
The Company Control Problem, Reactively
Davide Magnanimi

1,2
, Stefano Ceri

1
, Luigi Bellomarini

2
and Davide Martinenghi

1

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
2Banca d’Italia

Abstract

The Company Control Problem (CCP) consists in understanding who exerts decision power in companies,

and is of crucial interest to central banks, financial intelligence units, and market regulators. Computing

control relationships is computationally expensive and involves traversing a shareholding graph that

may comprise hundreds of millions of nodes and billions of edges and properties. This graph is highly

volatile, thus it is unaffordable to entirely recompute the control relationships for each change. Our

incremental, rule-based formalization of CCP offers a practical and scalable solution to the problem.

1. Introduction

Who exerts decision power in a company? Given a national or international network of millions

of entities interconnected by billions of shareholding relationships, who controls—directly or

indirectly—a given company? This question, known as the Company Control Problem (CCP) [1],

is of great interest to banks, national central banks [2], financial intelligence units, regulatory

and supervisory authorities, and Fintech firms. Indeed, it impacts their core business: loan

granting processes, creditworthiness evaluation and know-your-customer onboarding procedures

are hinged on company control, to spot any possible conflict of interest between borrowers

and lenders. In banking supervision and anti-money laundering, the authorities need to identify

the actual centers of power so as to accurately detect the drivers and the ultimate beneficiaries

of financial misconducts. In monetary policy in the Eurosystem, authorities oversee the credit

market by assessing the so-called collateral eligibility [3], that is, the independence of the

collateral issuer with respect to the entities involved in monetary policy operations, in order to

reduce the credit risk. Company control is a relevant topic also in the broader macroeconomic

community [4, 5], where market concentration sparks recurring debates.

Industrial Scenario. The Bank of Italy holds a company network in the form of a Company
Knowledge Graph (KG), stored as a property graph [6]. The nodes denote individuals and compa-

nies, and the edges represent shareholding relationships (or ownerships), with the respective

percentage. Since the Bank of Italy operates as a regulator and supervisor in the European

System of Central Banks, the graph, which was initially focussed on Italian companies, is being

gradually expanded to span the entire EU-level space, with hundreds of millions of nodes and

billions of edges and properties.
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Figure 1: An excerpt from the KG. Yellow nodes are companies with a national strategic relevance; the
blue node is a non-EU shareholder. Solid edges are existing ownership relationships; dashed-magenta
edges are control relationships. The dotted-blue edge represents a candidate share acquisition.

A core element of the graph are control edges, which are derived “𝑥 controls 𝑦” relationships

computed from the shareholding edges according to the following definition [1]:

A company 𝑥 controls a company 𝑦 if 𝑥 (i) directly owns the majority of 𝑦 shares, or (ii) controls

a set of companies that, possibly together with 𝑥 itself, jointly hold the majority of 𝑦.

A static pre-computation of control edges is not suitable for uprising economic and finan-

cial applications, which need to capture dynamic phenomena involving frequent changes in

ownership edges. A timely “reactive” computation of control edges is crucial for a host of

institutional services of the Bank of Italy, which call for immediate action once a change of

control is detected. Also in the analytical perspective, timeliness in updating control edges

matters, e.g., when analysts need to perform interactive “what-if analysis” to seize the systemic

effect on control, by simulating changes of ownership.

As a matter of fact, a large category of different industrial scenarios share a common trait:

a very limited number of changes in the ownership edges in a very small time interval cause

changes in control relationships, potentially in distant areas of the KG, to be accounted for as

efficiently as possible.

