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Abstract
The use of RNA molecules for developing new drugs and new vaccines is attracting more and more
scientific centers all over the world that produce biological banks with different kinds of relationships
existing among the different coding and non-coding molecules. Collecting and identifying relationships
among the data included in these collections is of paramount importance for knowledge discovery and
analysis. In this paper, we describe the initial steps in the construction of RNA-KG, an RNA-centered
Knowledge Graph that will contain the different types of entities that can be extracted from different
public databases and the relationships that can be inferred. A meta-graph reporting the main kinds of
relationships that can be included by the integration of the identified data sources is finally presented.
These activities are conducted in the context of the “National Center for Gene Therapy and Drugs based
on RNA Technology” funded by the Italian PNRR and the NextGenerationEU program.
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1. Introduction

RNA-based drugs represent one of the most promising advances in therapeutics, as evidenced
by the recent success of mRNA-based vaccines for the COVID-19 pandemic [1]. More generally,
coding and non-coding RNA molecules can potentially lead to new treatments of cancer, genetic
and neurodegenerative disorders, cardiovascular and infectious diseases [2].

Conventional drugs show relevant limitations in their druggable targets because they usually
consist of small molecules targeting proteins. Only about 10% of proteins have druggable binding
sites and no more than 2% of the human genome is protein-coding. On the contrary, RNA drugs
can target both proteins and mRNA, as well as other non-coding RNA (ncRNA). Moreover, they
can encode missing or defective proteins, regulate the transcriptome, and mediate DNA or RNA
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editing. Thus, RNA technology significantly broadens the set of druggable targets and is also
less expensive than other technologies (e.g. drug synthesis based on recombinant proteins), due
to the relatively simple structure of RNA molecules that facilitates their biochemical synthesis
and chemical modifications [3].

In the framework of the NextGenerationEU funded “National Center for Gene Therapy
and Drugs based on RNA Technology”, we aim to support the discovery of novel RNA-based
drugs by developing an RNA-centered Knowledge Graph (RNA-KG).1 RNA-KG will collect and
organize data and knowledge about RNA molecules, retrieved from public databases and/or
generated from the results of the research groups involved in the National Center. It will also
provide a comprehensive description of the relationships among the various kind of RNAs,
diseases, drugs, phenotypes, and other bio-medical entities. RNA-KG will be the basis for the
development of novel cutting-edge AI methods specifically tailored for the analysis of biological
processes involving RNA. These methods could also open the way to RNA-drug prioritization,
RNA drug-target prediction, and other prediction tasks for discovering new RNA drugs.

In this paper, we report our initial achievements that have been recently published in [4] for
the identification of a meta-graph representing the kind of relationships that can be identified
among the different types of RNA molecules. This result is obtained by examining more than
50 public online repositories for non-coding RNA sequences and annotations and by studying
the kinds of interactions that can exist among these molecules. The public online repositories
have been selected through an extensive literature review of top journals of the sector (like
NAR, BMC Bioninformatics, Science, RNA Journal, IEEE/ACM TCBB), that are periodically
updated by their developers, and contain significant amounts of molecules and relationships.
In the identification of the repositories, we have taken into account the presence of controlled
vocabularies, thesaurus, ontologies that formally describes the repository content, and the
presence of well-recognized identification schemes.

The paper is organized as follows. Section 2 introduces related work devoted to data inte-
gration and to the construction of RNA-KG starting from different heterogeneous databases.
Moreover, it introduces biomedical ontologies that can be used in this context for the character-
ization of RNA-molecules and their interaction. Section 3 highlights the characteristics of the
identified databases. Section 4 highlights the main types of relationships that can be extracted
from the sources, introduces a meta-graph that shows the potential relationships that will be
available among the RNA molecules, and describe the characteristics of an initial instantiation
of the knowledge graph. Finally, Section 5 reports our concluding remarks.

