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Abstract

The management of Data Lake technologies is challenged by the increasing flexibility they provide in

data storage, as well as the fast-changing and diverse data they handle. In order to effectively identify

relevant sources for analysis, it is crucial to make sense of disparate data, which is especially important in

data science applications where users need to analyze statistical measures from multiple heterogeneous

sources. In the paper, a knowledge-based approach for a Semantic Data Lake is presented to enable

efficient integration of data sources and alignment to a Knowledge Graph, which represents indicators

of interest, their mathematical formulas, and dimensions of analysis. A query-driven discovery approach

is used to dynamically identify, integrate and rank the sources to respond to a given analytical query.
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1. Introduction

Data Lakes (DL) are repositories for storing data in their native format, providing centralized

access and the capability to apply data transformations when needed according to an ELT

approach. However, the lack of a global schema and the need to make sense of disparate raw

data pose challenges related to data management. As recognized by recent literature [1], how

to integrate heterogeneous data sources and help users to find the most relevant data are still

open issues in this setting.

A variety of solutions have been proposed for DL integration, ranging from raw data man-

agement to semantic-enriched frameworks. Traditional techniques based on schema matching

typically assume complete metadata, which is not realistic for real-world Data Lakes [1, 2].

Among the latter, Knowledge graphs have been exploited to drive integration, relying on

information extraction tools (e.g., [2, 3, 4]), while recent effort focused on combining the

Ontology-Based Data Access paradigm with Data Lakes to support uniform access (e.g., [5]).

In order to combine the two aspects of discovery and integration, which are often seen as

intertwined operations, a query-driven discovery paradigm was recently proposed [6] , aimed

to finding datasets that are similar to a query dataset and that can be integrated in some way

(e.g., by join, union or aggregates). A related problem is the correlated dataset search, in which

besides identifying possible joins, it is also necessary to compute, or estimate, the joinability
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among the sources (or their correlation). Algorithms such as JOSIE [7] provide an exact solution,

while Lazo [8], LSH Ensemble [9] or GB-KMV [10], focus on approximate solutions at the

reduced cost of precision and recall. Aurum [11] exploits hypergraphs to find similarity-based

relationships through LSH among tabular datasets. In [12], given an input query table, the aim

is finding the top-k tables that are both joinable with it and contain columns that are correlated

with a column in the query, through a novel hashing scheme that allows the construction of a

sketch-based index to support efficient correlated table search. After the discovery has been

performed (through join, union or related-table search), tables can be integrated (e.g., [13]).

However, when dealing with summary data, that is statistical measures or indicators derived

from raw data, specific issues rise that have not been taken into account by the literature. This

is the case of open Data Lakes managed by public bodies, e.g., to monitor economic trends or

the effectiveness of governmental policies and initiatives like a vaccination campaign.

In this work, we propose a query-driven knowledge-based approach for integration and

discovery in a Data Lake. The approach builds on a Knowledge Graph that includes a formal

model of measures and their computation formulas, in which concepts are used to enrich source

metadata. The approach defines mechanisms for integration and mapping discovery, based on

efficient evaluation of set containment between a source domain and a concept in the Knowledge

Graph. It also defines an ontology-based and math-aware query answering function, specifically

tailored to analytical processing, capable of identifying the set of sources collectively capable

of responding to the user request and the proper transformation rules to make the needed

calculation. To quantitatively estimate the quality of such results, we propose an algorithm to

efficiently evaluate the degree of joinability index, which estimates the cardinality of the join

among a set of sources.

Unlike alternative solutions in the literature, our approach takes into account both data and

metadata (i.e., mappings to indicators concept in the Knowledge Graph and their formulas) as a

support to reformulate the query and determine which sources can be used to respond. This

helps in reducing the search space by identifying the most semantically relevant data sources

according to the discovery need. Second, in our case the target query is extended to general

OLAP queries. As such, it can also be named a Semantic Data Lakehouse, following a recent

terminological proposal in the literature [14]. The article is an extended abstract of a work

submitted to Information Systems Frontiers, a prior version thereof is available at [15].

