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Abstract
Data exchange, the problem of transferring data from a source schema to a target schema, has been studied
for several years. The semantics of answering positive queries over the target schema has been defined
in early works, but little attention has been paid to more general queries. A few semantics proposals for
more general queries exist but they either do not properly extend the standard semantics under positive
queries, giving rise to counterintuitive answers, or they make query answering undecidable even for
the most important data exchange settings. The goal of this paper is to provide a new semantics for
data exchange that is able to deal with general queries. At the same time, we want our semantics to
coincide with the classical one when focusing on positive queries, and to not trade-off too much in terms
of complexity of query answering. We show that query answering is undecidable in general under the
new semantics, but it is coNP-complete when the dependencies are weakly-acyclic.
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1. Introduction

Data exchange is the problem of transferring data from a source schema to a target schema,
where the transfer process is usually described via so-called schema mappings, specifying how
the data should be moved and restructured. Furthermore, the target schema may have its own
constraints to be satisfied. Schema mappings and target constraints are usually encoded via
standard database dependencies. Thus, given an instance 𝐼 over the source schema S, the goal
is to materialize an instance 𝐽 over the target schema T, called solution, in such a way that 𝐼
and 𝐽 together satisfy the dependencies.

By now, the certain answers semantics is the most accepted one for answering queries. The
certain answers to a query is the set of all tuples that are answers to the query in every solution
of the data exchange setting [1]. Although it has been formally shown that for positive queries
(e.g., conjunctive queries) the notion of solution of [1] is the right one to use, for more general
queries such solutions become inappropriate, as they easily lead to counterintuitive results.
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Example 1. Consider a data exchange setting denoted by 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S is the
source schema, storing orders about products in a binary relation Ord, where the first argument
is the id of the order, and the second one specifies whether the order has been paid. Moreover, T
is the target schema having unary relations AllOrd and Paid, storing all orders and paid orders,
respectively. The schema mapping is described by the source-to-target TGDs Σ𝑠𝑡:

𝜌1 = ∀𝑥, 𝑦 Ord(𝑥, 𝑦) → AllOrd(𝑥), 𝜌2 = ∀𝑥 Ord(𝑥, yes) → Paid(𝑥).

In this example, we assume that the set of target dependencies Σ𝑡 is empty. The above schema
mapping states that all orders in the source schema must be copied to the AllOrd relation, and all
the paid orders must be copied to the Paid relation. Assume the source instance is as follows:

𝐼 = {Ord(1, yes),Ord(2, no)},

and assume we want to pose the query 𝑄 over the target schema asking for all the unpaid orders.
This can be written as the following FO query:

𝑄(𝑥) = AllOrd(𝑥) ∧ ¬Paid(𝑥).

One would expect the answer to be {2}, since the schema mapping above is simply copying
𝐼 to the target schema, and hence 𝐽 = {AllOrd(1),AllOrd(2),Paid(1)} should be the only
candidate solution. However, under the classical notion of solution of [1], also the instance 𝐽 ′ =
{AllOrd(1),AllOrd(2),Paid(1),Paid(2)} is a solution (since 𝐼 ∪ 𝐽 ′ satisfies the TGDs), and every
order in 𝐽 ′ is paid. Hence, the certain answers to 𝑄, which are computed as the intersection of the
answers over all solutions, are empty. □

The issue above arises because the classical notion of solution is too permissive, in that it
allows the existence of facts in a solution that have no support from the source (e.g., Paid(2) in
the solution 𝐽 ′ of Example 1 above).

Some efforts exist in the literature that provide alternative notions of solutions for which
certain answers to general queries become more meaningful. Prime examples are the works
of [2] and [3]. In both approaches, the certain answers in the example above are {2}. However,
also the works above have their own drawbacks. In [2], so-called CWA-solutions are introduced,
which are a subset of the classical solutions with some restrictions. However, these restrictions
are so severe that certain answers over such solutions fail to capture certain answers over
classical solutions, when focusing on positive queries. Moreover, even when focusing on more
general queries, answers can still be counterintuitive.

