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Abstract

The current trend of automation and data exchange in manufacturing technologies is often called Industry
4.0 or the Fourth Industrial Revolution. This new era of industrialization is characterized by integrating
cyber-physical systems, the Internet of Things (IoT), artificial intelligence (AI), and big data analytics
to gain a competitive advantage. In this aspect, the data generated by IoT devices and other sensors
has a huge impact on businesses. These insights can be used to optimize production processes, reduce
downtime, and improve product quality. Furthermore, data analytics can help companies to identify
new market opportunities, develop new products, and improve customer experiences. Nevertheless,
even with the extensive accessibility of tools and technology, creating intelligent applications within the
industrial framework still poses a challenging and costly undertaking. This paper proposes a lightweight
framework that can facilitate the adoption of IoT and IIoT solutions in industry and domotics. The
framework is designed to be extensible, scalable and declarative, thus allowing for a wide range of
configurations with minimal user effort. We successfully adopted the system in real-life use cases to
prove its applicability. We consider this a significant contribution because it paves the way for more
widespread adoption of IloT-enabling technologies in the industry.
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1. Introduction

Industry 4.0 brings smart factories at the center of the technology spectrum [1, 2]. Usually, a
smart factory integrates different systems to enable machine-machine and human-machine
cooperation. A key enabling technology in this framework is the so-called Internet of Things
(IoT) or, even better, its industrial counterpart, called Industry Internet of things (IloT) [3, 4]. IoT
and IIoT share two fundamental aspects: i) on the one side, they share the common feature
of potentially generating big data, i.e., very large quantities of data that need to be collected,
processed and analyzed often in near real-time, thus imposing strict requirements in terms of
timing, frequency of operations and throughput. In fact, these architectures are considered
paradigmatic sources of Big Data [5]. Therefore, it is crucial that frameworks conceived for
these tasks are able to scale to such large volumes of data. ii) On the other side, we notice that
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in both the larger context of IoT applications and in the more specific one of industrial IoT there
is a strong need for generic tools that allow for quick integration of existing machinery.

This is true in domotics, where appliances are often not IoT-enabled and, therefore, require
tools that can bridge the gap toward the goal of integration and remote control. However, it is
especially true in industry. In fact, industrial machinery is not always equipped with sensors
and/or actuators. Even when some sensors/actuators are available, they may not exhaust the
needs of all possible IIoT scenarios. Sensors tend to be expensive and often difficult to configure
when available. Finally, industrial sensors are usually not cloud-enabled and fail to meet the
Big Data requirements discussed above.

Consequently, IToT applications tend to be complex monolithic projects with high investments
and increased design time. To facilitate the adoption of these technologies, we introduce loT
Helper [6], an easy-to-go framework that allows for quick prototyping in terms of IoT/IloT-
enabled applications. loT Helper enables monitoring and controlling embedded devices. The
framework is based on a generic architecture that can be used with many classes of sensors and
actuators. Thus, the framework can be effectively used to facilitate the development of intelligent
applications in domotics and industry. It requires minimum configuration and virtually no
application logic to remotely access the data and control devices. So, application developers
can focus on developing higher-level applications that use data collected by loT Helper to
gain insights. loT Helper is cloud-enabled by default, using the publish-and-subscribe protocol
for decoupling the production of data from its consumption and may leverage public-cloud
platforms to scale to very large volumes of data. At the same time, coherently with its agile
inspiration, it also allows for on-premise deployments that can be preferred in some scenarios
due to data protection and privacy concerns.

In the paper we present two concrete application scenarios: The first one is a typical domotics
application for controlling the fan of a fireplace extractor chimney. The second one is a complex
industrial application with respect to monitoring welding pliers of a robot arm.

2. System Architecture

This section introduces the loT Helper architecture for monitoring and controlling embedded
devices. The flexibility of the approach allows for a very straightforward integration of such
devices into cloud-computing architectures easily, but it can also be used in fog-computing or
even edge-computing solutions.

Figure 1 shows the core of our proposed architecture. It is composed of the following: i) An
Embedded System [7] that acts as the main controller of sensors and actuators deployed in the
solution; i) a Configuration Module that allows users to configure and customize the various
sensors and actuators; iii)a Generic Firmware to manage operations, also called commands on
connected devices; and iv) a Message Broker module that decouples the embedded system from
external processors in order to scale up to large volume of data.