The rest of the paper is structured as follows: Section 2 is devoted to introducing the Semantic

Data Lake model. The approach for source integration is discussed in Section 3, while query

answering mechanisms are introduced in Section 4. An evaluation of the approach is discussed

in Section 5 while Section 6 concludes the work and draws future research lines.

2. Semantic Data Lake: data model

A Semantic Data Lake is defined as a tuple 𝑆𝐷𝐿 “ x𝒮,𝒢,𝒦,𝑚y, where 𝒮 “ t𝑆1, . . . , 𝑆𝑛u is a

set of data sources, 𝒢 “ t𝐺1, . . . , 𝐺𝑛u is the corresponding set of metadata, 𝒦 is a Knowledge

Graph and 𝑚 Ď 𝒢 ˆ 𝒦 is a mapping function relating metadata to knowledge concepts.

Our approach is agnostic w.r.t. both the degree of structuredness of the sources, ranging

from structured datasets to semi-structured documents (e.g., XML, JSON), and the specific DL



architecture at hand, e.g., based on ponds vs. zones (see also [16, 17]). If the architecture is

pond-based, in fact, the approach is applied to datasets in a single stage, while in zone-based

DLs the approach can be applied on any stage of the platform, although it is best suited to

the staged area for data exploration/analysis. As a minimum requirement, we assume a data

ingestion process to wrap separate data sources and load them into a data storage. The model

for a Semantic Data Lake is detailed in the following.

2.1. Metadata layer

Different typologies of metadata can be related to a resource, depending on how they are gathered

[18]. Hereby, we refer to technical metadata, i.e., related to data format and, whenever applicable,

to their schema. Since the representation of metadata is highly source-dependent (e.g., the

schema definition for a relational table), a uniform representation of data sources in a metadata
layer is required for the management of a Data Lake. The procedure to represent technical

metadata of a given source depends on the typology of data source, e.g., a relational database

has tables with attributes, while XML/JSON documents include complex/simple elements and

their attributes. For each source 𝑆𝑘, metadata are represented as a directed graph 𝐺𝑘 that is

built incrementally by a metadata management system [19], starting from the definition of a

node for each metadata element. An edge is defined to represent the structural relation between

a table and a column of a relational database, or between a JSON complex object and a simple

object.

2.2. Knowledge layer

The knowledge layer of the Semantic Data Lake is based on KPIOnto1
, an OWL2-RL ontology

aimed to provide the terminology to model an indicator in terms of description, unit of measure-

ment and mathematical formula for its computation. The ontology also provides classes and

properties to fully represent multidimensional hierarchies for dimensions (e.g., level Province
rolls up to Country in the Geo dimension) and members.

On this top, a Knowledge Graph provides a representation of the domain knowledge in terms

of definitions of indicators, dimension hierarchies and dimension members. Concepts are

represented in RDF as Linked Data according to the KPIOnto ontology, thus enabling standard

graph access and query mechanism. Finally, Logic Programming rules are enacted by the XSB
2

logical reasoner providing algebraic services. These are capable of performing mathematical

manipulation of formulas (e.g., equation solving), which are exploited to infer all formulas for a

given indicator. This functionality is used to support query answering (see Section 4).

Figure 1a shows a fragment of a Knowledge Graph representing two dimensions Time and

Geo with the corresponding hierarchy of levels. On the other hand, Figure 1b highlights the

mathematical relations among a set of indicators related to monitoring of COVID, some of

which are atomic (e.g., Positive, Deaths, Recovered, ICU ), and others can be calculated from the

former (Cases and ICU on Positive Rate).

1

KPIOnto specifications are available at http://w3id.org/kpionto

2

http://xsb.sourceforge.net/



(a) (b)

Figure 1: Case study: (a) dimensions, levels and (b) indicators with their formulas.