Example 2. Consider the data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S stores employees
of a company in the unary relation Emp. For some employees, the city they live in is known,
and it is stored in the binary relation KnownC. The target schema T contains the binary relation
EmpC, storing employees and the cities they live in, and the binary relation SameC, storing pairs
of employees living in the same city. The sets Σ𝑠𝑡 = {𝜌1, 𝜌2} and Σ𝑡 = {𝜌3, 𝜂} are as follows (for
simplicity, we omit the universal quantifiers):

𝜌1 = Emp(𝑥) → ∃𝑧 EmpC(𝑥, 𝑧), 𝜌3 = EmpC(𝑥, 𝑦),EmpC(𝑥′, 𝑦) → SameC(𝑥, 𝑥′),
𝜌2 = KnownC(𝑥, 𝑦) → EmpC(𝑥, 𝑦), 𝜂 = EmpC(𝑥, 𝑦),EmpC(𝑥, 𝑧) → 𝑦 = 𝑧.



The above setting copies employees from the source to the target. The TGD 𝜌1 states that every
copied employee 𝑥 must have some city 𝑧 associated, whereas 𝜌2 states that when the city 𝑦 of
an employee 𝑥 is known, this should be copied as well. Moreover, the target schema requires that
employees living in the same city should be stored in relation SameC (𝜌3), and each employee must
live in only one city (𝜂). Assume the source instance is

𝐼 = {Emp(john),Emp(mary),KnownC(john,miami)},

and assume our query𝑄 asks for all pairs of employees living in different cities. This can be written
as:

𝑄(𝑥, 𝑥′) = ∃𝑦∃𝑦′ EmpC(𝑥, 𝑦) ∧ EmpC(𝑥′, 𝑦′) ∧ ¬SameC(𝑥, 𝑥′).

One would expect that the set of certain answers to 𝑄 is empty, since it is not certain that john and
mary live in different cities. However, no CWA-solution admits mary and john to live in the same
city, and thus (john,mary) is a certain answer under the CWA-solution-based semantics. □

The approach of [3], where the notion of GCWA*-solution is presented, seems to be the
most promising one. For positive queries, certain answers w.r.t. GCWA*-solutions coincide
with certain answers w.r.t. classical solutions. Moreover, GCWA*-solutions solve some other
limitations of CWA-solutions, like the one discussed in Example 2. However, the practical
applicability of this semantics is somehow limited, since the (rather involved) construction
of GCWA*-solutions easily makes certain query answering undecidable, even for very simple
settings with only two source-to-target TGDs, and no target dependencies.

Other semantics have been proposed in [4], but they are only defined for data exchange
settings without target dependencies. Hence, one needs to assume that the target schema has
no dependencies at all.

In this paper, we propose a new notion of data exchange solution, dubbed supported solution,
which allows us to deal with general queries, but at the same time is suitable for practical
applications. That is, we show that certain answers under supported solutions naturally gener-
alize certain answers under classical solutions, when focusing on positive queries. Moreover,
such solutions do not make any assumption on how values associated to existential variables
compare to other values, hence solving issues like the ones of Example 2.

As expected, there is a price to pay to get meaningful answers over general queries: we show
that certain answering is undecidable for general settings, but becomes coNP-complete when
we focus on weakly-acyclic dependencies.

2. Preliminaries

Basics. We consider pairwise disjoint countably infinite sets Const, Var, Null of constants,
variables, and labeled nulls. Nulls are denoted by the symbol ⊥, possibly subscripted. A term
is a constant, a variable, or a null. We additionally assume the existence of countably infinite
set Rel of relations, disjoint from the previous ones. A relation 𝑅 has an arity, denoted 𝑎𝑟(𝑅),
which is a non-negative integer. We also use𝑅/𝑛 to say that𝑅 is a relation of arity 𝑛. A schema
is a set of relations. A position is an expression of the form 𝑅[𝑖], where 𝑅 is a relation and
𝑖 ∈ {1, . . . , 𝑎𝑟(𝑅)}.



An atom 𝛼 (over a schema S) is of the form 𝑅(t), where 𝑅 is an 𝑛-ary relation (of S) and t
is a tuple of terms of length 𝑛. We use t[𝑖] to denote the 𝑖-th term in t, for 𝑖 ∈ {1, . . . , 𝑛}. An
atom without variables is a fact. An instance 𝐼 (over a schema S) is a finite set of facts (over S).
A database 𝐷 is an instance without nulls. For a set of atoms 𝐴, dom(𝐴) is the set of all terms
in 𝐴, whereas var(𝐴) is the set dom(𝐴) ∩ Var. A homomorphism from a set of atoms 𝐴 to a set
of atoms 𝐵 is a function ℎ : dom(𝐴) → dom(𝐵) that is the identity on Const, and such that
for each atom 𝑅(t) = 𝑅(𝑡1, . . . , 𝑡𝑛) ∈ 𝐴, 𝑅(ℎ(t)) = 𝑅(ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) ∈ 𝐵.

