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Abstract
Recommendation systems (RSs) are increasing their popularity in recent years. Many big IT companies
like Google, Amazon and Netflix, have a RS at the core of their business. In this paper, we propose a
modular platform for enhancing a RS for the tourism domain with a crowding forecaster, which is able
to produce an estimation about the current and future occupation of different Points of Interest (PoIs)
by taking into consideration also contextual aspects. The main advantage of the proposed system is its
modularity and the ability to be easily tailored to different application domains. Moreover, the use of
standard and pluggable components allows the system to be integrated in different application scenarios.
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1. Introduction

Recommendation systems (RSs) are frameworks able to understand and learn users’ behaviours
by collecting and analysing historical data, with the aim to provide tailored suggestions in a
collection of items. These systems are successfully used in many different application domains,
from e-commerce and on-demand TV shows, to touristic scenarios. The benefits of producing
personalized suggestions are twofold: for the user, choosing an item inside a huge catalogue can
become a nightmare, if done without a personalized filtering function; for the service provider,
RSs can be used both to build customer loyalty and to guide the user’s choice towards a particular
subset of items in a given context. With reference to the touristic domain, the ability to guide
user choices towards particular attractions in a given context has become urgent in recent years
since, due to circumstances such as the COVID-19 pandemic, it has become prominent the need
to avoid crowding and restrict the number of people that can access the same Point-of-Interest
(PoI) together. A similar requirement can be found also in TV on-demand platforms, where in
order to optimize the broadcast service or to promote particular items, there can be the need
to suggest new and lesser-known shows with respect to the most popular ones. Therefore, a
natural extension of currently available RSs is the ability to predict the level of crowding of a
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given item and to redirect people to other attractions, which are equally appreciated, but are
less in demand at the moment [1, 2, 3].

In this paper we present the architecture of a context-aware recommendation system
(CARS) [4] with crowd forecasting, which is able to produce tailored suggestions by considering
also the expected level of occupation of each item. Relatively to the crowding forecaster, we
refer to the one presented in [1] and we describe its possible integration inside a CARS. We
take as a running example the touristic scenario where we need to suggest the next PoI to
visit. However, the system can be easily extended or adapted to other application domains, by
properly customizing the notion of crowding and the kind of collected historical data.

The general architecture of the proposed solution is illustrated in Fig. 1. In the first phase
represented by box 𝐵1, the historical user data and the historical contextual data are integrated
and processed in order to produce an enhanced dataset of integrated contextual historical data
(operation 𝑜𝑝1). This new dataset is used as a training input for the deep learning crowding
forecaster discussed in [1]. The result of this phase is a model 𝑀1 which is able to produce an
estimation of the level of occupation of a given PoI in a certain context. The trained model 𝑀1
is then used in a second phase, box 𝐵2 of Fig. 1, with the aim to produce an estimation of the
level of occupation of each PoI in a given context. In detail, at a specific point in time, such level
of occupation is computed (or updated) in the background and stored in a database containing
also the description of PoIs. All these pieces of information are then made available through a
Web Feature Service (WFS) which can feed several different client applications, like a website
or a smartphone application (box 𝐵3).
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Figure 1: Architecture of the CARS framework.

The remainder of this work is organized as follows: Sect. 2 formalizes the problem, Sect. 3 de-
scribes in detail the architecture of the developed system. Sect. 4 illustrates a possible application
of the system in the touristic domain and finally Sect. 5 concludes the work.



2. Problem Formulation

This paper considers the touristic domain as the application scenario for our context-aware
recommendation system. Therefore, the formulation that follows is tailored for that scenario,
but can be easily extended to other domains.

Definition 1 (Touristic visit). Given a set of POIs 𝒫 and a set of users 𝒰 , a visit performed by
a user 𝑢 is represented as: 𝑣 = ⟨𝑢, 𝑝, 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔⟩ where: 𝑢 ∈ 𝒰 is the user identifier, 𝑝 ∈ 𝒫
identifies the POI, 𝑡 is a timestamp representing the date and time of the visit, and 𝑙𝑎𝑡 and 𝑙𝑜𝑛𝑔 is
the spatial position (i.e., latitude and longitude) where the POI is located. The set of all touristic
visits performed by users in 𝒰 is denoted as 𝒱 .

Historical data about past touristic visits can be enriched with some contextual information
better characterizing the conditions in which the visit has been performed.

Definition 2 (Contextual information). Given a visit 𝑣 ∈ 𝒱 , we define its context 𝐶 as a tuple of
values for some relevant dimensions as follows: 𝐶 = ⟨𝑐1, . . . , 𝑐𝑛⟩ where each 𝑐𝑖 is the value of a
contextual dimension 𝑐𝑑𝑖 characterizing the problem at hand.

