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Abstract
We introduce SpanIE, a span-based approach to solve the task of Open Information Extraction. SpanIE is
a two-stage framework, providing a new way to leverage linguistic knowledge in proposition extraction
from unstructured text. Our system recovers the underlying argument-predicate structure of a sentence
from its dependency tree, and relies on the resulting sentence representation to solve the OpenIE task. The
intermediate representation generated by SpanIE, is meant to benefit the information extraction process,
allowing for accurate and expressive extractions. We conduct a preliminary comparative evaluation
and present the experimental results to prove the effectiveness of the proposed approach. Using the
benchmark framework for OIE, we show that our implementation achieves comparable performance
with the state-of-the-art Open IE systems on the relation extraction task.

1. Introduction

Open Information Extraction [1] defines an unsupervised approach to the general task of
Information Extraction (IE). Information Extraction is concerned with providing a structured
representation to the information embedded in text [2]. More specifically, the goal is to detect
phrases denoting semantic relationships between entities mentioned in a sentence, and extract
these relations along with their arguments in the form of relational tuples: <arg1, relation, arg2>.
The output extraction has the same structure of an RDF triple, called a subject-predicate-object
expression. For example, given the sentence, Albert Einstein was born in Ulm, the following
relation can be extracted: <Albert Einstein, born-in, Ulm>

While most traditional approaches to IE rely on hand-crafted patterns to extract a limited set
of predefined relation types, OpenIE offers a different extraction paradigm. It allows for domain
independent discovery of any relation occurring in text. The main advantage of this approach
is the ability to work with textual corpora coming from a variety of domains, with no need to
specify a target relationship set in advance. The extractions produced with OpenIE systems
naturally populate structured information resources, represented by relational databases. They
also provide convenient data to build knowledge graphs representing specific domains [3, 4].
The ability to capture facts asserted in text, makes OpenIE propositions a valuable source
of information for many downstream NLP applications, including question answering, text
comprehension and textual entailment tasks [5, 6].
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In this paper, we aim to extend the existing line of work on the task of OpenIE. We propose
an alternative method to leverage syntactic dependencies to extract relational tuples from text.
Our framework recovers predicate-argument structure from the sentence dependency tree and
generates a compact sentence representation, that facilitates meaningful extractions. In this
discussion paper, we present the experimental results from the preliminary evaluation, that
provide enough evidence to conclude the effectiveness of the developed approach.

The paper is organized as follows. In Section 2, we first provide an overview of several
approaches that were recently proposed to address the Open Information Extraction task. In
Section 3, we outline the SpanIE framework, discussing the building blocks of its extraction
pipeline. Specifically, we describe the algorithm for the construction of an intermediate sentence
representation, and discuss how this representation is used to solve the actual relation extraction
task. In Section 4, we conduct a comparative evaluation of SpanIE with other prominent systems,
using a well-known benchmark framework for OIE. Finally, in Section 5, we give our concluding
remarks.

2. Related Works

Most prominent approaches addressing the task of relation extraction, adopt a set of hand-
crafted extraction rules defined over lexical and linguistic features. It has been shown that
matching patterns based on deep syntactic features rather than shallow part-of-speech tags,
achieve higher precision and generate more accurate extractions [7]. As a result, many rule-
based approaches prevalently work with dependency information obtained from pretrained
parsers, and apply extraction patterns directly on the sentence parse tree [8, 9, 10, 11, 12].

Another effective strategy to improve the accuracy of OpenIE extraction consists in simplify-
ing the structure of the input sentence through an intermediate transformation stage, before
running the extraction algorithm. The basic idea is that the linguistic complexity of a sentence
might hinder meaningful and accurate extractions. Thus, the workflow is split between two
phases. First, the sentence is processed to obtain an intermediate representation, allowing
to reduce the complexity of the actual extraction task. Then, the extractor is applied on the
transformed sentence to produce the final relational tuples. ClausIE[13], Stanford Open IE[14]
and Graphene[15] adopt different techniques to implement the same underlying idea. The afore-
mentioned frameworks aim to simplify the source sentence, by breaking it down into a set of
independent clauses, and extract relational tuples from those independent utterances. Graphene,
takes a step further, in that it aims to preserve the semantic relationships between individual
clauses, resulting from sentence simplification. When it performs clausal decomposition of the
source sentence, the system distinguishes between core and contextual clauses and connects
them in a hierarchical way by means of rhetorical relations, such as Contrast, Condition and
Enablement. The intermediate representation provided to the extractor is a discourse tree of
propositions, in the form of core facts and accompanying context. As a result of applying this
transformation, Graphene returns a set of semantically related tuples for each input sentence.
Similar in the spirit to the described approach, our algorithm for triple extraction also relies on
a hierarchical representation of the input sentence. However, we adopt a different methodology
to build this intermediate representation. Firstly, the transformation process in Graphene is



carried out in a top-down fashion. Conversely, our approach is based on a bottom-up traversal
of the parse tree. Secondly, we design transformation rules, that apply to a different syntactic
structure, which makes use of dependency rather than constituency grammar.