Dependencies. A tuple-generating dependency (TGD) 𝜌 (over a schema S) is a first-order
formula of the form ∀x,y𝜙(x,y) → ∃z𝜓(y, z), where x,y, z are disjoint tuples of variables,
and 𝜙 and 𝜓 are conjunctions of atoms (over S) without nulls, and over the variables in x,y and
y, z respectively. The body of 𝜌, denoted body(𝜌), is 𝜙(x,y), whereas the head of 𝜌, denoted
head(𝜌), is 𝜓(y, z). We use exvar(𝜌) to denote the tuple z and fr(𝜌) to denote the tuple y,
also called the frontier of 𝜌. An equality-generating dependency (EGD) 𝜂 (over a schema S)
is a first-order formula of the form ∀x𝜙(x) → 𝑥 = 𝑦, where x is a tuple of variables, 𝜙 a
conjunction of atoms (over S) without nulls, and over x, and 𝑥, 𝑦 ∈ x. The body of 𝜂, denoted
body(𝜂), is 𝜙(x), and the head of 𝜂, denoted head(𝜂), is the equality 𝑥 = 𝑦. For clarity, we will
omit the universal quantifiers in front of dependencies and replace the conjunction symbol ∧
with a comma. Moreover, with a slight abuse of notation, we sometimes treat a conjunction
of atoms as the set of its atoms. Consider an instance 𝐼 . We say that 𝐼 satisfies a TGD 𝜌 if
for every homomorphism ℎ from body(𝜌) to 𝐼 , there is an extension ℎ′ of ℎ such that ℎ′ is a
homomorphism from head(𝜌) to 𝐼 . We say that 𝐼 satisfies an EGD 𝜂 = 𝜙(x) → 𝑥 = 𝑦, if for
every homomorphism ℎ from body(𝜂) to 𝐼 , ℎ(𝑥) = ℎ(𝑦). 𝐼 satisfies a set of TGDs and EGDs Σ
if 𝐼 satisfies every TGD and EGD in Σ.

Queries. A query 𝑄(x), with free variables x, is a first-order (FO) formula 𝜙(x) with free
variables x. The arity of 𝑄(x), denoted 𝑎𝑟(𝑄), is the number |x|. The output of 𝑄(x) over an
instance 𝐼 , denoted 𝑄(𝐼), is the set {t ∈ dom(𝐼)|x| | 𝐼 |= 𝜙(t)}, where |= is FO entailment.1 A
query is Boolean if it has arity 0, in which case its output over an instance is either the empty
set or the empty tuple ⟨⟩. A conjunctive query (CQ) is a query of the form 𝑄(x) = ∃y𝜙(x,y),
where 𝜙(x,y) is a conjunction of atoms over x and y. A union of conjunctive queries (UCQ) is a
query of the form 𝑄(x) =

⋁︀𝑛
𝑖=1𝑄𝑖(x), where each 𝑄𝑖(x) is a CQ. We also refer to UCQs as

positive queries.
Data Exchange Settings. A data exchange setting (or simply setting) is a tuple of the form 𝒮 =
⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, where S,T are disjoint schemas, called source and target schema, respectively;
Σ𝑠𝑡 is a finite set of TGDs, called the source-to-target TGDs of 𝒮 , such that for each TGD 𝜌 ∈ Σ𝑠𝑡,
body(𝜌) is over S and head(𝜌) is over T; Σ𝑡 is a finite set of TGDs and EGDs over T, called the
target dependencies of 𝒮 . We say 𝒮 is TGD-only if Σ𝑡 contains only TGDs.

A source (resp., target) instance of 𝒮 is an instance 𝐼 over S (resp., T). We assume that source
instances are databases, i.e., they do not contain nulls. Given a source instance 𝐼 of 𝒮 , a solution
of 𝐼 w.r.t. 𝒮 is a target instance 𝐽 of 𝒮 such that 𝐼 ∪ 𝐽 satisfies Σ𝑠𝑡 and 𝐽 satisfies Σ𝑡 [1]. We
use sol(𝐼,𝒮) to denote the set of all solutions of 𝐼 w.r.t. 𝒮 .