Example 1. Consider now the excerpt in Figure 1 of our KG: an analyst wants to swiftly assess
the impact of the acquisition of 26% of the shares of Company 3 undertaken by a non-EU company
1. In fact, it would change the controllers of Companies 5 and 9, which are of strategic national
relevance, and potentially also affect others. Company 1 already controls 39% of Company 3, and,
with a further 26% acquisition would gain control of the majority. Consequently, Company 1 would
exert control over Company 7, the strategic 9, as well as 6, 8, and 10, already controlled by 3.
Finally, via the controlled Companies 3 and 4, our non-EU shareholder would take over the strategic
Company 5 as well and, with a cascade effect, also other companies controlled by 5, 7, 9, and 10.■

As of now, the Bank of Italy computes the control relationships between companies in a batch

fashion: daily ownership variations are collected from specific data sources, the ownership

edges are updated and all the control relationships are finally recomputed. Considering the

current rate of thousands of changes per day, rapidly soaring for the EU-level role of the Bank,



not only is the batch approach incompatible with the mentioned on-line applications, but also

causes longer and longer periods with outdated data, unacceptable in practice.

Goal. In this work, we consider a declarative specification of the CCP problem in Datalog [7, 8]

extended with features of practical utility such as aggregation, negation, and inequalities, and

introduce a reactive formulation of it as an inference task that exploits changes of ownership

so as to locally and efficiently update control relationships. We propose a production-ready

system that provides our analysts with a reactive Knowledge Graph, having continuously and

incrementally updated control edges. We implemented our solution in the Vadalog System [9, 10],

a state-of-the-art reasoner using the Vadalog language of the Datalog
±

family [11].

Contribution. We provide a declarative, incremental, reasoning-based approach to the computa-

tion of company control relationships over large and frequently updated Company Knowledge

Graphs, which we name reactive control computation. In particular, we propose a reactive
logic-based formulation of the CCP. We introduce specific predicates to reason on insertions

and deletions of shareholding relationships in the graph and use them to incrementally update

control edges. Our formulation leverages the topology of the graph to exploit forms of update
locality and avoid massive cascade updates or full recomputation, as in the batch approach.

In an extended version of this work [12], we also validate our approach in many experimental

settings comprising real snapshots of the Italian Company KG of the Bank of Italy as well as a

large number of synthetic graphs, of various sizes and topologies.

2. The Company Control Problem

Before analyzing the CCP, let us first briefly present the Italian Company Knowledge Graph.

The Company Knowledge Graph contains detailed information about companies, individuals,

corporate events, many other entities, and the relationships among them. In this work, we

focus on entities and relationships regarding ownership (of shares) relationships, which connect

subsidiaries to their shareholders (either other companies or individuals), and define an ownership
graph 𝐺 = (𝑉,𝐸, 𝐿) as a directed, weighted graph in which 𝑉 is the set of nodes representing

such companies or individuals; 𝐸 is the set of directed edges, with 𝐸 ⊆ 𝑉 2
, that represent

shareholding relationships; and 𝐿 : 𝐸 → (0, 1] is a labeling function that assigns to each edge

𝑒 = (𝑣, 𝑤) ∈ 𝐸 a label 𝐿(𝑒) representing the percentage of total equity of company 𝑤 held

by the shareholder 𝑣. Clearly, for every node 𝑤 ∈ 𝑉 , we require that

∑︀
𝑣∈pred𝑤

𝐿((𝑣, 𝑤)) ≤ 1,

with pred𝑤 indicating the set of nodes 𝑣 ∈ 𝑉 that are shareholders of 𝑤.

For our purposes, we model the ownership graph as a database 𝒟 of facts Own(𝑥, 𝑦, 𝑤),
where 𝑥 is a shareholder (company or individual), 𝑦 is a company, and 𝑤 is the owned share

percentage. For example, the graph in Figure 1 would be encoded as 𝒟 = {own(1, 2, 0.72),
own(2, 4, 0.86), own(2, 3, 0.39), own(4, 5, 0.23), . . .}.

We encode the CCP and our solution as an inference task in a Datalog-based formalism.

The Company Control Problem. Our definition of the CCP is majority-based and broadly

accepted in the corporate economics community [5]. Let us focus on a portion of Figure 1.

