𝑣𝑔𝐺𝑒𝑛(𝑃𝑡 , 𝑘, ℎ, 𝑎𝑔𝑔) =
Σ𝑝∈𝑃𝑡

𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦(𝑝, 𝑘, ℎ, 𝑎𝑔𝑔)

|𝑃𝑡|
 

(9) 

3.3. Measuring Consistency 

As the attribution method SHAP unifies a number of other attribution methods, one of them is 

LIME, we propose a simple technique to compare the attribution between two different attribution 

methods. Given an instance 𝑝 and an attribution method 𝑚, we denote the attribution scores for the 

instance 𝑝 provided by the attribution method 𝑚 by 𝑎𝑡𝑡𝑟𝑚(𝑝). 

Given the set of instances 𝑃𝑡 receiving an outcome 𝑡 and the two attribution methods 𝑚1 and 𝑚2, 

we define the consistency score for the top-k features between 𝑚1 and 𝑚2 as follows: 

𝑐𝑜𝑛𝑠𝑘(𝑃𝑡, 𝑚1, 𝑚2) =
Σ𝑝∈𝑃𝑡

𝑐𝑜𝑚𝑚𝑜𝑛𝑘(𝑎𝑡𝑡𝑚1
(𝑝), 𝑎𝑡𝑡𝑚2

(𝑝))

|𝑃𝑡|
 

(10) 

where the function 𝑐𝑜𝑚𝑚𝑜𝑛𝑘 is already defined in the generality Section. 

4. Experimental Evaluation and Analysis 

In this Section, in order to evaluate attribution methods in two attack detection contexts, i.e., network 

traffic and power system. We apply our methodology focusing on the explanation (i.e. the attribution) 

of attack instances particularly. We start by describing the two datasets. Then, we display the 

classification results of different classification models in detecting such attacks. Finally, and after 

selecting the best classification model, and using our methodology, we evaluate LIME and SHAP 

attribution approaches in correctly interpreting attack instances that have been classified by this model. 

4.1. The Datasets 

The datasets used in the two attack detection contexts are described as follows. UNSW-NB 15: 

Network Traffic: Represents a comprehensive network-based dataset [43] that can reflect the network 

traffic’s modern scenarios, numerous types of low footprint intrusions, and depth structured information 

about this traffic. The IXIA PerfectStorm tool in the Cyber Range Lab of the Australian Centre for 

Cyber Security (ACCS) has created this raw network packets of this dataset that contains real normal 

behavior and synthesized attack activities of network traffic on Jan 22, 2015, and 15 hours on Feb 17, 



2015 with a simulation period of 16 hours. This dataset consists of 2, 540, 044 records and contains 49 

distinct features. ICS: Power System: captures different scenario of power system disturbance. This 

dataset [44] is a derivation from an original dataset containing 15 sets of 37 power system event scenario 

for each set (28 attack events and 9 normal events). It consists of a total of 128 features and 78, 377 

records. 

  
(a) (b) 

  

(c) (d) 

Figure 2: “UNSW-NB 15” experimental patterns of: Linear Regression (a), Random Forest (b), KNN 
(c), and SVC (d) algorithms 

  
(a) (b) 

  

(c) (d) 

Figure 3: “ICS: Power System” experimental patterns of: Linear Regression (a), Random Forest (b), 
KNN (c), and SVC (d) algorithms 

4.2. Experimental Results 

Before the start of the classification, we perform a one-hot encoding transformation on all the non-

numeric features. First, we split the dataset into a 70% training set and a 30% test set. The split was 

initially provided for “UNSW-NB 15” but with the same percentages. Then, we train and test the: 

Logistic Regression, Random Forest, KNN, Support Vector Classification (with RBF kernel) 

classification models. Figure 2 displays the classification results (Precision, Recall, F1-score and 

Accuracy) of all the classification models for “UNSW-NB 15”, and Figure 3 for “ICS: Power System”, 

respectively. We state that KNN and Random Forest provide the best and most comparable results. 

Finally, while applying our methodology in order to evaluate the attribution methods, we only 

concentrated on the Random Forest classifier as SHAP offers a more efficient computation. 



4.3. Analysis of Attribution Precision 

In Table 1 and Table 2 we show 𝑎𝑣𝑔𝑅𝑃𝑘(𝑃𝑡) for LIME and SHAP when varying the number 𝑘 in 

“UNSW-NB 15” and “ICS: Power System”, respectively. We can see that, even for 𝑘 = 6, the values 

of the top-6 features, according to the attributions of the attack instances for both the methods (LIME 

and SHAP), are the same for the normal behavior in both the datasets. In fact, 𝑎𝑣𝑔𝑅𝑃6(𝑃𝑡) > 0. Which 

highlights the fact that as the explanation provided by LIME and SHAP for the attack instances also 

apply to normal behavior instances, then both LIME and SHAP are not really precise. Additionally, no 

attribution technique is better than the other. It is also interesting to see that according to the specific 

attribution procedure, the value of the top-1 most important feature is the same in numerous normal 

behavior instances, i.e. more than 70% in “UNSW-NB 15” and 50% in “ICS: Power System”. 