Given a data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, a source instance 𝐼 of 𝒮 and a query 𝑄

1We assume active domain semantics, i.e., quantifiers range over the terms in the given instance.



over T, the certain answers to 𝑄 over 𝐼 w.r.t. 𝒮 is the set cert𝒮(𝐼,𝑄) =
⋂︀

𝐽∈sol(𝐼,𝒮)𝑄(𝐽).
To distinguish between the notion of solution (resp., certain answers) above and the one

defined in Section 3, we will refer to the former as classical.
A universal solution of 𝐼 w.r.t. 𝒮 is a solution 𝐽 ∈ sol(𝐼,𝒮) such that, for every 𝐽 ′ ∈ sol(𝐼,𝒮),

there is a homomorphism from 𝐽 to 𝐽 ′ [1]. Letting 𝑄(𝐽)↓ = 𝑄(𝐽) ∩ Const|x|, for any instance
𝐽 and query 𝑄(x), the following is well-known:

Theorem 1 ([1]). Consider a data exchange setting 𝒮 , a source instance 𝐼 of 𝒮 and a positive
query 𝑄. If 𝐽 is a universal solution of 𝐼 w.r.t. 𝒮 , then cert𝒮(𝐼,𝑄) = 𝑄(𝐽)↓.

3. Semantics for General Queries

The goal of this section is to introduce a new notion of solution for data exchange that we call
supported. As already discussed, the main issue we want to solve w.r.t. classical solutions is that
such solutions are too permissive, i.e., they allow for the presence of facts that are not a certain
consequence of the source instance and the dependencies. Consider again Example 1. The
(classical) solution 𝐽 ′ in Example 1 is not supported, since from the source instance 𝐼 and the
dependencies, we cannot conclude that the fact Paid(2) should occur in the target. On the other
hand, the solution 𝐽 = {AllOrd(1),AllOrd(2),Paid(1)} is supported: it contains precisely the
facts supported by 𝐼 and the dependencies, and no more than that. Similarly, considering Exam-
ple 2, the instance 𝐽 = {EmpC(john,miami), EmpC(mary, chicago), SameC(john,mary)} is a
solution, but it is not supported, since from the source and the dependencies we cannot certainly
conclude that john and mary live in the same city. We now formalize the above intuitions.

Consider a TGD 𝜌 and a mapping ℎ from the variables of 𝜌 to Const. We say that a TGD 𝜌′ is
a ground version of 𝜌 (via ℎ) if 𝜌′ = ℎ(body(𝜌)) → ℎ(head(𝜌)).

Definition 1 (ex-choice). An ex-choice is a function 𝛾, that given as input a TGD 𝜌 = 𝜙(x,y) →
∃z𝜓(y, z) and a tuple t ∈ Const|y|, returns a set 𝛾(𝜌, t) of pairs of the form (𝑧, 𝑐), one for each
existential variable 𝑧 ∈ exvar(𝜌), where 𝑐 is a constant of Const.

Note that if 𝜌 does not contain existential variables, 𝛾(𝜌, t) is the empty set.
Intuitively, given a TGD, an ex-choice specifies a valuation for the existential variables of the

TGD which depends on a given valuation of its frontier variables.
We now define when a ground version of a TGD indeed assigns existential variables according

to an ex-choice.

Definition 2 (Coherence). Consider a TGD 𝜌 = 𝜙(x,y) → ∃z𝜓(y, z), an ex-choice 𝛾 and a
ground version 𝜌′ of 𝜌 via some mapping ℎ. We say that 𝜌′ is coherent with 𝛾 if for each existential
variable 𝑧 ∈ exvar(𝜌), (𝑧, ℎ(𝑧)) ∈ 𝛾(𝜌, ℎ(y)).

For a set Σ of TGDs and EGDs, and an ex-choice 𝛾, Σ𝛾 denotes the set of dependencies
obtained from Σ, where each TGD 𝜌 in Σ is replaced with all ground versions of 𝜌 that are
coherent with 𝛾. Note that the set Σ𝛾 can be infinite. We now present our notion of solution.

Definition 3 (Supported Solution). Consider a setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a source instance
𝐼 of 𝒮 . A target instance 𝐽 of 𝒮 is a supported solution of 𝐼 w.r.t. 𝒮 if there exists an ex-choice 𝛾



such that 𝐼 ∪ 𝐽 satisfies Σ𝛾
𝑠𝑡 and 𝐽 satisfies Σ𝛾

𝑡 , and there is no other target instance 𝐽 ′ ⊊ 𝐽 of 𝒮
such that 𝐼 ∪ 𝐽 ′ satisfies Σ𝛾

𝑠𝑡 and 𝐽 ′ satisfies Σ𝛾
𝑡 . □

Note that a supported solution contains no nulls. We use ssol(𝐼,𝒮) to denote the set of all
supported solutions of 𝐼 w.r.t. 𝒮 .