In our specific scenario regarding the touristic domain, we consider as meaningful contextual
dimensions the tuple: 𝐶𝐷 = {𝑡𝑠, 𝑑𝑜𝑦, 𝑑𝑜𝑤, ℎ𝑜𝑙, 𝑝𝑟𝑒𝑠, 𝑤𝑖𝑛𝑑, 𝑟𝑎𝑖𝑛, 𝑡𝑒𝑚𝑝, ℎ𝑢𝑚} where 𝑡𝑠 is a
predefined timeslot inside the day, 𝑑𝑜𝑦 is the day of the year, 𝑑𝑜𝑤 is the day of the week, ℎ𝑜𝑙
is a boolean value representing the fact that the visit is performed in a public holiday and/or
during a weekend, or not, 𝑝𝑟𝑒𝑠 is the atmospheric pressure, 𝑤𝑖𝑛𝑑 is the wind speed, 𝑟𝑎𝑖𝑛 is
the amount of precipitation, 𝑡𝑒𝑚𝑝 is the temperature, and ℎ𝑢𝑚 is the percentage of humidity.

Definition 3 (Contextual touristic visit). Let 𝑣 = ⟨𝑢, 𝑝, 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔⟩ a visit performed by a user
𝑢 in a specific context 𝐶 = ⟨𝑐1, . . . , 𝑐𝑛⟩, where ∀𝑖 ∈ {1, . . . , 𝑛} 𝑐𝑖 is the actual value for the
contextual dimension 𝑐𝑑𝑖, a contextual touristic visit is defined as:

𝑐𝑣 = ⟨𝑢, 𝑝, 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔, 𝑐1, . . . , 𝑐𝑛⟩ (1)

where the tuple 𝑣 representing the touristic visit is enriched with the contextual values in 𝐶 .

Definition 4 (Crowding forecaster). A crowding forecaster is a system that once trained with
historical data about contextual touristic visits is able to produce an estimate of the level of crowding
for a PoI 𝑝 in a context 𝐶 .

The crowding forecaster is an essential ingredient for the development of a context-aware
recommendation system.

Definition 5 (Context-aware Recommendation System). A context-aware recommendation
system is a recommendation system which is able to produce useful recommendations by considering
not only users’ preferences, but also the expected current (or future) level of crowding in the
considered set of PoIs.

3. System Architecture

This section illustrated each component of the proposed framework.



Contextual Data Enrichment

The first operation performed by the CARS framework is the production of the contextual
historical data which will be used to train the DL model. This operation is identified as 𝑜𝑝1 in
Fig. 1. More specifically, besides collecting the past logs about users’ choices, it is necessary to
identify the sources of information that represent the relevant context for the problem at hand.

In our target scenario, we consider historical data about past touristic visits and we enrich
them by deriving some semantic temporal information from the timestamp and by adding
information about the weather condition in each specific visit interval. Weather conditions are
extracted through the API of OpenWeather [5] at regular and configurable intervals. Clearly,
operation 𝑜𝑝1 can be customized and enriched with other sources of information based on the
problem at hand.

The integration of raw historical data and historical contextual information produces the
enriched contextual historical data described in Def. 3 and reported in box 𝐵1 of Fig. 1 as the
input for the training of DL model 𝑀1.

Training of a Crowding Forecasting Model

The crowding forecaster is implemented as a DL model trained with the contextual his-
torical data produced in the previous section. In [1], we tried different machine learn-
ing and deep learning models, together with many different configurations. In this pa-
per we assume that the best model identified in [1] is used in box 𝐵1. This is a Deep
Neural Network (DNN) implemented and trained in Python by using Tensorflow [6] and
Keras [7] libraries. The source code and the datasets used in this paper are available at
https://github.com/smigliorini/crowd-forecaster.

The trained model is then used to forecast the occupation of each POI in a given context.
More specifically, at specific intervals, the future context is retrieved (weather conditions and
temporal characterization), and the model is queried in order to produce an estimation of the
future level of occupation of each PoI. With reference to box 𝐵2 in Fig. 1, given the PoIs and
the desired context, operation 𝑜𝑝2 is responsible to combine them in order to define a query
for the forecast model 𝑀1. The execution of model 𝑀1 produces a collection of occupation
forecasts, one for each PoI in the given context, which is stored in the database T-DB together
with other information, like the POI descriptions and the user preferences. As regards to the
PoI occupation, the database T-DB is filled not only with the obtained forecast but also with the
current (or past) data about occupancy. This information can be made available to users, but it
is also useful for evaluating the accuracy of past forecasts and eventually determining the need
for a new training of 𝑀1, if the estimation becomes inaccurate.

