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Abstract
The polymorphic nature of malware makes it challenging to identify, especially when 
employing hash-based detection approaches, making malware detection an intriguing study 
topic. In contrast to image-based methods, a graph-based method was employed in this study 
to extract control flow graphs from Android APK binaries. We use a method that combines 
XGBoost, a common machine learning model, with Inferential SIR-GN for Graph 
representation, a novel graph representation learning method that preserves graph structural 
similarities, to handle the resulting graph. The method is then used on MALNET, an open
cybersecurity database containing 1,262,024 million Android APK binary files in total, with 
47 kinds and 696 families. The experimental findings show that, in terms of detection accuracy, 
our graph-based technique surpasses the image-based method.
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1. Introduction

Malicious cyber activity’s economic effects on the US economy are difficult to estimate, however, 
these assaults cost the economy between $57 billion to $109 billion in 2016 [1]. Hackers use modern 
tactics, technologies, and polymorphic approaches to infiltrate networks in today’s data-driven 
corporate sector. Cyberattacks are mostly sophisticated and directed towards governments and huge 
corporations in order to disrupt main services and steal copyrights [2].

This type of attacks is achievable and successful due to malware apps. Detecting such applications 
can be a challenging process, however, there exist two popular methods for malware analysis: static 
code analysis and dynamic code analysis. The static analysis searches for malicious patterns by 
disassembling the code and studying the executable’s control flow without executing the code. On the 
other hand, the code is executed virtually in the case of dynamic analysis, this approach is behavior-
based, and therefore the key methods may be discovered.

Although static analysis provides comprehensive coverage, it still suffers occasionally from code 
obfuscation. Before analysis, the executable must be unpacked and encrypted, but regardless of that, 
the analysis still can be vulnerable to difficulties of intractable complexity. On the other hand, the 
executable does not need to be neither unpacked nor encrypted in the case of the dynamic analysis. 
However, it is unfortunate that dynamic analysis can still be time-consuming and resource-intensive, as 
mentioned in [3]. Furthermore, due to the fact that the environment does not meet the triggering criteria. 
Several malicious activities may be undetected [3]. The industry has moved to image-based malware 
presentations in the case of Windows and Android malware because they are faster to build, do not need 
feature engineering, and are resistant to multiple standard obfuscation strategies (e.g., encryption [3]).

On the other hand, static analysis is successful in the context of Android OS, and graph control flow
is extractable. Furthermore, similar to the image, once the graphs are created, they do not require any 
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additional engineering processes because the well-established field of graph representation learning 

develops the feature representing the graph automatically. 

Graph representation learning techniques are promoting the advancement of representation learning 

as they have been adopted by various scientific domains. Structured data is encoded by these techniques 

into low-dimensional space for several essential downstream tasks (for example, toxic molecule 

detection, community clustering, and malware detection) [4]. 
Graph representation learning approaches are classified as methods that preserve node connectivity 

information and methods that preserve node structure information. Despite, the existence of many 

works that concentrate on maintaining node connections, just few works aim at maintaining node 

structures. For many real-world applications, properly encoding node structure information is critical 

since it has been proven that this information may be used to solve numerous problems where 

connectivity-based approaches fail [5]. Malware analysis using control flow graph extraction is another 

area where the structural structure of the graph helps to identify malicious from benign activity. 

In this study, a graph representation learning method is used namely the Inferential Structural 

Iterative Representation Learning Approach for Graph Nodes (Inferential SIR-GN). Which is a graph 

representation learning approach where theoretically the conservation of graph structural similarities is 

ensured. In order to identify malware, classify Android APK types, and classify Android APK families, 

our technique, Inferential SIR-GN, is combined with XGBoost (i.e., a common classification machine 

learning model). 

This technique is then applied to MALNET-TINY, which is a subset of MALNET a public dataset 

of 1,262,024 million Android APK files divided into 47 kinds and 696 families. MALNET is one of 

the finest publicly accessible repositories since it is larger and includes more types than others like 

[1,3,6,7,8,9,10,11,12,13,14]. 
Our investigation on MALNET-TINY demonstrates that for malware classification and detection, 

Inferential SIR-GN is frequently superior or at worst similar to ResNet (i.e., a neural network for 

recognizing images) [1]. Furthermore, a strategy for obtaining malware’s obfuscated polymorphic 

evolution is defined using representations from malware’s inferential SIR-GN and benign Android 

APKs. In our investigation, we show the value of including representations of obfuscated polymorphic 

malware evolutions in the XGBoost training when the train and test split is done based on the APK 

generation date. 