Example 3. Consider the data exchange setting 𝒮 and the source instance 𝐼 of Example 2. The
target instance 𝐽 = {EmpC(john,miami),EmpC(mary, chicago)} is a supported solution of 𝐼
w.r.t. 𝒮 . Indeed, consider the ex-choice 𝛾 such that 𝛾(𝜌1, john) = {(𝑧,miami)}, and 𝛾(𝜌1,mary) =
{(𝑧, chicago)}. Then, Σ𝛾

𝑠𝑡 is

{KnownC(𝛼, 𝛽) → EmpC(𝛼, 𝛽) | 𝛼, 𝛽 ∈ Const}∪
{Emp(𝛼) → EmpC(𝛼, 𝛽) | 𝛼 ∈ Const ∧ (𝑧, 𝛽) ∈ 𝛾(𝜌1, 𝛼)},

whereas Σ𝛾
𝑡 is the set containing the EGD 𝜂 of Example 2, and the set of TGDs

{EmpC(𝛼, 𝛽),EmpC(𝛼′, 𝛽) → SameC(𝛼, 𝛼′) | 𝛼, 𝛼′, 𝛽 ∈ Const}.

Clearly, 𝐼 ∪𝐽 satisfies Σ𝛾
𝑠𝑡, and 𝐽 satisfies Σ𝛾

𝑡 , and any other strict subset 𝐽 ′ of 𝐽 is such that 𝐼 ∪𝐽 ′

does not satisfy Σ𝛾
𝑠𝑡. Another supported solution is {EmpC(john,miami), EmpC(mary,miami),

SameC(john,mary)}. □

With the notion of supported solution in place, it is now straightforward to define the
supported certain answers.

Definition 4 (Supported Certain Answers). Consider a data exchange setting 𝒮 , a source instance
𝐼 of 𝒮 and a query 𝑄 over T. The supported certain answers to 𝑄 over 𝐼 w.r.t. 𝒮 is the set of
tuples scert𝒮(𝐼,𝑄) =

⋂︀
𝐽∈ssol(𝐼,𝒮)𝑄(𝐽).

Example 4. Consider the data exchange setting 𝒮 , the source instance 𝐼 , and the query 𝑄 of
Example 1. It is not difficult to see that the only supported solution of 𝐼 w.r.t. 𝒮 is the instance
𝐽 = {AllOrd(1),AllOrd(2),Paid(1)}. Thus, the supported certain answers to 𝑄 over 𝐼 w.r.t. 𝒮
are scert𝒮(𝐼,𝑄) = 𝑄(𝐽) = {2}. Consider now the data exchange setting 𝒮 , the source instance 𝐼 ,
and the query 𝑄 of Example 2. Then, one can verify that scert𝒮(𝐼,𝑄) = ∅. □

We now start establishing some important results regarding supported solutions and sup-
ported certain answers. The following theorem states that supported solutions are a refined
subset of the classical ones, but whether a supported solution exists is still tightly related to the
existence of a classical one.

Theorem 2. Consider a data exchange setting 𝒮 . For every source instance 𝐼 of 𝒮 , its holds that
(1) ssol(𝐼,𝒮) ⊆ sol(𝐼,𝒮), and (2) ssol(𝐼,𝒮) = ∅ iff sol(𝐼,𝒮) = ∅.

Regarding certain answers, we show that supported solutions indeed enjoy an important
property: supported certain answers and classical certain answers coincide, when focusing on
positive queries. Note that this does not necessarily follow from Theorem 2.

Theorem 3. Consider a setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a positive query 𝑄 over T. For every
source instance 𝐼 of 𝒮 , scert𝒮(𝐼,𝑄) = cert𝒮(𝐼,𝑄).



From the above, we conclude that for positive queries, certain query answering can be
performed as done in the classical setting, and thus all important results from that setting, like
query answering via universal solutions, carry over.

Corollary 1. Consider a setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩ and a positive query 𝑄 over T. If 𝐽 is a
(classical) universal solution of 𝐼 w.r.t. 𝒮 , then scert𝒮(𝐼,𝑄) = 𝑄(𝐽)↓.

Proof. It follows from Theorem 1 and Theorem 3. □

We now move to the complexity analysis of the two most important data exchange tasks:
deciding whether a supported solution exists, and computing the supported certain answers to
a query.