Data Publishing via WFS

A Web Feature Service (WFS) is an interface specified by the Open GIS Consortium (OGC) that
allows for the exchange of geographic data across the Web [8]. Through a WFS it is possible to
share spatial data in standard formats (like GML, GeoJSON, shape files, and so on) and make
them available to many different GIS client applications. With reference to Fig. 1, the WFS is used
to publish the content of T-DB on the web and make its information usable by a smartphone,



a web or a desktop application. Many different available APIs and desktop applications are
compatible with the WFS standard, like Leaftlet [9], QGIS [10], and so on.

Context-aware Recommendation App

Occupation forecasts produced by model 𝑀1 and stored in T-DB can be used alone or in
conjunction with information about the user preferences in order to produce a context-aware
recommendation. In Fig. 1, box 𝐵3 contains different kinds of applications which can use the
data stored in T-DB and exposed through a WFS. These applications are called context-aware
recommendation apps, since they will produce tailored recommendations by combining user
preferences with the expected level of occupation of the PoIs in the given context. In Fig. 1
we abstract from the details of the recommendation system which produces and stores the
user’s preferences. Clearly, many different tools can be plugged here to obtain this kind of
information.

4. Demonstration Scenario

For the demonstration of CARS, we use a real-world touristic dataset regarding the visits
performed to a collection of PoIs in Verona, a city in northern Italy. First of all, for the operations
in box 𝐵1 of Fig. 1, we collected about 2,1 million records spanning 6 years (i.e., from 2014
to 2019) regarding the visits performed in 9 different PoIs. Each of these records contains
the timestamp and the location of the visited attraction, as well as a category (i.e., Museum,
Monument and Church), see Tab. 1 for more details. This historical dataset is enriched with
the contextual information regarding the weather conditions and temporal characterization
described in Sect. 2. In order to produce a context-aware recommendation, CARS needs also to
know the preferences of each user with respect to the various POI categories in the dataset. At
this regard, we collect the preferences of a set of users and store them in the database.

Table 1
Historical dataset for operation 𝑜𝑝1.

Name Category Num. of visits
Arena Amphitheatre Monument 421,490
Juliet’s House Museum 375,305
Lamberti’s Tower Monument 290,243
Castelvecchio Museum Museum 271,552
Church of St. Anastasia Church 230,352
The Cathedral Church 205,293
Roman Theatre Museum 145,854
Palazzo della Ragione Monument 111,440
Juliet’s tomb Museum 100,701

Given the trained model 𝑀1, we use a Python script to periodically query the model for
each PoI and in a desired temporal and weather context. The obtained results are stored in a
PostgreSQL database with PostGIS extension. Fig. 2 illustrates the interface of the GeoServer
(https://geoserver.org/) tool used to configure the WFS and expose the database content.

https://geoserver.org/


Figure 2: Set of layers provided by a GeoServer WFS.

In order to illustrate the system functioning, we implement the recommendation application
illustrated in Fig. 3. Each authenticated user can see his/her position on the map and can obtain
a suggestion for the next PoI to visit based on his/her preference for the various attraction
categories and his/her proximity of the various PoI. More specifically, given a user 𝑢 ∈ 𝒰 , the
preference of 𝑢 for a PoI 𝑝 ∈ 𝒫 is computed as

𝑃 (𝑢, 𝑝) = 𝑃 (𝑢, 𝑐) · 1

𝛿(𝑝, 𝑢)
· 1

(1 + #𝑝)
(2)

where 𝛿(𝑝, 𝑢) measures the spatial distance between the POI 𝑝 and the user 𝑢, while 𝑃 (𝑢, 𝑐)
is the preference of the user 𝑢 for the category 𝑐 of 𝑝, and #𝑝 is the number of times the user
𝑢 has already visited 𝑝 in the past. The spatial distance is computed by considering the road
network and using the libraries OSMnx [11] and NetworkX [12]. From the equation we can
observe that the preference for 𝑝 increases as the preference for the category 𝑐 of 𝑝 increases,
and it decreases as the distance between the current position of the user and the PoI location
increases, or with the number of times user 𝑢 already visited 𝑝 in the past.