2. Contextual Knowledge 

MALNET is the biggest cybersecurity dataset ever released; it comprises 1,262,024 Android APK 

files comprising 47 malware kinds and 696 malware families. The imbalance ratios for both types and 

families are 7,827 × and 16,901 ×, respectively. We will be dealing with MALNET-TINY in this 

work; as displayed in Figure. 2, both type and family have distributions with imbalance ratios of 154 × 

and 908 ×. MALNET-TINY involves 61,201 training, 8,743 validation, and 17,486 tests of Android 

APK files for type-level classification experiments by deleting MALNET’s four major kinds. 

MALNET-TINY’s purpose is to enable users to quickly prototype new concepts by requiring only a 

fraction of the time required to train a new model [1]. MALNET-TINY is compared to the ideal model 

discovered by Freitas, Duggal, and Chau [1], ResNet18 was trained from scratch on grayscale images 

using cross-entropy loss and class re-weighting, which attained a macro-F1 score of 0.651, a macro-

precision of 0.672, and a macro-recall of 0.646 [1]. Evolution prediction tests will be conducted using 

MALNET-TINY and VirusTotal. VirusTotal not only informs you whether a particular antivirus 

solution identified a supplied file as dangerous, but it also provides each engine’s detection label (for 

example, I-Worm.Allaple.gen) [44]. VirusTotal routinely updates malware signatures as they are 

supplied by antivirus firms; this guarantees that the service utilizes the most recent signature sets, which 

is vital for malware scan dates. 

Scale. MALNET-TINY includes 87,430 Android APK files from 43 malware categories and 246 

malware families. MALNET-TINY takes up more than 35 GB of disk space in edge list format. 

Descriptive data on the number of nodes, edges, and average degree of MALNET-TINY are provided 

in Figure. 4. 



Hierarchy. Using the Euphony [45] categorization structure, an Android APK contains function call 

graphs that are assigned a broad type (e.g., Fakeapp) and specific family label (e.g., Artemis), for more 

details, see Figure. 3. [45] defines four fields: type (the sort of threat, i.e., Trojan, worm, etc.), platform 

(the operating system that the threat is meant to run on, i.e., Windows, Android, etc.), family (the group 

of threats with which it is related in terms of behavior), and information (extra description of this threat, 

including its variant). In this study, we will concentrate on type and family. 

Diversity. MALNET-TINY has 43 types, 246 families, and graphs with 17,588 nodes, 40,105 

edges, and 2 degrees on average. Figure. 2 depicts a type and family distribution with ratios of 154 × 

and 908 ×. The graphs have a long-tailed distribution, which makes classification challenging because 

ignoring unusual events is likely to result in high-severity mistakes during testing. When there are 

disparities in the scales of the input variables, the difficulty of the problem being represented increases. 

The distribution of hundreds or thousands of types and families presented in Figure. 2 might result in a 

model that learns huge weight values, which is an undesirable behavior. 

Imbalance. Long-tail distribution models tend to favor the majority class, resulting in poor 

generalization performance for uncommon classes. Traditionally, the class imbalance is resolved by 

resampling the data (under-sampling, over-sampling) [4] [46]. Under-sampling is commonly utilized 

in the field of class-imbalance learning. 

 

  
Figure 2: Android APK File Type and Family Distributions in MALNET-TINY 

 

The fundamental shortcoming of most existing under-sampling algorithms is that their data sampling 

strategies are heuristic-based and unaffected by the classifier and evaluation measure utilized. As a 

result, during data sampling, they may ignore informative occurrences for the classifier [46]. Random 

minority over-sampling (ROS) and random majority under-sampling (RUS) are the two most frequent 

preprocessing approaches [47]. In ROS, instances of the minority class are replicated at random. In 

RUS, occurrences of the majority class are eliminated from the dataset at random. Kubat and Matwin 

[48] presented one-sided selection (OSS) as one of the first attempts to improve the performance of 

random resampling. 

 

 
Figure 3: Graph Type “Fakeapp” and Its 5 Families 

 



We will not use one-sided selection, which aims to intelligently under-sample the majority class by 

deleting majority class cases that are considered noise. In order to anticipate malware development, we 

will combine malware minority samples with “benign” ones. 

For the case of the MALNET-TINY dataset the Figure. 4 displays the MALNET-TINY’s graph 

statistics. Such that for every type included in the dataset, the Figure presents some statistics: 

• #𝐺: Number of graphs included in the following type. 

• #𝐹: the number of families included in the following type. 

• Nodes: these represent the Min, Max, Mean, and STD number of the node. 