At the core of the Embedded System is the Arduino module [8, 9, 10]. Sensors or actuators
can be plugged into its shield. Moreover, it is possible to re-engineer the shield to customize the
hardware to the specific scenario with industrial components.

To achieve high extensibility and improve usability, the Embedded System needs to be easily
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Figure 1: System architecture. Data collection.

configurable. We model sensors as generic inputs and actuators as generic outputs. The list of
the sensors and actuators defines the interface of the embedded system, which can be observed
as a black box. An external system that wants to communicate with the Embedded System needs
to know only its interface without knowing the actual implementation, which might change
over time. This approach allows for the creation of loosely coupled systems.

For example, suppose that we want to collect data from an analog temperature sensor and to
control the electrical relay of an air conditioner. The interface of the Embedded System is an
analog input temp, and a digital output ac. An external system, such as a mobile application that
wants to read the sensor and control the actuator, will send a generic message "read input temp"
or "change the output of ac to 1" without knowing any details about the physical connections on
the embedded system or the actual circuitry of the sensors. As a consequence, we can change
how the embedded system physically controls air conditioning from an electrical relay to an
infrared actuator, keeping the interface unchanged without changing the user application.

The Configuration Module describes the inputs and the outputs managed by the embedded
system. Each input is represented by the following: (i) the type, i.e., if it is analog or digital;
(ii) a unique ID used in the firmware for controlling it; (iii) a description that is useful for
documentation and human interpretation; and (iv) the pin(s) where it is connected to the
embedded system. Each output is represented in the same manner as the input; however, in
addition, since it represents an actuator, we also store information about the allowed values.

Table 1 contains a sample configuration. In this example, we have one temperature sensor
with the name "/1". In addition, we have two actuators: a digital LED O1 that can be switched
on and off (values 0 or 1); and an analog fan controller O2 that accepts values from 0 (off) to 6
(maximum speed).

The Configuration Module also allows for specifying network parameters in order to connect
the Embedded System, typically to a WiFi network. All of the configurations are stored on file
on an external SD card.

The basic operations executed on the inputs and output are as follows: (a) read an input value



Table 1
Configuration example. I1 is a digital sensor, O1 is a digital actuator and O2 is an analog actuator.

Type Typology Name Description Pin Values
Input Digital hl Temperature Sensor 1

Output Digital o1 Initialization Complete LED 10 {0,1}

Output Analog 02 Fan Speed 12 {0-6}

as the state of a sensor or actuator and (b) change the value of an output, i.e., execute an action
on an actuator. Generic Firmware executes such operations with the following commands:

« Read—read values of inputs I . . . I,. For example, read temperature and humidity values
from the respective sensors.

+ RepeatRead—read of inputs I . .. I, each n milliseconds. This is useful when we need
continuous read operations with a fixed frequency. This command accepts a parameter ¢
representing time in milliseconds. This command is used to regularly collect data from
the Embedded System and allows one to minimize the number of requests sent to the
system.

« Write—change values of output Oq to vy, . . . Oy, to v,. For example, switch the LED on
and set the speed of the fan to four.

« TimedWrite—change values of outputs after a fixed delay. For example, switch off the
fan in two hours.

When the system starts, the Generic Firmware runs some initialization operations: (1) it reads
the configuration file, (2) it configures input and output pins, (3) it starts the WiFi connection, (4)
it initializes the connection with the Message Broker and (5) it starts a timer for timed commands.

After initialization, Generic Firmware waits for commands and executes them. Each command
is received as a request message and generates a response, as discussed in Section 2.1.

The final model we discuss is the Message Broker. It handles the exchange of messages
among client apps and the Embedded System, according to the formats described in Section 2.1.

We adopt a Publish and Subscribe (P&S) communication model [11]. The Message Broker
stands at the core of this protocol by decoupling the involved parties, i.e., the message sender
(publisher) from the message receiver (subscriber). The publisher and the subscriber, therefore,
do not need to establish a direct point-to-point connection. We can either have multiple
publishers that publish messages to one subscriber or multiple subscribers that receive messages
from one publisher at the same time. The broker is responsible for message routing and
distribution.

The main benefits of the P&S approach are that the embedded systems do not know any
other external application but communicates only with the message broker. Adding new
subscribers will not need to modify the publisher’s behavior when they join the architecture. In
addition, publishers and subscribers do not need to be online and ready simultaneously. Still,
the embedded system can publish new data as soon as they are ready without waiting for the
clients. This allows achieving better performance in real-time applications. Finally, the only
component that needs to be reachable is the Message Broker. This can be easily obtained by
installing the module on a public server or by using a cloud solution.