For each source, the nodes in the metadata graphs are aligned with concepts in the Knowledge

Graph through the definition of the mapping function 𝑚 Ď 𝒢 ˆ 𝒦, which links the metadata to

the knowledge layer, following the approach discussed in the next section.

3. Integration and mapping discovery

This section is aimed to discuss (a) how to identify dimensions, given a new data source and (b)

how to properly map them to the Knowledge Graph. Hereby, we refer to data domain as a set

of values from a data source, e.g., for relation tables it is the projection of one attribute, while

for a JSON collection is the set of values extracted from all the included documents according

to a given path.

In order to identify whether a given domain from a data source and a dimensional level

represent the same concept, a matching step is required. The Jaccard similarity coefficient

is one of the most widely adopted index for comparing sets, however when sets are skewed,

i.e., have very different cardinality, this index is biased against the largest one. Given that the

cardinality of a domain (without duplicates) is typically much lower than that of a dimensional

level, we refer to an asymmetric variant named set containment, which is better suited than

Jaccard to evaluate whether a domain has intersection with a given level. Given two sets 𝑋,𝑌 ,

it is defined as 𝑐p𝑋,𝑌 q =
|𝑋X𝑌 |

|𝑋|
, i.e. it is independent on the dimension of the second set. As

an example, let us consider a domain 𝐴 “ t𝑅𝑜𝑚𝑒,𝐵𝑒𝑟𝑙𝑖𝑛, 𝑃𝑎𝑟𝑖𝑠u and a dimensional level

Geo.City including 100 cities in Europe. In this case, 𝑐p𝐴,𝐺𝑒𝑜.𝐶𝑖𝑡𝑦q “ 3
3 , meaning that the

domain perfectly matches the dimensional level, while 𝐽𝑎𝑐𝑐𝑎𝑟𝑑p𝐴,𝐺𝑒𝑜.𝐶𝑖𝑡𝑦q “ 3
100 .

We formalize the problem of mapping a domain of a data source to a dimensional level as

a reformulation of the domain search problem [9], which belongs to the class of R-nearest

neighbor search problems. Here, the goal is to determine what dimensional level, defined in the

Knowledge Graph, is the most relevant, i.e. best represent the values in the domain at hand.

Formally, given a set of dimensional levels ℒ, a domain 𝐷, and a threshold 𝑡 P r0, 1s, the set of

relevant dimensional levels from ℒ is t𝑋 : 𝑐p𝐷,𝑋q ě 𝑡,𝑋 Ď ℒu. In the following we refer to

the most relevant dimensional level as the one having the greatest threshold 𝑡. As an example,

the most relevant dimensional level for a domain country_region in a data source, containing



names of countries, is Geo.Country.

Comparing a given domain to a dimensional level involves a linear time complexity in the

size of the sets. Given the target scenario, which may include data sources with hundreds of

thousands or even millions of tuples, the computation of the index may often be not scalable in

many practical cases. An improvement discussed in the literature consists in the estimation of

the index using MinHash computation [20], which involves performing the comparison on their

MinHash signatures instead of on the original sets. If data sources have high dimensionality,

however, MinHash is used with a data structure capable of significantly reducing the running

time, named Locality Sensitivity Hashing (or LSH) [21], a sub-linear approximate algorithm.

While the previous approach is targeted to the Jaccard index, an estimation of the set con-

tainment can be obtained through LSH Ensemble [9], which is proved to be suitable for skewed

sets and more performing than alternative solutions in terms of accuracy and execution time.

In our approach, given a domain of a source, we rely on LSH Ensemble to obtain the dimen-

sional level(s) that are estimated to have a containment score above a certain threshold. In the

following, given a domain 𝐷 from a data source 𝑆, given a set of dimensional levels ℒ, and a

threshold 𝑡 P r0, 1s, we refer to 𝐿𝑆𝐻_𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 as a function returning the set of relevant

dimensional levels for 𝐷.