Shareholder 3 directly owns 100% and 80% of the total equity of 6 and 7, respectively. Therefore,



shareholder 3 obtains the control over them, as well as over the shares they own of other com-

panies. In particular, 3 is able to exert control on firm 8, as 6 directly controls it. Consequently,

by controlling 7 and 8, the shareholder 3 also controls the sum of the shares of 9 they own. As

the sum is above 50%, it allows 3 to control company 9 as well.

The CCP has been studied in the database literature and proved to be quadratic, in its pairwise

decision formulation, that is, given an ownership graph and two companies 𝑥 and 𝑦 from this

graph, decide whether a control relationship between them holds [1]. In this paper, we will

focus on the more general inference task of deriving all the control relationships. Thanks to its

recursive nature, an elegant Vadalog formulation of CCP can be provided as follows [1]:

company(𝑥) → control(𝑥, 𝑥) (1)

control(𝑥, 𝑧), own(𝑧, 𝑦, 𝑤) ∧ 𝑣 = sum(𝑤) ∧ 𝑣 > 0.5 → control(𝑥, 𝑦) (2)

Given that every company 𝑥 controls itself (Rule 1), by Rule 2, 𝑥 controls 𝑦 if the sum of the

shares 𝑤 of 𝑦 owned by companies 𝑧, over all companies 𝑧 controlled by 𝑥, is above 50%.

3. Reactive Company Control

Given the company KG, a materialization and batch approach to the CCP would consist in

periodically deleting all the control edges, considering the most recent version of the graph,

and computing a new materialization of the relationships—unaffordable in practice, as we have

discussed. Conversely, in this section we introduce an incremental solution, which “reacts” to

changes and updates the control edges.

Towards an incremental approach, we enrich our vocabulary of Vadalog atoms with adorned

versions. In detail, given a set of changes of the KG performed in the interval [𝑡1, 𝑡2], for an

atom 𝜚, we denote as new𝜚 an atom binding to all facts for 𝜚 holding after 𝑡2; as 𝜚+, an atom

binding to all the facts for 𝜚 inserted during [𝑡1, 𝑡2]; as 𝜚−, an atom binding to all the facts for 𝜚
that have been removed during [𝑡1, 𝑡2]; finally, 𝜚 binds to all facts holding before 𝑡1.

Then, in our context we will refer to the set of ownerships holding before (own) and after

the update (newOwn); to those inserted (own+) and removed (own−) by the update; to the old

materialization of the control relationship (control) and to the facts to be inserted (control+)

or deleted (control−) to materialize the new one (newControl). For the sake of simplicity, we

will refer to a generic update (interval) and will not explicitly refer to [𝑡1, 𝑡2] in the predicate

syntax. We model modifications to share amounts as a deletion of the respective ownership fact

followed by a re-insertion. Inserted or deleted nodes are represented by adding (own+) resp.

removing (own−) all the ownership facts they participate in.

Our framework models the scenario at hand as an instance of the materialization maintenance
problem [13, 14, 15, 16], in particular, as the task of maintaining the materialization of Σ(𝒟),
where Σ is the company control program and 𝒟 is the database encoding the KG. We adopt

a Delete/Rederive (DRed) [17] strategy to handle deletions: we first delete the affected control

facts, identifying them with an overstimation/refinement process. Then, we apply the insertions

and extend 𝒟 with all the consequences of the inserted facts.



More precisely, given 𝒟 and a set of updates occurred during [𝑡1, 𝑡2] that can be referred to via

adorned predicates, the materialization maintenance task is solved by two sets of Vadalog rules

Σ𝐷 and Σ𝐼 with two associated inference tasks that, respectively, infer the sets C− = Σ𝐷(𝒟)
of control facts to be deleted from 𝒟, and the set C+ = Σ𝐼(𝒟 ∖C−) to be added to 𝒟 ∖C−

. In

total, (𝒟 ∖C−) ∪C+
is the updated version of Σ(𝒟).