In our architecture, we used two channels: (i) the data channel that manages read operations,
i.e., this channel is used to publish sensors data from the embedded system to the broker; and (ii)
the command channel that stores commands that come from external systems or devices to the
embedded system. In essence, from the point of view of the embedded system, it registers itself
as a subscriber to the data command channel because it needs to receive messages, process them
using Generic Firmware, and execute the corresponding operations. Generic Firmware also
registers itself as a publisher to the data channel because it sends out input values. The Message
Broker registers itself as a publisher in the command channel because it dispatches messages to
the embedded system and registers itself as a subscriber to the data channel in order to receive
data from the embedded system. The complete architecture is depicted in Figure 1.

Any other external system, such as a database, a monitoring system or an anomaly detection
system, can be easily added to the data and command channels. The external device registers
itself as a publisher for the command channel and subscriber for the data channel. In this manner,
it can send messages to the embedded system and receive data from the sensors. Of course, any
other embedded systems can be plugged into the network using the same mechanism.

2.1. Data Model

Communication between the embedded system and other devices differs depending on the type
of interaction. Data and command channels physically separate messages exchanged by the
systems. This brings significant advantages in terms of simplicity, scalability and performance.

The command channel is the one used to send requests to sensors or actions to the actuators.
Data format contains the following: (1) the command typology and (2) sensors/actuators
involved. The format of a request is the following:

/COMMAND_ NAME/LIST_OF_SENSORS_ ACTUATORS&TOKEN
where

+ COMMAND_NAME represents the requested action that we have already discussed, and the
values are read, repeatedRead, write and timedWrite;

« LIST_OF_SENSORS_ACTUATORS represents the name of sensors and actuators to which
we want to send the action. Sensors or actuators are separated by the special character
"&!" Moreover, the name used is the one used in the configuration step;

« TOKEN represents a key to match different request-response pairs. Since communication
is asynchronous, there is the need to correlate the response to the request. In real-life
scenarios, multiple clients might send requests simultaneously, and since they will wait
for the response on the same channel, they need to filter the response. For this reason, in
the request, the client generates a unique (or random) token that will be included in the
response.

Commands cannot be mixed, i.e., send read and write operations cannot be combined at the
same time. For example, we have the following commands:

#1 /READ/I1&I2&TOKEN=T001;
#2 /WRITE/01=1&02=255&TOKEN=T002 ;
#3 /TIMEDWRITE/TIMER=100&03=1&TOKEN=T018.



Command #1 represents a reading example from two sensors (/1 and /2) associated with a
unique token 7°001. For example, I1 and /2 could be, respectively, temperature and humidity
sensors. Command #2 represents a written example to two actuators (O1 and O2). For each
actuator, we specify the value to send. With respect to digital actuators, the admitted values are
zero or one (such as O1). For analog actuators, the admitted values depend on the actuators
themselves. O2 is an example of an analog actuator, and we send a value of 255. Finally,
command #3 represents a timedWrite operation on actuator O3. The operation is executed
after 100 seconds. For each of the above commands, a token identifies the corresponding request
generated from the client.

After command execution, the response is published on the data channel. The response
depends on the request type. If the command is a read type, then the response contains raw data
acquired by sensors. If the command is a write type, then the response contains information
about the received message. Figure 2 contains example of possible responses.

"d Vl:
{ aga {"data":
— {
:; 336’7 "result": "SUCCESS"
0. N
}
"token": "T002"
"token": "T001" ’
’ "ti ":"2021 T13:39:41"
"timestamp ":"20210506T13:38:00" }t'meStamp 0210506T13:39
}

Figure 2: Response to command #1 on the left, and response to command #2 on the right.

3. Use Cases

This section presents two real use cases: a small application for monitoring and managing the
fan of a fireplace extractor chimney and an industrial application used in the ICOSAF project
(PON R&I 2014-2020) to control a resistance spot welding process.

3.1. Fan Control Scenario

We deployed this app for a small factory that produces extractor chimneys. The final goal was
to turn their traditional chimneys into smart appliances by allowing remote control from a
mobile application. The deployed architecture is shown in Figure 3.

Since the product was designed to be used by final users, we had several conditions to meet:
1) The additional hardware cannot be expensive in order to avoid a significant increase in the
market price of the chimney; 2) The chimney needs to be accessible both at home, i.e., from the
local WiFi network, or from outside, i.e., from the internet; 3) Configuration and installation
steps need to be as easy as possible, without the need of an IT expert.