2. Related Work

Data Integration Approaches. The data integration issue is a well-known problem in the
area of data management, and many approaches have been devised to deal with relational data
[5]. However, the explosion of data formats (like CSV, JSON, XML) and the variability in the
representation of the same types of information [6] has pushed the need to exploit ontologies
as global common models both for accessing (OBDA – Ontology-Based Data Access) and
integrating (OBDI – Ontology-Based Data Integration) data sources [7, 8]. In OBDA, queries are

1Available at https://github.com/AnacletoLAB/RNA-KG



expressed in terms of an ontology, and the mappings between the ontology and the data sources’
schema are described in the form of declarative mapping rules. Two approaches are usually
proposed to enable access and integration to different data sources: materialization, where data
are converted from the local schema according to the ontology concepts and relationships (i.e.
data are converted into an RDF KG and locally stored in a data-warehouse of triples that can
be queried by means of SPARQL); virtualization, where the transformation is executed on the
fly during the evaluation of queries by exploiting the mapping rules and the ontology. In this
case, only the data from the original sources involved in the query are accessed for generating
the query result in accordance with the adopted ontology. Materialization can provide fast
and accurate access to data because already organized in a centralized repository. However,
data freshness can be compromised when data sources frequently change. On the other hand,
virtualization allows access to fresh data but requires the application of transformations during
query evaluation and can cause delay. Different approaches support the specification of mapping
rules like R2RML [9] (a W3C standard for relational sources), and RML [10] which extends the
standard for dealing with other formats. Moreover, SPARQL-Generate [11], YARRRML [12] and
ShExML [13] were also proposed for dealing with data heterogeneity.
KG construction from bio-medical data sources. In the biological context, many efforts
are nowadays devoted to the construction of KGs by integrating different public sources that
exploit the materialization and virtualization approaches previously described. An approach for
integrating different biological data into a biological KG was proposed in [14]. The approach de-
signs a Connecting Ontology 𝒞𝑂 to integrate all the external ontologies describing the involved
data sources. By exploiting algorithms for fusing and integrating annotations, an enriched KG
is obtained that spans multiple data sources and is annotated by the integrated biological ontol-
ogy. The effectiveness of this approach is shown by integrating rice gene-phenotype and
lactobacillus data sources by gluing together the GO, Trait, Disease, and Plant Ontologies.
In [15], the Precision Medicine KG (named PrimeKG) was developed to represent holistic and
multimodal views of diseases. PrimeKG integrates more than 20 high-quality resources with
more than 4M relations that capture information like disease-associated perturbations in the
proteome, biological processes, and molecular pathways. The considered data were collected and
annotated using diverse ontologies such as Disease Gene Network (DisGeNet), Mayo Clinical
knowledgebase, Mondo Diseases Ontology, Bgee, and DrugBank. A virtualization approach
based on an ontology-based federation of three data sources (Bgee, OMA, and UNIProtKB) was
presented in [16]. Starting from a semantic model for gene expression, the authors propose
using mapping rules for dealing with the different formats of the three sources and allowing the
issue of joint queries across the sources by exploiting SPARQL endpoints. PheKnowLator [17]
(Phenotype Knowledge Translator) is a fully automated Python 3 library for the construction of
semantically rich, large-scale biomedical KGs that are Semantic Web compliant and amenable
to automatic OWL reasoning, conform to contemporary property graph standards. The library
offers tools to download data, transform and/or pre-processing of resources into edge lists,
construct knowledge graphs, and generate a wide range of outputs. All these papers point out
the difficulties that arise when trying to integrate different data sources that exploit different
data models, formats, and ontologies. Specifically, data redundancies, data duplicates, and lack
of common identifier mechanisms must be properly addressed.



Name Abbr. Description
Gene Ontology GO GO provides the terms representing gene product properties. GO covers three domains:

cellular component, molecular function, and biological process.
Disease Ontology DO DO provides the terms representing human diseases.

Chemical Entities of
Biological Interest

ChEBI ChEBI provides the terms representing molecular entities of ‘small’ chemical com-
pounds.

Non-Coding RNA
Ontology

NCRO NCRO provides the terms representing non-coding RNA molecules both of biological
origin, and engineered.

Ontology for Biomedical
Investigations

OBI OBI provides the terms representing biological and clinical investigations.

Single-Nucleotide
Polymorphism Ontology

SNPO SNPO provides the terms representing formal and unambiguous representation of
genomic variations.

EMBRACE Data And
Methods

EDAM EDAM provides the terms representing concepts that are prevalent within bioscientific
data analysis, data management in life sciences.