For what concerns measures, they are particular domains which are purely quantitative. As

such, unlike dimensional levels, they are not constrained to a finite number of possible values.

For this reason, solutions for evaluating domain similarity through containment such as LSH

Ensemble cannot be applied. Several approaches can be considered ranging from string-based

ones to those based on dictionary, semantic similarity (e.g., [19]) or frequency distribution and

will be discussed in future work.

4. Query answering

The mappings defined between the metadata graphs and the Knowledge Graph are exploited to

support query-driven discovery and query answering in the Data Lake context. This requires

to determine what data sources are needed and how to combine them for a given request. A

user query 𝑄 is expressed as a tuple 𝑄 “ x𝑖𝑛𝑑, t𝐿1, . . . , 𝐿𝑛uy, where 𝑖𝑛𝑑 is an indicator and

t𝐿1, . . . , 𝐿𝑛u is a set of levels, each belonging to a different dimension.

A data source 𝑆 has a compatible dimensional schema with respect to a query if 𝑆 contains

a subset of the levels in the query. For all dimensions of the query that are not included in 𝑆,

the source is assumed to supply such dimensions at the most aggregate level. A data source

can respond a query if its dimensional schema is compatible and if it provides the requested

indicator. On the other hand, if the indicator is not provided by any source but it can be

calculated from other indicators, a set of data sources may collectively answer the query if they

have a compatible dimensional schema and provide all the component indicators. In the latter

case, the actual calculation of the indicator requires to join the needed data sources.

It is worth noting that multiple formulas may exist to calculate an indicator and also for each

formula there may be multiple sets of sources that have the necessary measures. Clearly, the

different solutions must be compared to assess the quality of the query result. To this end, it

is necessary to join the sources considered in each solution. This is highly inefficient in the



Algorithm 1 Computing degree of joinability

1: function compute_joinability(x𝑆1, . . . , 𝑆𝑚y, t𝐿1, . . . , 𝐿𝑛u)

2: 𝜏 “ 1
3: Search 𝑆˚ P t𝑆1, . . . , 𝑆𝑚u 𝑠.𝑡. |𝑆˚| “ min𝑖“1,...,𝑚 |𝑆𝑖|

4: 𝑓𝑙𝑎𝑔 “ 𝑇𝑟𝑢𝑒
5: while 𝑓𝑙𝑎𝑔 do
6: Λ “ 𝐿𝑆𝐻_𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒p𝑆˚, t𝑆1, . . . , 𝑆𝑚uz𝑆˚, 𝜏q

7: if |Λ| ă p𝑚 ´ 1q then 𝜏 “ 𝜏 ´ 𝜏𝑠𝑡𝑒𝑝
8: else 𝑓𝑙𝑎𝑔 “ 𝐹𝑎𝑙𝑠𝑒
9: end if

10: end while
11: return 𝜏
12: end function

context of a Data Lake. Therefore, we propose an efficient algorithm to estimate the quality

of the query result, in terms of its cardinality. The outcome of the algorithm is then used to

choose which sources will be joined to compute the query result.

The algorithm takes as input a query 𝑄 “ x𝑖𝑛𝑑, t𝐿1, . . . , 𝐿𝑛uy and returns the list of possible

solutions, in terms of the formula to be applied and sources to be considered, enriched with the

estimated cardinality of the result. First, using the reasoning services defined over the KPIOnto,

the algorithm searches for all formulas 𝑓p𝑖𝑛𝑑1, . . . , 𝑖𝑛𝑑𝑚q for 𝑖𝑛𝑑 that can be derived from

𝒦, such that each component measure 𝑖𝑛𝑑𝑖, 𝑖 “ 1, . . . ,𝑚 is provided by a data source with a

dimensional schema compatible with 𝑄. For each formula in 𝑓p.q, the sets of sources that can

provide 𝑖𝑛𝑑1, . . . , 𝑖𝑛𝑑𝑛 are also returned. On these sets the degree of joinability is calculated,

which is used to estimate the cardinality of the query result. Such index measures the likelihood

to produce a result out of a join among a set of domains.