Since the chimney has six fan speeds, we represented them as six actuators on the Embedded
System. In addition, we connected two sensors to monitor temperature and humidity in the
proximity of the chimney. This allows us to create simple rules to change the speed of the
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Figure 4: Quality Control Scenario.

fan based on the chimney status. For example, “turn on the chimney when the temperature is
higher than 28 °C”

For the Embedded System, we used Arduino Mega 2560 because it has a good balance
between RAM size (256 KB) and price. To enable system discovery over the network, we used
the Zero Configuration Network protocol by using a Bonjour implementation for Arduino
(https://github.com/adafruit/Adafruit_ CC3000_Library).

For the Message Broker, we opted for Software-as-a-Service (SaaS) solution, PubNub. This
provides two important benefits: (a) since it is based on cloud architecture, it offers potentially
unlimited scalability, and (b) it reduces the costs of dedicated hardware and maintenance.

Finally, for the remote control, we implemented different client versions: a Java desktop
application and two mobile versions (one for Android devices and one for iOS devices).

3.2. Quality Control Scenario

We also tested the effectiveness of the approach in an Industry 4.0 scenario. The experiments
were conducted with Centro Ricerche FIAT (CRF) within the activities of the “Integrated
Collaborative System for Smart Factory (ICOSAF)” Project.

The main goal of the experiment was to support quality assessment on Resistance Spot
Welding (RSW) used to assemble car body parts. A typical car contains more than 5000 welding
spots of different materials and thicknesses. Assuring the quality of this process is crucial to
guarantee the solidity of the assembled vehicle. Several offline and online tests were proposed
to evaluate the quality of the final welded workpieces [12, 13, 14].

pmmmmm——— -~
1
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https://github.com/adafruit/Adafruit_CC3000_Library

The quality control process starts with an operator that places a welded workpiece on a
custom workbench. This bench is designed so that all the welding spots are reachable by
a collaborative robot (cobot) provided with an ultrasound probe that will read the dynamic
resistance curves of the spots. Before starting the probe, it is important to verify the correct
placement of the workpiece. Since it has a very flexible and uneven shape, it is hard to fasten with
clamps. Reading data from a misplaced location will generate dirty data that might negatively
impact the quality check algorithm.

To overcome this problem, we placed several digital position sensors in correspondence with
the contact points between the shape and the bench, as shown in Figure 4a. These sensors are
then wired connected to an Arduino Mega 2560 that runs loT Helper. The operator will check
the sensors interacting with a custom controlling software that will communicate with Arduino
using our library. Using an HMI, the operator starts the process. The controlling software will
publish a READ command for all sensors to the Message Broker. After receiving the sensor
states, if all of them are evaluated as pressed, the cobot is started. The dynamic resistance
curves of the welding spots are then read and stored in order to be processed using quality
assessment techniques. From the architectural point of view, we adopted a hybrid approach by
using edge computing to control the sensors and the cobot while dynamic resistance curves are
processed on a cloud architecture. Since the company has strict security policies, we cannot use
a Saa$ solution for the Message Broker, so we opted to deploy a local Message Broker based on
the MQTT protocol [15, 16, 17, 18]. The MQTT Broker was installed using a docker image on a
Raspberry Pi connected to the same local network of the Arduino. The complete architecture
is described in Figure 4b. These scenarios prove that our architecture can be applied within a
wide range of cases and can not only be adopted to deploy rapid and affordable data collection
in the control scenario but also in industrial and commercial cases.

4. Conclusions

We presented loT Helper, a lightweight, generic framework for IoT and IIoT applications. As
discussed, the main contribution of loT Helper consists in the generic architecture that allows
users to quickly prototype smart applications both in domotics and industrial scenarios. We
introduced two such scenarios in which the framework has been tested with success and
reported experimental data that show how, despite the high flexibility and low costs that come
with the framework, it was able to handle a large volume of data and scale up nicely to real-time
applications.

loT Helper was conceived to simplify data collection, and it fits nicely into data analytics
application scenarios. We believe that such a framework could be used also in medicine to
collect data for ML algorithms [19, 20]. An interesting direction to extend the framework
would be to integrate basic analytics features into the firmware in order to enrich and improve
the generation of indicators during usage and possibly predictions based on simple machine
learning models in order to push analytics to the edge of the architecture. This would have
clear benefits in terms, for example, of anomaly detection and robustness of the solution.
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