Sequence Ontology SO SO provides the terms representing features used in biological sequence annotation.
BRENDA Tissue Ontology BTO BTO provides the terms representing the source of an enzyme comprising tissues, cell

lines, cell types and cell cultures.
Experimental Factor

Ontology
EFO EFO provides the terms representing experimental variables. It combines parts of

several biological ontologies, e.g. UBERON anatomy, ChEBI, and Cell Ontology.
Medical Subject Headings MeSH MeSH provides the terms used for indexing PubMed citations.

Table 1
Main Bio-Ontologies involved in RNA relationships.

Biomedical Ontologies. Several standard ontologies can be used for the characterization of
RNA molecules and their interaction with other biomedical entities (see Table 1). Moreover, data
formats specifically developed for biological pathways (like Panther, Reactome or Wikipathways)
are used for semantically annotating the RNA molecules.

In general, a well-recognized and globally accepted ontology for the representation of any
kind of ncRNA molecules is still lacking. Often for referring to ncRNA molecules, the name
of the gene encoding the physically closest protein is used. Moreover, ncRNA genes with no
known function are named pragmatically based on their genomic context; if there is a proximal
(genomically adjacent close in physical proximity) protein coding gene (PCG) then the ncRNA
genes are given a gene symbol beginning with the PCG symbol [18]. The identification scheme
used for miRNA (which are the majority of data sources) is always borrowed from miRBase. This
makes all the other data sources associated with miRNAs, miRBase “compliant". Furthermore,
the identification scheme associated with miRNAs is partially included in NCRO, which includes
miRNA transcripts from Homo Sapiens cells [19].

3. RNA-based data sources

The wide variety of RNA molecules are translated into proteins, regulate gene expression, hold
enzymatic activity, and modify other RNAs. Coding RNA molecules are named messenger RNA
(mRNA) molecules, translated into proteins helped by ribosomal RNA (rRNA), transfer RNA
(tRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) molecules. Non-coding
RNA molecules having less than 200 nucleotides are named small non-coding RNA (snRNA).
This category includes a wide variety of RNA molecules, such as microRNA (miRNA), short
interfering RNA (siRNA), short hairpin RNA (shRNA), antisense oligonucleotides (ASO), piwi-
interacting RNA (piRNA), transfer RNA fragments (tRF), guide RNA (gRNA), aptamer, riboswitch,

https://geneontology.org
https://disease-ontology.org
http://www.ebi.ac.uk/chebi
http://www.ebi.ac.uk/chebi
http://omnisearch.soc.southalabama.edu/w/index.php/Ontology
http://omnisearch.soc.southalabama.edu/w/index.php/Ontology
https://obi-ontology.org/
https://obi-ontology.org/
https://bioportal.bioontology.org/ontologies/SNPO
https://bioportal.bioontology.org/ontologies/SNPO
https://edamontology.org/page
https://edamontology.org/page
http://www.sequenceontology.org
https://www.ebi.ac.uk/ols/ontologies/bto
https://www.ebi.ac.uk/efo/
https://www.ebi.ac.uk/efo/
https://www.nlm.nih.gov/mesh/meshhome.html


Type # DBs # molecules # rel Relation with
miRNA 19 58k 160M miRNA, mRNA, lncRNA, circRNA, tRF, snoRNA,

pseudogene, protein
s(h/i)RNA 1 147 147 mRNA
Aptamer 1 8k 7.8k protein
ASO 2 2k 12k mRNA, protein

lncRNA 9 650k 180M mRNA, protein, miRNA, snoRNA
gRNA 1 29 3.2k gene

Ribozyme 1 1k 17k gene, viral RNA
Viral RNA 1 10k 17k ribozyme
Riboswitch 1 25k 24k protein

tRF 3 30k 215k miRNA, tRNA
snoRNA 1 1k 2k gene, lncRNA, miRNA, mRNA, pseudogene,

rRNA, snoRNA, snRNA, tRNA
tRNA 1 10k 180k tRF, amino acid

Table 2
For each type of RNA molecule, we report the number of available data sources, the number of molecules
that can be identified, the number of relationships that can be extracted from the sources with other
RNA molecules, and the molecules with which a relationship can be identified.