Intuitively, this shows how precision still remains an open problem for attribution methods. 

 

Table 1 
𝒂𝒗𝒈𝑮𝒆𝒏(𝑰𝒂, 𝒌, 𝒉, 𝒂𝒈𝒈) by varying 𝒌 and 𝒉 for “UNSW-NB 15” 

𝒌 1 2 3 4 5 6 7 8 9 10 

LIME 𝒂𝒗𝒈𝑹𝑷𝒌 78 64 31.5 31 28 27 19 17 16 14 

SHAP 𝒂𝒗𝒈𝑹𝑷𝒌 81 63 23 11 3 0.5 0 0 0 0 

 

Table 2 
𝒂𝒗𝒈𝑮𝒆𝒏(𝑰𝒂, 𝒌, 𝒉, 𝒂𝒈𝒈) by varying 𝒌 and 𝒉 for “ICS: Power System” 

𝒌 1 2 3 4 5 6 7 8 9 10 

LIME 𝒂𝒗𝒈𝑹𝑷𝒌 59 32 18 5 3 2 1 0 0 0 

SHAP 𝒂𝒗𝒈𝑹𝑷𝒌 52 17 9 6 4 2 0 0 0 0 

 

  
(a) (b) 

  

(c) (d) 

Figure 4: 𝑎𝑣𝑔𝐺𝑒𝑛(𝐼𝑎, 𝑘, ℎ, 𝑎𝑔𝑔) by varying 𝑘 and ℎ for: LIME in “ICS: Power System” (a) and in “ICS: 

Power System” (b), SHAP in “ICS: Power System” (c) and in “ICS: Power System” (d) 

4.4. Analysis of Attribution Generality 

Figure 4 (a) shows the values of 𝑎𝑣𝑔𝐺𝑒𝑛(𝑃𝑡 , 𝑘, ℎ, 𝑎𝑔𝑔) by varying the number of top features 𝑘 and 

the number of close neighbors ℎ for LIME and Figure 4 (c) for SHAP in “UNSW-NB 15”, and Figure 

4 (b) shows the average generality values for LIME, and Figure 4 (d) for SHAP in “ICS: Power 



System”, respectively. Based on the results, even the closest instances produce attributions that are 

drastically different. Therefore, the attributions of both methods is not so general and attribution seems 

unique for the specific instance rather than being generic. 

4.5. Analysis of Attribution Consistency 

In this experiment, we show how LIME and SHAP are consistent, especially when considering 

SHAP as a method that unifies a number of other attribution methods including LIME. Figure 5 (a) 

shows 𝑐𝑜𝑛𝑠𝑘(𝑃𝑡, 𝐿𝐼𝑀𝐸, 𝑆𝐻𝐴𝑃) when varying the number 𝑘 in “UNSW-NB 15” and Figure 5 (b) in 

“ICS: Power System” respectively. We can see that LIME and SHAP agree over less than third of the 

top-k features for both the datasets. Particularly, in terms of top-1, top-2, and top-3 features, where the 

methods have a strong disagreement. 

This evaluation highlights the fact that the attributions provided by the two methods are different, 

and it is difficult to determine which attribution method is the best, as they have low performances in 

terms of precision and generality. 

 

  
(a) (b) 

Figure 5: 𝑐𝑜𝑛𝑠𝑘(𝐼𝑎, 𝐿𝐼𝑀𝐸, 𝑆𝐻𝐴𝑃) by varying 𝑘 in: “UNSW-NB 15” (a), and “ICS: Power System” (b) 

5. Conclusions and Future Work 

Attribution methods are crucial for machine learning models interpretability evaluation. In this 

paper, we provided a new methodology to evaluate the precision, generality, and consistency of 

attribution methods. And, we applied it in order to evaluate the two common model agnostic attribution 

models, LIME and SHAP, on two attack classification tasks related to network traffic and power 

systems in the industrial control system field. Our methodology highlighted the lack of precision and 

generality in these two methods and the fact that no method is really better than the other. Regardless 

of SHAP being proposed as the unification model and that it should generalize LIME, we inspected 

the attribution results of the two attribution methods in numerous cases, and they were very different. 

Based on this evaluation, we came with a conclusion that there is no best model for attribution and that 

still more research is needed to overcome the limitations of precision and generality in this topic. 

Future work has many aspects. One concerns with integrating the methodologies with emerging big 

data analytics tools, in different settings (e.g., [45-48]). 
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