• Edges: these model the Min, Max, Mean, and STD number of edges involved in graphs of this 

malware type. 

• Avg. Degrees: finally, this metric provides information about the Min, Max, Mean, and STD 

average degrees of the node. 

As presented in the Figure. 4, the MALNET-TINY dataset contains over 80𝐾 software images 

across a hierarchy of 43 types. We can understand that this dataset is a reduction of the original 

MALNET dataset, this reduction is produced to allow researchers to rapidly prototype new ideas since 

it requires only a fraction of the time needed to train a new model. 

 

  

  

  



  
Figure 4: MALNET-TINY: Graph Statistics. 

3. The Proposed Graph-Representation-Learning Framework 

An approach for developing a malware classifier that is resistant to malware polymorphism is 

proposed. The process involves four parts: 

• Extraction of the structural vectorial representation for each node in a graph describing an 

Android application using Inferential SIR-GN. 

• Generation of the structural pseudo-adjacency matrix by using the vectorial representations of 

all the nodes of a certain graph representing an Android application. The graph is represented by the 

structural pseudo-adjacency matrix, followed by the Android app. 

• To build a potentially polymorphic variant of the virus, we combine the malware’s structural 

pseudo-adjacency matrix with the matrix of the benign Android app. 

• Train a random forest algorithm to identify and categorize malware using the representations 

of the Android applications (benign and malware) and the representations of the hypothetical 

polymorphic form of the malware. 

The Inferential SIR-GN, the structural pseudo-adjacency matrix, and the matrix combination for 

possible polymorphic combinations are all described below. 

3.1. Inferential SIR-GN: Overview and Methods 

Layne and Serra [49] provide a description of the Inferential SIR-GN technique, which is used to 

extract node representations from directed graphs. The model is based on the SIR-GN approach, which 

was initially published in [50], in which a node’s representation is iteratively updated by characterizing 

and then aggregating its neighbors. At each iteration, the size of a node’s representation is equal to a 

user-specified hyperparameter 𝑛𝑟. The current node description (which starts as the node degree) is 

grouped into 𝑛𝑟 KMeans clusters to create node descriptions. At each iteration, the representation is 

normalized before the clustering step, and the distance from each cluster centroid is translated into a 

probability of the node’s membership in each cluster. Since the node’s structural description has been 

modified, its neighbors are aggregated into its description by summing all neighbors’ probability of 

membership in each cluster. The final node representation is equal to the predicted number of neighbors 

in each cluster for that node. Each iteration corresponds to a greater depth of exploration, with 𝑁 

iterations producing a node description that incorporates a node’s 𝑁-hop neighborhood structure. 

The first difference between inferential SIR-GN and the standard model is that at the conclusion of 

each iteration, each node’s structural description is concatenated into a bigger representation that 

reflects the evolution of the structural information via deeper neighborhood exploration. A Principle 

Component Analysis (PCA) is employed after the final iteration to prevent information erosion as the 

representation size rises. The final representation is reduced to a hyperparameter-specified size. A 

node’s initial representation in a directed graph begins with two vectors of size 𝑛𝑟, one providing the 

node’s in-degree and the other holding its out-degree. Before clustering, these two vectors are 

concatenated. Clustering of this bigger node vector is conducted at each iteration, then by aggregation 

of the neighbors. In the case of directed data, aggregation is performed independently for a node’s in-



neighbors and out-neighbors into two intermediate vectors, which are then concatenated together for 

the following iteration. The proposed model’s inferential capacity is achieved by pre-training the 

KMeans and scalers. For each iteration, we employ a new KMeans and Scaler for each depth of 

investigation, in addition to the PCA model that will be used to build the final node representation. Each 

model is pre-trained on random graphs and saved for later use in inference. At inference time, we 

employ the pre-trained models to perform repeated normalizing, clustering, and aggregation, and the 

PCA fit during training is used to construct the final node representations. This reduces inference time 

significantly, and the same pre-trained model may be utilized on a range of different data sources. Layne 

and Serra prove that, along with a full method and description of the model’s temporal complexity.  

3.2. A Novel Concept of Adjacency Matrix 

A process for creating a unique graph representation approach is provided by [49] based on the 

vectorial representation of SIR-GN. Such approaches identify fixed-number groupings of nodes. Each 

group comprises nodes with vectorial representations that are comparable. Given this collection of 

groups, a structural pseudo-adjacency matrix based on the groups is generated, which provides the 

vectorial representation of the network once flattened. The vectorial representations of the two graphs 

are thus comparable if the calculation of the node representations and the specification of the node 

groups for the structural pseudo-adjacency matrices for the two graphs are the same. This characteristic 

is guaranteed by this technique since inferential SIR-GN [49] is a process that can make inferences 

and is pre-trained on a certain family of directed random graphs. The graph representation is invariant 

since the groups are formed based on structural similarities between the nodes. 