Most recently proposed frameworks for OpenIE extraction, adopt a modular architecture, and
use external resources, like pretrained models, either as components of their extraction pipeline,
or at the later post-processing stage. OLLIE’s [16] successor OpenIE4 [17], for instance, combines
RelNoun [18], a rule-based system for extracting noun-mediated relations, and SRLIE, that relies
on the output of the state-of-the-art PropBank-trained SRL system. The main advantage of our
solution is its operational independence. SpanIE is a self-contained framework, with all modules
of the extraction pipeline being implemented internally. Working only over the dependency
parse, our system can produce an interpretable structured representation of a sentence, and use
it to extract not-only verb-based relations, but also other kind of relational constructs.

3. SpanIE System

Figure 1: Overview of the SpanIE workflow

In this work, we extend the line of rule-based approaches on the task of OpenIE by proposing
a new method for automatic extraction of binary relations from unstructured text. In Figure 1,
we schematically outline the workflow employed by our system. Similar to existing solutions,
SpanIE adopts a two stage approach to carry out the extraction process. Our novel idea is to
simplify the task, by performing relation extraction on a sentence representation that directly
reflect its underlying argument-predicate structure. This intermediate representation, which
we call argument-predicate tree, enables the definition of simple extraction rules, that operate
on a level of multi-token phrases instead of individual words (see Figure 2.1). For this purpose,
we exploit the linguistic concepts of a nominal and predicate phrase, to reconstruct argument
and predicate structures from automatically generated dependency parse of a sentence.

We use this representation as input to our relation extraction algorithm. The final output
of the proposed framework is a set of relational tuples of the form ⟨𝐴,𝑅, 𝑇, [𝑀 ]⟩ (Figure 2.2),
where 𝑅 denotes a relation phrase holding between two argument phrases, namely an agent
𝐴 and a target 𝑇 ; 𝑀 denotes an optional modifier that specifies the context associated with
the relation 𝑅. Figure 2 provides an example of an argument-predicate tree and the final set



Figure 2: An example of argument-predicate tree and corresponding tuples generated by SpanIE.

of relations generated by SpanIE from the sentence: "Irene Morgan Kirkaldy, who was born in
Baltimore, lived on Long Island and ran a child-care center in Queens with her second husband,
Stanley Kirkaldy."

3.1. Argument-Predicate Tree Construction

Given an input sentence, its argument-predicate tree is the result of a series of transformations
defined over the syntactic structure of the sentence, represented by an automatically generated
dependency tree, like the one in Figure 3, obtained with SpaCy1 parser .

Our algorithm for the construction of the argument-predicate tree performs a bottom-up
traversal of the sentence syntactic dependency tree, processing tokens one at a time based
on their linguistic properties. For each token in the sentence, we first decide whether to skip
it or keep it for further processing. Tokens considered irrelevant to the ultimate extraction
task, such as punctuation and conjunctions, are discarded from the intermediate representation
(see nodes colored in gray in Figure 3). If the token is retained, a decision is made on how to
represent it in the argument-predicate tree. Depending on its syntactic dependency, a token
can be folded into an arc (dashed nodes), or collapsed with its parent node (nodes with purples
incoming edges). If none of these operations takes place, the token is included as is in the final
representation. In particular, a token is folded if it is a preposition or a discourse word, like
interjection, filler or non-adverbial discourse marker. In this case, the token is used to label
an arc in the predicate-argument tree. Instead, a token is collapsed if its syntactic dependency
is matching one of two distinct sets of patterns, corresponding to nominal or verbal phrases,
respectively. In this case, we merge a token with its syntactic parent to build a multi-word
phrase that represents the nominal or the verbal phrase in the final argument-predicate tree.
For instance, compounds, determiners and nominal modifiers are included into the nominal
phrase headed by the referent noun. Similarly, particles and auxiliaries make one verb phrase
with the main verb.

Finally, in the argument-predicate tree (Figure 2.1), we distinguish between predicate nodes,

1https://spacy.io



Figure 3: An example of a dependency parsing obtained with SpaCy.

expressed by verb phrases (in purple), and argument nodes, that are generically represented by
nominal expressions (in cyan). Prepositions and discourse words add semantic information to
this representation and are stored as labels on the arcs of the tree.

3.2. Relation extraction

In this section we describe the last stage of our SpanIE workflow. The extraction algorithm
takes as input the argument-predicate tree and outputs a set of relational tuples of the form
⟨𝐴,𝑅, 𝑇, [𝑀 ]⟩, where 𝑅 represents a relation between and agent 𝐴 and a target 𝑇 , while
𝑀 represents an (optional) modifier of the relation 𝑅. Usually, in the verb-based approach
to relation extraction, 𝑅 corresponds to a predicate phrase. SpanIE is not limited to verbal
relations, but allows to additionally extract other relational constructs, like appositives (i.e.,
sameAs relations) or binary relations mediated by prepositions.