Sources are joinable if they have the same values for domains that are mapped to the same

dimensional levels. To check this condition, the corresponding domains should be compared in

order to determine how many values are shared between the sources through set containment.

However, a full comparison is not practical in a Data Lake scenario. For this reason, we resort

to the LSH Ensemble to provide an estimated evaluation of the joinability of 𝑚 data sources.

Typical use of LSH Ensemble is based on single join attribute at a time (similarity between sets),

while in our case the match needs to be performed on sets of dimensional levels. Hence, we

apply a combination function (e.g., a concatenation of strings) to the domains representing

levels, in order to map them into a single domain before applying the hashing function. In the

following, we refer to combined MinHashes, that can be pre-computed at source loading time

in order to speed up the evaluation of the joinability index.

The procedure for computing the degree of joinability is summarized in Algorithm 1. Given

the set of sources t𝑆1, . . . , 𝑆𝑚u with 𝑆˚
being the one with the lowest cardinality, the algorithm

returns the portion of elements of 𝑆˚
that will be considered in computing the join with the

other sources. Since the set t𝐿1, . . . , 𝐿𝑛u defines a unique identifier for each 𝑆𝑖, multiplying

the degree of joinability by |𝑆˚| yields the estimation of the cardinality of the join. In case

the indicator is already available in a source, the cardinality of the query result is equal to

the cardinality of the source. As a first step (line 2), the threshold 𝜏 is set to the maximum

value. Then, after identifying the source 𝑆˚
with the lowest cardinality (line 3), the function

LSH_Ensemble is called to obtain the set of sources with which S* is estimated to have a



Source Cardinality # Domains Mapped levels Mapped measures
S1 3051712 17 Time.Day, Geo.Country Positive, Recovered, Deaths
S2 22261 31 Time.Day, Geo.Province ICU, Positive, Negative, Recovered, Deaths
S3 61900 14 Time.Day, Geo.Country Positive, Deaths
S4 231192 38 Time.Day, Geo.Country Cumulative_Positive, Cumulative_Deaths
S5 28661 8 Time.Day, Geo.Country ICU, Cumulative_ICU

Table 1
Details on the data sources for the case study, mapped levels and measures.

containment score above 𝜏 . If there is at least one source for which this does not hold, then the

degree of joinability is less than 𝜏 and the threshold is decreased by a given step (line 7).

It is noteworthy that Algorithm 1 returns an overestimate of the degree of joinability of

𝑚 sources. To give an example, if 𝑆𝑥 “ t𝑎, 𝑏, 𝑐u, 𝑆𝑦 “ t𝑎, 𝑏, 𝑑, 𝑒u and 𝑆𝑧 “ t𝑏, 𝑐, 𝑑, 𝑒u, the

compute_joinability returns
2
3 , but the cardinality of the join is 1, so the degree of joinability

should be
1
3 of 𝑆𝑥. To get a more accurate result MinHash could be directly used to estimate

the set containment, and then to perform the join among the 𝑚 sources. Clearly this solution

lengthens the computation time, so for the scenario of this work we consider the approximation

proposed above.

5. Evaluation

An evaluation
3

of the approach is proposed here on a case study based on the Microsoft Azure

Covid-19 Data Lake
4

and Our World in Data repository
5
. The Data Lake contains 5 sources

reporting several measures on COVID, aggregated by temporal and geographical dimensions

(basic informations are available in the first columns of Table 1).