These node representations are especially utilized to train a final scalar and KMeans model that 

clusters the complete graph data at inference time. This final KMeans is fitted using the concatenated 

iterative node representations compressed by PCA, as opposed to the incremental KMeans, which only 

observes the node representation or aggregation for the current level of depth being examined. During 

inference, the nodes of the target graph are embedded as stated above, then grouped again using the 

KMeans pre-trained on the entire graph data. As noted previously, the distances to the cluster centroids 

are converted into probabilities of cluster membership. Nevertheless, the aggregation approach for 

graph representation differs significantly from that for nodes. Graph representations are frequently 

produced by summing or mean-pooling node representations. A novel approach for node pooling is 

provided by Layne and Serra [49], which generates a structural pseudo-adjacency matrix of dimension 

𝑎𝑚𝑠 × 𝑎𝑚𝑠, where the matrix is the sum of each node vector multiplied by the transpose of each of its 

neighbors. Unlike traditional adjacency matrices, this produces a matrix that is not unique to a certain 

network topology but also agnostic to node ordering. A set of characteristics is produced by the 

linearized matrix that may be used in subsequent graph classification tasks. 

3.3. Malware Polymorphic Generation Analysis: New Approach 

We build a process to construct a polymorphic variant of existing malware utilizing the structural 

pseudo-adjacency matrix that represents each Android application. 𝑆𝑃𝐴𝑀(𝑛) represents the structural 

pseudo-adjacency matrix of the network of an Android application 𝑛. For each Android virus 𝑥, the 

process looks among the benign apps for the application 𝑚 that has 𝑆𝑃𝐴𝑀(𝑚) closest in terms of 

Euclidean distance to 𝑆𝑃𝐴𝑀(𝑚). The 𝑘-nearest neighbor technique (KNN) is used to compute the 

closest benign application quickly. Given the Android malware a and the closet innocuous application 

m, the following weighted mean of the two representations yields a polymorphic representation 𝑝𝑟𝑛 of 

𝑛: 

𝑝𝑟𝑛 = 0.8 ∙ 𝑆𝑃𝐴𝑀(𝑛) + 0.2 ∙ 𝑆𝑃𝐴𝑀(𝑚) (1) 
Weights are used to subtly alter the virus representation 𝑆𝑃𝐴𝑀(𝑛). Then, we develop a polymorphic 

representation for each malware, and all of the polymorphic representations are employed in the training 

of the classification model, in this case, a random forest, to make the classification model resistant to 

polymorphic changes in malware applications. 



The latter one is among the most relevant innovations of our proposed research, positioning itself as 

a noticeable contribution to the actual research. Polymorphic analysis, in fact, is critical for malware 

detection. 

4. Experimental Evaluation and Analysis 
4.1. Setup 

MALNET-TINY 5k is divided into 3,500 training, 500 validation, and 1,000 graphs for type-level 

classification tests. MALNET-TINY is composed of 61,201 training graphs, 8,743 validation graphs, 

and 17,486 graphs. For type-level classification experiments and evolution prediction classification, 

we split these datasets. In this investigation, a comparison is made against Freitas, Duggal, and Chau 

[1], who used a ResNet18 model trained from scratch on grayscale pictures using cross-entropy loss 

and class reweighting and achieved a macro-F1 score of 0.651, a macro-precision of 0.672, and a 

macro-recall of 0.646 [1]. MALNET-TINY and MALNET-TINY 5k were also analyzed by carrying 

out type-level classification studies on various data splits. Each dataset is changed using the SIR-GN 

approach, which encodes node structure, and with multiple iterations, it develops rich structural 

representations by using node clustering and node neighborhood interactions [5]. The final result of 

SIR-GN is a structural representation vector that is input into an XGBoost classifier. In addition to the 

macro-F1 score, we give other performance indicators like accuracy and recall. 

 
Figure 5: SIR-GN Against ResNet18 Comparison over MALNET-TINY 61k 

4.2. Results 

The results for the SIR-GN graph representation approach [49] described in Section III are 

provided, as well as results for MALNET-TINY 5k obtained in https://mal-net.org/ and also for 

MALNET-TINY which is divided into 61,201 training, 8,743 validation, and 17,486 test graphs [1]. 
Our investigations are performed in Python3 on an Intel (𝑅) Core(𝑇𝑀) 𝑖7 −
7700𝐻𝑄 𝐶𝑃𝑈 @ 2.80 𝐺𝐻𝑧. 