To perform the extraction task, we exploit the topology of the argument-predicate tree,
matching extraction patterns against the simplified syntactic structure. Focusing on verbal
relations, we perform a top-down traversal of the argument-predicate tree and collect all the
predicate nodes (purple nodes). For each predicate, we inspect its local sub-tree, searching for
argument nodes to use in the agent and target positions of the relational tuple. First, we identify
the argument node 𝐴 governed by the predicate via a subject relation. We call this argument
the agent of the predicate. For each remaining argument node 𝑇𝑖 in the argument set of the
predicate, we build a relation ⟨𝐴,𝑅, 𝑇𝑖⟩. A predicate node can appear in the argument set of
another predicate as its clausal complement (via comp, xcomp, and pcomp dependencies). In this



case, the predicate node is extracted twice, as a clausal argument of another predicate, leading to
a nested extraction, and as a predicate in its own relational tuples. For instance, in the sentence
A team won the final, by cheating on its opponents., the predicate node cheating, appears in two
extractions, ⟨A team,won, cheating, [by]⟩ and ⟨A team, cheating, its opponents, [on]⟩.

In the previous example, we see how SpanIE extracts relation modifiers such as preposi-
tions. Sometimes, modifiers can be interpreted as an extension of the target argument nodes
(as in the example, “by cheating” or “on its opponents”). This is not a binding behaviour.
Our algorithm extracts prepositions as a separate component of a relation tuple, leaving the
user free to decide where to place prepositions in the final output and how to use them to
interpret the context of the relation 𝑅. Another option provided by our system, is the pos-
sibility to internally resolve pronouns that appear in the agent position of a relational tuple.
For instance, in Figure 2.2 SpanIE outputs ⟨Irene Morgan Kirkaldy,was born,Baltimore, [in]⟩,
instead of ⟨who,was born,Baltimore, [in]⟩. In addition, we also include patterns, that allow
to optionally generate non verbal relational tuples. For example, we extract the appositive
construct, ⟨her second husband, sameAs,Kirkaldy Stanely⟩, by matching on appos relation in
the argument-predicate tree. In the same fashion, we can extract preposition-mediate relations,
like ⟨a child-care center, in,Queens⟩.

4. Evaluation

In this section, we evaluate the performance of our system, using the OpenIE benchmark frame-
work proposed in Stanovsky and Dagan (2016) [19]. We compare SpanIE with six prominent
information extraction systems on a large benchmark corpus for OIE. The dataset comprises
more than 10,000 tuples over 3,200 sentences from Wikipedia and the Wall Street Journal.
The gold extractions were obtained for each verbal predicate, by converting the QA-Semantic
Role Labeling annotations. Given the design of the reference benchmark, we evaluate our
implementation only considering its predicate-based extractions. In Figure 4, we compare the
performance of different systems by running the scripts used in Stanovsky and Dagan (2016)2.

To perform the evaluation, the authors match the automatically generated extractions with
gold extractions based on their lexical overlap. Unlike other systems in the reference benchmark,
our current implementation does not estimate confidence score for different extractions. Thus,
for the purpose of the evaluation, we assign a default 1.0 confidence score to all extractions gen-
erated by SpanIE. We report both the precision and recall (and F1) values and the corresponding
precision-recall curves for all the benchmark systems, as shown in Figure 4. Compared to other
systems, SpanIE exhibits the second best performance after OpenIE-4. However, it is important
to stress the fact that the best performing system in the benchmark, OpenIE-4, heavily relies
on the results of pre-trained models to perform relation extraction, while our self-contained
framework is able to achieve comparable performance, working autonomously by an approach
that is exclusively based on morphosyntactic rules. This makes the results promising and the
system highly customizable.

2The scripts are available at: https://github.com/gabrielStanovsky/oie-benchmark.



Precision Recall F1

ClausIE 0.414 0.679 0.514
OpenIE-4 0.615 0.686 0.648
Stanford 0.137 0.306 0.189
PropS 0.500 0.482 0.491
Graphene 0.437 0.335 0.379
OLLIE 0.500 0.514 0.507

SpanIE 0.554 0.677 0.609

Figure 4: Precision Recall values and curves for OpenIE systems

5. Concluding remarks

In this paper, we presented SpanIE, a span-based approach to solve the task of Open Information
Extraction. SpanIE is designed as a self-contained framework, which internally implements all
the necessary modules of its extraction pipeline. The distinctive feature of our solution is the
ability to limit the dependency on external models and solve the task autonomously, by only
relying on a set of deterministic rules defined over the syntactic structure of a sentence. The
preliminary results obtained from a comparative evaluation using the OIE benchmark, provide
comforting evidence of the effectiveness of the proposed approach. Our system achieves a
comparable performance with the state-of-the-art systems for OpenIE, while offering a novel
way to leverage syntactic information in the task of relation extraction. In the future work, we
plan to examine further strategies to improve the system performance and consider extending
our framework with semantic information about different relational types. Additionally, we
would like to investigate the idea of ontology construction from the knowledge graph of relation
extractions produced with the proposed approach.
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