3.1. Deletion rules (Σ𝐷)

The rules of Σ𝐷 are conceptually organized in three groups that (i) identify the facts that are

potentially deleted as a consequence of ownership changes; (ii) for each of those facts, try

to identify alternative derivation paths; (iii) single out the facts deleted by group (i) and not

reinserted by group (ii).

Group 1 - Potentially deleted controls. The rules of this group identify, by overestimation, the

control facts potDControl that are potentially deleted as a consequence of ownership changes.

This deletion event can take place in three scenarios, that we see next. For each scenario, we

present the rationale, the Vadalog rules, and an explanatory snippet. Each snippet offers a

visual representation of the rule application, where deleted facts are denoted by red edges.

• Deletion of a direct ownership. The deletion of a direct ownership 𝑥 → 𝑦 reduces the total

shares of 𝑦 controlled by 𝑥. Consequently, a control relationship from 𝑥 to 𝑦 may not hold

anymore, as denoted by a new potDControl fact.

𝑥 𝑦

control

potDControl

own−

→ 𝑥 𝑦

control

potDControl

own−

own−(𝑥, 𝑦, 𝑞) ∧ control(𝑥, 𝑦) → potDControl(𝑥, 𝑦) (3)

• Deletion of an indirect ownership. Let 𝑥 control 𝑦 via direct and indirect undertakings,

e.g., via 𝑧. If the indirect undertaking is removed, 𝑥 may lose its control on 𝑦.

𝑥

𝑧

𝑦

potDControl

control

control own−

→ 𝑥

𝑧

𝑦

potDControl

control

control own−

control(𝑥, 𝑧) ∧ own−(𝑧, 𝑦, 𝑞) ∧ control(𝑥, 𝑦) → potDControl(𝑥, 𝑦) (4)

• Recursive propagation. If 𝑥 controls 𝑦 also via a controlled company 𝑧 retaining shares of 𝑦,

a potential deletion of the control from 𝑥 to 𝑧 could cause 𝑥 to lose its control on 𝑦, recursively.

𝑥

𝑧

𝑦

potDControl

control

potDControl

control own

→
𝑥

𝑧

𝑦

potDControl

control

potDControl

control own

potDControl(𝑥, 𝑧) ∧ own(𝑧, 𝑦) ∧ control(𝑥, 𝑦) → potDControl(𝑥, 𝑦) (5)



Group 2 - Recomputing affected controlled shares. The rules of this group seek for

alternative derivations of the control relationships affected by ownership deletions.

In this group, we recompute direct and indirect control shares only for the pairs of nodes

interested by a potDControl relationship, hence minimizing the portion of the traversed graph.

To find alternative derivations, given a potentially deleted control, we collect all the shares 𝑞 of 𝑦
controlled by 𝑥 via 𝑧 into the predicate potDControlShare(x, z, y, q), so that they are eventually

aggregated. Rules 6 and 7 together represent the base case of this aggregation; Rules 8 and 9,

which are mutually recursive, represent the inductive case.

To start, we need to introduce an auxiliary predicate to consider only the ownerships that

have not been deleted, i.e.: own(𝑥, 𝑦, 𝑞) ∧ ¬own−(𝑥, 𝑦, 𝑞) → stillOwn(𝑥, 𝑦, 𝑞).

potDControl(𝑥, 𝑦) ∧ stillOwn(𝑥, 𝑦, 𝑞) → potDControlShare(𝑥, 𝑦, 𝑦, 𝑞) (6)

With Rule 7, we want to collect the shares of indirect controls. We consider the shares 𝑞 for the

pairs 𝑥 and 𝑦 connected by a potentially deleted control, in the case 𝑥 certainly controls some

other node 𝑧, i.e., potDControl(𝑥, 𝑧) does not hold, and 𝑧 still retains 𝑞 shares of 𝑦.

potDControl(𝑥, 𝑦) ∧ stillOwn(𝑧, 𝑦, 𝑞) ∧ control(𝑥, 𝑧) ∧ ¬ potDControl(𝑥, 𝑧)

→ potDControlShare(𝑥, 𝑧, 𝑦, 𝑞) (7)