The following datasets are used: 

• MALNET-TINY 5k each of dataset’s kinds (Addisplay, Adware, Benign, Downloader, and 

Trojan) has 1000 graphs. 

• MALNET-TINY 61K For type-level classification tests, there are 61,201 training, 8,743 

validation, and 17,486 test graphs. 

• MALNET-TINY 81K For type level classification experiments and evolution prediction, there 

are 81,201 training, 8,743 validation, and 27,486 test graphs. 

The results for the MALNET-TINY dataset using macro-F1, macro-precision, and macro-recall on 

random splits of 61,201 training graphs, 8,743 validation graphs, and 17,486 test graphs are shown in 

Figure. 5. We compared our results to those of [1] who had a macro-F1 score of 0.651, a macro-

precision of 0.672, and a macro-recall of 0.646, whereas we obtain a macro-F1 score of 0.718, a macro-

precision of 0.729, and a macro-recall of 0.794. Using the SIR-GN algorithm increases the classifier’s 

performance. 



Figure. 6 displays the findings for the MALNET-TINY 5k dataset with macro-F1, macro-precision, 

and macro-recall performed on random splits of 3,500 training graphs, 500 validation graphs, and 1000 

test graphs. We achieved a macro-F1 score of 0.916, a macro-precision of 0.917, and a macro-recall 

of 0.915 for the random split. 

 

  
Figure 6: SIR-GN Performance over MALNET-TINY 5k with Different Splitting Policies 

 

As reported in Figure. 7, accuracy scores are presented for numerous graph-based approaches [51], 
with the Inferential SIR-GN approach coming out on top with 0.92 accuracies. This Figure also shows 

results for a temporal split in which the training dates from 2012 to 2019, while the test dates ranged 

from 2020 to 2021. A macro-F1 score of 0.725, a macro-precision of 0.739, and a macro-recall of 

0.807 were obtained for the temporal split and type categorization. When we use evolution prediction, 

we achieve a 0.741 vs 0.725 performance improvement for a macro-F1 score. 

 

 
Figure 7: Comparison of Inferential SIR-GN Against Several Methods [51] over MALNET-TINY 5k 

 

In the experiments presented in Figure. 8, we compare MALNET-TINY against benign malware 

types to create a score based on a random split. The macro-F1 score, macro-precision, and macro-recall 

for random and temporal splits are presented in this Figure. The Figure also displays results for a 

temporal split in which the training dates ranged from 2012 to 2019, while the test dates ranged from 

2020 to 2021. We obtained a macro-F1 score of 0.725, a macro-precision of 0.739, and a macro-recall 

of 0.807 for the temporal split and type categorization. When we use evolution prediction, we achieve 

a 0.741 vs 0.725 performance improvement for a macro-F1 score. 

 

  
Figure 8: SIR-GN Performance over MALNET-TINY 81k with Different Splitting Policies 

 

 



5. Conclusions and Future Work 

In this study, MALNET and emphasized graph representation learning approaches that have evolved 

across various scientific domains were presented, these methods are driving the evolution of 

representation learning techniques. For several essential downstream tasks, graph representation 

learning approaches compress structured information into low-dimensional space. We suggested an 

approach for developing a malware classifier that is resistant to malware polymorphism. Given a graph 

representing an Android application, Inferential SIR-GN was used to extract the structural vectorial 

representation for each node within the network. In this study, we trained a model to recognize and 

classify malware using representations of Android applications (both benign and malicious) and 

possibly polymorphic versions of the malware. 

In the investigation, we go on with the experimental settings and the empirical results. SIR-GN 

graph representation technique results are presented. According to our findings, Malware applications 

are harmful and cause significant damage. As a result, malware identification and categorization are 

critical for its mitigation. Transforming binary executables into pictures is a practical and accurate 

method for using image neural networks to identify and categorize malware. In contrast to the Image-

based technique, we proposed in this paper a procedure based on control flow graph, structural graph 

representation learning, and XGBoost. In terms of malware classification, such a process was evaluated 

on MALNET and outperformed the image-based method utilizing the neural network ResNet. 
Moreover, we created a process to generate a polymorphic version of an existing malware program 

utilizing the structural pseudo-adjacency matrix representing each Android application in order to 

improve the training phase and classification performances. 

Future work is mainly oriented to embed performance in our framework, as required by modern big 

data trends (e.g., [57-60]). 
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