The Knowledge Graph was setup by defining dimensions and levels from available online

resources. For any loaded data source, initialization includes computation of MinHashes for any

domain, mapping with the dimensional levels and computation of the combined MinHashes

for domains mapped to dimensional levels. For LSH Ensemble we set the number of hashing

permutations to 256 and number of parts to 32. The average execution time for hashing

computation for a domain ranges from 0.076 s (S3) to 28.125 s (S1). The mapping discovery

phase always requires less than 0.001 s per domain, while the time for computation of combined

MinHashes ranges from 0.151 s (S2) to 21.235 s (S1) per domain. Overall, domains are processed

in less than 1.6 s on average.

In the following, we report an example of the application of the algorithms on the case study.

The result of the mapping discovery is shown in Table 1, where mapped levels and measures

are reported for each source. Let us assume the user is interested in analysing measures

ICU_on_Positives_Rate and Positive at Geo.Country and Time.Day levels. As for the first measure,

the algorithm returns p𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, tt𝑆1u, t𝑆3uuq. In this case, no join is needed as the measure

is directly available from multiple sources. Therefore, the degree of joinability is equal to 1.

3

Tests have been carried out on an Intel Core i5-1135G7, 8 cores @ 2.40GHz, x86_64 architecture, with 8 GB RAM

running Linux Fedora 34.

4

https://docs.microsoft.com/en-us/azure/open-datasets/dataset-covid-19-data-lake

5

https://github.com/owid/covid-19-data



As for the second measure, the function returns p 𝐼𝐶𝑈
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 , tt𝑆5u, t𝑆1, 𝑆3uuq. Combination

of sources are produced and two alternative solutions are available by combining S5 with either

S1 or S3. They are checked for joinability as follows, considering that the cardinality of S5 is

28661:

• x𝑆5, 𝑆1y: the degree of joinability between S5 and S1 is 0.78. Hence, the estimated join

cardinality is 0.78 * 28661 = 22355 with a query time equal to 3.109 s;

• x𝑆5, 𝑆3y: the degree of joinability between S5 and S3 is 0.31. Hence, the estimated join

cardinality is 0.31 * 28661 = 8884, with a query time equal to 3.283 s.

As a result, the solution (S5,S1) is preferred over (S5,S3). This is motivated by the fact that S5

and S1 include data for both years 2020 and 2021, while S3 includes data only on year 2020.

Therefore, the degree of joinability of S3 with S5 is lower than that of S1, as the former shares a

smaller subset of data with the latter.

6. Conclusion

This paper has introduced a knowledge-based approach for analytic query-driven discovery in

a Data Lake, which is characterized by the formal representation of indicators’ formulas and

efficient mechanisms for source integration and mapping discovery. Given a query ontologically

expressed as a measure of interest and relevant analysis dimensions, the framework identifies

sources capable of collectively responding by utilizing math-aware reasoning on indicator

formulas. The joinability of sources is quantitatively evaluated through the degree of joinability

index. With respect to previous work on query-driven discovery, which requires a number

evaluations among sources increasing linearly with their number, our approach reduces such a

number to only the relevant sources by performing a preliminary evaluation based on mapping

to domains in the Knowledge Graph and formula rewriting.

Future work will be devoted to define a more comprehensive metadata model for the Data Lake,

including also operational and business metadata. We also aim to extend the query answering

approach towards interesting research directions. In particular, the degree of joinability could

be adapted to evaluate the completeness of a data source with respect to the Knowledge Graph

concepts. This would enable to determine the scope of a source and paves the way for an

efficient evaluation of the overlapping or complementarity among sources, and possible more

efficient indexing approaches. Merging capabilities could also be beneficial to find unionable

sources and hence to vertically integrate data providing the same measures. Finally, dynamic

calculation of indicators can be envisaged for a variety of analytical tasks, including interactive

data exploration [22] or navigation [23]. Furthermore, we plan to individuate real case studies

for an extensive evaluation, which will help in more precisely identify potential benefits and

limitations for specific application contexts.
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