The goal of Rules 8 and 9 is to collect the pairs for which while potentially the control

may have been deleted, in fact, it is not, as alternative derivations do exist. Rule 8 creates

potStillControl facts, which witness that a control of 𝑥 on 𝑦 still exists if the sum of the newly

derived controlled shares (those computed by Rules 6, 7, and 9) is above 0.5.

potDControlShare(𝑥, 𝑧, 𝑦, 𝑞) ∧ 𝑗 = sum(𝑞) ∧ 𝑗 > 0.5 → potStillControl(𝑥, 𝑦) (8)

In Rule 9 we collect the shares that 𝑥 controls of 𝑦 via 𝑧, in the case the potentially deleted

control between 𝑥 and 𝑧 instead still holds (as witnessed by potStillControl facts produced by

Rule 8) as well as the ownership between 𝑧 and 𝑦.

potDControl(𝑥, 𝑦) ∧ potStillControl(𝑥, 𝑧) ∧ stillOwn(𝑧, 𝑦, 𝑞) → potDControlShare(𝑥, 𝑧, 𝑦, 𝑞)
(9)

Group 3 - Computing C−
. We are now ready to single out the control facts to be removed in

the absence of alternative derivations (Rule 10).

potDControl(𝑥, 𝑦) ∧ ¬ potStillControl(𝑥, 𝑦) → control−(𝑥, 𝑦) (10)

Example 2. Let us consider the example in Figure 1 again and suppose Company 6
sells all its shares of 8, as captured by the fact own−(6, 8, 0.51). In Group 1, we obtain
potDControl(6, 8) and potDControl(3, 8) by Rules 3 and 4 respectively; potDControl(3, 9) and
potDControl(3, 10) by Rule 5, respectively. When recomputing the affected control shares, Group 2
produces only potDControlShare(3, 7, 9, 0.51) (Rule 7) and, therefore, potStillControl(3, 9)
(Rule 8). Company 3 still control 9 as the total controlled shares is above 50%. Rule 9 derives
potDControlShare(3, 9, 10, 0.8). Again, another still holding control is derived by Rule 8, i.e.,
potStillControl(3, 10). Note that the control facts of Company 3 on 8 and 6 on 8 do not exist any
longer. Finally, Rule 10 produces the deleted controls control−(6, 8) and control−(3, 8). ■



Applying C−
. Given the outcome of the inference task Σ𝐷(𝒟), Rule 11 removes the deleted

control facts C−
from 𝒟. Note that we are actually performing a “virtual” deletion by producing

facts for stillControl by set difference.

control(𝑥, 𝑦) ∧ ¬ control−(𝑥, 𝑦) → stillControl(𝑥, 𝑦) (11)

3.2. Insertion rules (Σ𝐼)

The rules of Σ𝐼 are organized in three groups that (i) identify the control facts that are potentially

added due to new ownerships; (ii) for each of those new control candidates, compute the

respective control shares; (iii) based on these shares, single out the actual new control facts.

Group 1 - Potentially inserted controls. The rules of this group identify three scenarios

in which it is possible to derive by overestimation new control facts potIControl whenever

new ownership relationships (own+) or, recursively, new controls (control+) are added. Let us

introduce the scenarios; we will use green edges to denote the added facts.

• Insertion of a direct ownership. The addition of a new ownership from 𝑥 to 𝑦 contributes

to the total shares of 𝑦 controlled by 𝑥 and a new control may arise.

𝑥 𝑦

potIControl

own+

→ 𝑥 𝑦

potIControl

own+

own+(𝑥, 𝑦, 𝑞) ∧ ¬ stillControl(𝑥, 𝑦) → potIControl(𝑥, 𝑦) (12)

• Insertion of an indirect ownership. Let 𝑧 be a company controlled by 𝑥. The addition of

a new ownership from 𝑧 to 𝑦 contributes to the total shares of 𝑦 that 𝑥 controls, directly or

indirectly, possibly resulting in a new control.