Given such definition of preference of a user 𝑢 for a PoI 𝑝, we can also introduce the expected
level of crowding produced by the model 𝑀1 in the final computation. Therefore, the contextual
preference of the user 𝑢 for the PoI 𝑝 in the context 𝐶 becomes:

𝑃 *(𝑢, 𝑝, 𝐶) = 𝑃 (𝑢, 𝑝) ·
(︂
1− 𝑒𝑣(𝑝, 𝐶)

𝑐𝑎𝑝(𝑝)

)︂
(3)

where 𝑃 (𝑢, 𝑝) is the static preference defined in Eq. 2, while 𝑐𝑎𝑝(𝑝) is the maximum capacity
of the PoI 𝑝, namely the maximum number of visitors it can host and 𝑒𝑣(𝑝, 𝐶) is the estimated
number of visitors determined by the crowding forecaster 𝑀1 for PoI 𝑝 in the context 𝐶 .



The web application illustrated in Fig. 3 allows us to demonstrate the potentiality of the
framework and in particular to compare the different suggestions produced by using either
Eq. 2 or Eq. 3, namely by considering only the users’ preferences or also the level of crowding.
The general interface of the application consists on a web map where the user’s position is

Figure 3: CARS web application

highlighted with a blue placeholder, while the location of each PoI is denoted with a placeholder
whose color represents the different levels of occupation: green means quite empty, yellow
means normally occupied, while red denotes an overcrowded situation. At the top of the map,
there are some input fields that allow the user to specify the spatial and temporal context of the
visit: the user identifier and position, and the desired date for the visit. The user position can be
specified both textually or by performing a selection on the map. Finally, the button Suggest
applies Eq. 2 and Eq. 3 for producing the static and contextual recommendation, respectively.
The system returns two lists with the first three best PoIs for the user: each row has a color
depending on the level of occupation of the PoI in the given date, and it reports the preference
of the user for the PoI category as a set of stars, from 1 to 3, as well as the distance of the PoI
from the current user position.

As an example we report in Tab. 3 the different suggestions produced in two different contexts
𝐶1 and 𝐶2. More specifically, for 𝐶1 we choose a sunny day during the weekend, while for 𝐶2
we consider a sunny Thursday, which is one of the quieter days in terms of tourist visits. The
level of occupation of each PoI in the two contexts is described in Tab. 2. As you can notice in
𝐶1 there are some PoIs, like P7 and P13, that are overcrowded, while others like P2 and P11
that are average occupied. Conversely, in C2 all occupation rates are below 50%.

Tab. 3 shows different static and contextual recommendations suggested to two users 𝑈1
and 𝑈2 in these two contexts. Besides to the three suggested PoIs, it reports the distance of
each PoI from the user position and the user preference for the PoI category (3 is the maximum



Table 2
PoI occupancy rates for two contexts

Context P1 P2 P3 P4 P5 P6 P7
𝐶1 75% 42% 66% 66% 75% 75% 83%
𝐶2 50% 42% 33% 42% 50% 42% 42%

P8 P9 P10 P11 P12 P13
𝐶1 58% 75% 66% 50% 50% 83%
𝐶2 50% 42% 33% 50% 42% 25%

value and 1 is the minimum value). We can notice that in context 𝐶1, PoI 𝑃7 has a level of
occupation close to saturation; therefore, even if 𝑈1 has a greater preference for it, the system
suggests 𝑃2 in place of 𝑃7. Similarly, for 𝑈2 even if 𝑃7 is spatially closer to user’s position, it
does not appear in the contextual suggestions. Conversely, in context 𝐶2, PoIs are typically
unloaded and the set of suggestions is the same for both static and dynamic approaches.

Table 3
Result of recommendations

Cont. User Static Rec. Contextual Rec.
PoI Distance Pref. PoI Distance Pref.

𝐶1

U1
P12 358m 2 P12 358m 2
P7 530m 3 P2 285m 1
P5 464m 1 P8 756m 2

U2
P12 358m 3 P12 358m 3
P2 285m 2 P2 285m 2
P7 530m 3 P10 619m 3

𝐶2

U1
P12 358m 2 P12 358m 2
P7 530m 3 P7 530m 3
P5 464m 1 P5 464m 1

U2
P12 358m 3 P12 358m 3
P2 285m 2 P2 285m 2
P7 530m 3 P7 530m 3

5. Conclusion

In this paper we have presented the possible architecture of a context-aware recommendation
system enriched with a crowding forecaster. This system is able to produce a set of dynamic
suggestions to users where the preference associated with each item depends also on its level of
occupation in different contexts. The use of a contextual crowding forecaster allows producing
more precise estimations and more personalised and useful suggestions. The system is currently
under experimentation as a prototypical touristic application developed in conjunction with
the Touristic Office of Verona, in Italy.
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