Relation ID Name Abbreviation
RO:0002429 involved in positive regulation of regulates+
RO:0002430 involved in negative regulation of regulates-
RO:0002434 interacts with interacts with
RO:0002436 molecularly interacts with m. interacts with
RO:0010002 is carrier of carries
RO:0002204 gene product of gene product of
RO:0002526 overlaps sequence of overlaps
RO:0002528 is upstream of sequence of is upstream
RO:0002529 is downstream of sequence of is downstream
RO:0002202 develops from develops from
RO:0002203 develops into develops into

Table 3
Main relations among bio-entities involving RNA with the RO identifier.

and ribozyme molecules. Non-coding RNA molecules with more than 200 nucleotides are named
long non-coding RNA (lncRNA). Circular RNA (circRNA) are lncRNA molecules produced from
alternative splicing events. Further details on the role and meaning of these molecules can be
found in [4].

Table 2 provides an overview of the identified databases organized according to the main
molecule that they make available. Specifically, for each kind of molecule, the table reports the
number of available databases, the number of molecules, the number of relationships that can
be extracted, and the list of molecules with which relationships can be established. Details on
the databases can be found in [4] with the bibliographic references.

Besides the sequences, these data sources also contain different kinds of relationships that
can be represented according to the Relation Ontology (RO) [20]. Table 3 reports the main
identified relationships. For each relation, Table 3 reports the RO identifier, the corresponding



Figure 1: Available relations involving RNA molecules.

meaning, and an abbreviated form used in our paper. The general relationships “interacts with"
available in RO with the meaning “A relationship that holds between two entities in which
the processes executed by the two entities are causally connected" has been declined in the
most specific relationships “molecularly interacts with" in our classification to represent the
situation in which the two partners are molecular entities that directly physically interact with
each other (e.g. via a stable binding interaction or a brief interaction during which one modifies
the other). We use this relationship when we wish to represent a specific interaction process
at the molecular level (e.g. complementary base pairing occurring in RNAi in miRNA-mRNA
interaction or tRNA molecule charged with a specific amino acid). Figure 1 summarizes the
relationships among RNA molecules that we have identified in the different data sources. More
details can be found in [4].

4. A meta-graph for modelling RNA-centered relationships

Starting from the analysis of the data sources, the meta-graph in Fig. 2 has been realized. Colored
edges represent uni-direction relationships (e.g. tRF regulates miRNA). The graphical repre-
sentation provides a global overview of the richness of information that is currently provided.
Moreover, the meta-graph points out the presence of a central hub, named “GENE/mRNA", that
is bound to many kinds of ncRNA. This characteristic might have a deep impact on the discovery
of new unconsidered interactions among ncRNA molecules. To simplify the visualization of the
meta-graph, we omitted most of the non-RNA biomolecular and medical entities that are known



Figure 2: RNA-centered meta-graph.

to play an important role to study the biology and support the discovery of novel RNA drugs.
Indeed the meta-graph in Fig. 2 can be further extended with other nodes representing other
biological entities (e.g. diseases, epigenetic modifications, small molecules, tissues, biological
pathways, cellular compartments) and relationships relevant to the analysis of RNA-KG.

5. Conclusion and Future Work

This paper reports the initial results of an ongoing project for the creation of a biomedical
knowledge graph for the representation of non-coding RNA molecules and their relationships
made available in different publicly available data sources.

The first release of RNA-KG can be accessed through a SPARQL endpointfor which we used
an AllegroGraph triplestore that offers a graphical user interface for performing queries. The
code used for the integration of the different sources is available on our GitHub repository. The
knowledge graph has been realized by exploiting the primitives made available in PheKnowLator
because they are effective and well-documented.

We are currently working on further integrating specific databases on RNA. Moreover,
PheknowLator provides 12 Open Biological and Biomedical Foundry Ontologies and 31 publicly
available resources that can be integrated with our ongoing RNA-KG. The resulting RNA-KG
will be analyzed with cutting-edge AI graph representation learning algorithms [21], developed
in the context of the National Center for Gene Therapy and Drugs based on RNA Technology, to
support the discovery of novel RNA drugs. Finally, we would like to develop graphical facilities



for supporting the user in the data acquisition process and thus reducing the manual effort
required for mapping the data available in the different data sources into RNA-KG [22].
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