4. Complexity

In data exchange, it is usually assumed that a setting 𝒮 does not change over time, and a given
query 𝑄 is much smaller than a given source instance. Thus, for understanding the complexity
of a data exchange problem, it is customary to assume that 𝒮 and 𝑄 are fixed, and only 𝐼 is
considered in the complexity analysis, i.e., we consider the data complexity of the problem.
Hence, the problems we are going to discuss will always be parametrized via a setting 𝒮 , and
a query 𝑄 (for query answering tasks). The first problem we consider is deciding whether a
supported solution exists; 𝒮 is a fixed data exchange setting.

PROBLEM : EXISTS-SSOL(𝒮)
INPUT : A source instance 𝐼 of 𝒮 .
QUESTION : Is ssol(𝐼,𝒮) ̸= ∅?

The above problem is very important in data exchange, as one of the main goals is to actually
construct a target instance that can be exploited for query answering purposes. Hence, knowing
in advance whether at least a supported solution exists is of paramount importance.

Thanks to Item 2 of Theorem 2, all the complexity results for checking the existence of a
classical solution can be directly transfered to our problem.

Theorem 4. There exists a data exchange setting 𝒮 such that EXISTS-SSOL(𝒮) is undecidable.

Despite the negative result above, we also inherit positive results from the literature, when
focusing on some of the most important data exchange scenarios, known as weakly-acyclic.
Such settings only allow target TGDs to belong to the language of weakly-acyclic TGDs, which
have been first introduced in the seminal paper [1], and is now well-established as the main
language for data exchange purposes. We refer to [1] for more details on the definition of
weak-acyclicity.

Theorem 5. For every weakly-acyclic data exchange setting 𝒮 , EXISTS-SSOL(𝒮) is in PTIME.

We now move to the second crucial task: computing supported certain answers. Since this
problem outputs a set, it is standard to focus on its decision version. For a fixed data exchange
setting 𝒮 and a fixed query 𝑄, we consider the following decision problem:



PROBLEM : SCERT(𝒮, 𝑄)

INPUT : A source instance 𝐼 of 𝒮 and a tuple t ∈ Const𝑎𝑟(𝑄).
QUESTION : Is t ∈ scert𝒮(𝐼,𝑄)?

One can easily show that the above problem is logspace equivalent to the one of computing
the supported certain answers.

We start by studying the problem in its full generality, and show that there is a price to pay
for query answering with general queries.

Theorem 6. There exists a data exchange setting 𝒮 = ⟨S,T,Σ𝑠𝑡,Σ𝑡⟩, with Σ𝑡 having only TGDs,
and a query 𝑄 over T, such that SCERT(𝒮, 𝑄) is undecidable.

Although the complexity result above tells us that computing supported certain answers might
be infeasible in some settings, we can show that for weakly-acyclic settings, the complexity is
more manageable.

Theorem 7. For every weakly-acyclic setting 𝒮 and every query𝑄, SCERT(𝒮, 𝑄) is in coNP, and
there exists a weakly-acyclic setting 𝒮 that is TGD-only and a query 𝑄 such that SCERT(𝒮, 𝑄) is
coNP-hard.

We point out that the above result is in contrast with all the data exchange semantics discussed
in the introduction, for which computing certain answers is undecidable, even for weakly-acyclic
settings [2, 3].

We conclude this section by recalling that for positive queries, supported certain answers
coincide with the classical ones (Theorem 3), and computing (classical) certain answers for
weakly-acyclic settings, under positive queries, is tractable [1] and can be accomplished via the
well-known chase procedure (e.g., see [5]). Hence, the result below follows.

Corollary 2. For every weakly-acyclic setting 𝒮 and every positive query 𝑄, SCERT(𝒮, 𝑄) is in
PTIME.

5. Next Steps

For future work, it would be interesting to see if the good complexity guarantees we obtain
for weakly-acyclic dependencies are preserved when considering more complex acyclicity
conditions (e.g., see [6, 7, 8]), thus enlarging the applicability of our semantics. Moreover,
we would like to experimentally evaluate our techniques by means of a carefully designed
benchmark in the spirit of other efforts such as the one of [9]. Since explaining query answering
has recently drawn considerably attention under existential rule languages (e.g., see [10, 11, 12,
13, 14, 15]), and knowledge representation in general (e.g., in the context of argumentation [16])
an interesting direction for future work is to address such issue in our setting. Also, it would be
interesting to account for user preferences when answering queries, as recently done in [17, 18],
possibly considering other ways of expressing preferences, e.g. by means of CP-nets [19, 20].
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