𝑥

𝑧

𝑦potIControl

stillControl own+

→
𝑥

𝑧

𝑦potIControl

stillControl own+

stillControl(𝑥, 𝑧) ∧ own+(𝑧, 𝑦, 𝑞) ∧ ¬ stillControl(𝑥, 𝑦) → potIControl(𝑥, 𝑦) (13)

• Recursive propagation. Let 𝑧 own shares of 𝑦. A new control (control+) from 𝑥 to 𝑧
may contribute to the total amount of shares of 𝑦, directly and indirectly, controlled by 𝑥.

Recursively, this may lead to a new control from 𝑥 to 𝑦.

𝑥

𝑧

𝑦potIControl

control+ newOwn

→
𝑥

𝑧

𝑦potIControl

control+ newOwn

control+(𝑥, 𝑧) ∧ newOwn(𝑧, 𝑦, 𝑞),∧ ¬ stillControl(𝑥, 𝑦) → potIControl(𝑥, 𝑦) (14)



Group 2 - Computation of new controlled shares. In this group, we collect all the direct

(Rule 15) and indirect (Rule 16, 17) controlled shares in 𝒟 ∖C−
between the pairs singled out

by potIControl facts.

potIControl(𝑥, 𝑦) ∧ newOwn(𝑥, 𝑦, 𝑞) → potIControlShare(𝑥, 𝑦, 𝑦, 𝑞) (15)

potIControl(𝑥, 𝑦) ∧ stillControl(𝑥, 𝑧) ∧ newOwn(𝑧, 𝑦, 𝑞) → potIControlShare(𝑥, 𝑧, 𝑦, 𝑞) (16)

potIControl(𝑥, 𝑦) ∧ control+(𝑥, 𝑧) ∧ newOwn(𝑧, 𝑦, 𝑞) → potIControlShare(𝑥, 𝑧, 𝑦, 𝑞) (17)

Group 3 - Computing C+
. Finally, the new controls (control+) are derived by summarizing

all the newly computed controlled shares and selecting only those above 0.5.

potIControlShare(𝑥, 𝑧, 𝑦, 𝑞) ∧ 𝑗 = sum(𝑞) ∧ 𝑗 > 0.5 → control+(𝑥, 𝑦) (18)

Note that the new controls are in turn fed into Rule 14 and 17.

Example 3. Let us suppose the candidate share acquisition operation in Figure 1 is settled
and the reactive approach is employed for updating controls. The fact own+(1, 3, 0.26) captures
the update. We obtain potIControl(1, 3) by Rule 12, and potIControlShare(1, 3, 3, 0.26) and
potIControlShare(1, 2, 3, 0.39) by Rules 15 and 16, respectively. As the sum of the two computed
controlled shares is above 50%, Rule 18 yields control+(1, 3). Then, by Rule 14 we generate
potIControl(1, 5), potIControl(1, 6), and potIControl(1, 7). By evaluating all the direct and
indirect contributions in the recursive activation of rules, we finally also obtain control+(1, 5),
control+(1, 6), control+(1, 8), control+(1, 7), control+(1, 9), and control+(1, 10). ■

Applying C+
. Once the inference task Σ𝐼(𝒟 ∖C−) has been completed, the obtained control

edges C+
are added to 𝒟 ∖C−

with Rules 19 and 20, via a new control predicate (newControl).

stillControl(𝑥, 𝑦) → newControl(𝑥, 𝑦) (19)

control+(𝑥, 𝑦) → newControl(𝑥, 𝑦) (20)

4. Conclusion

We contributed a declarative, incremental, and reasoning-based formulation of the CCP, aimed

at solving the problem of efficiently updating an existing materialization of control edges in the

shareholding network held by the Bank of Italy. We put our logical formulation into action by

implementing and running it within the Vadalog System for logical reasoning.

The framework, is currently in a pre-production stage, but has production ambitions, as we

intend to deploy and use it for multiple applications of the Bank of Italy.
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