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Abstract

In the last decade, approaches in feature extraction for content-based multimedia retrieval exploited
neural feature representations to describe complex data types such as images. In particular, recent
approaches proposed to leverage bio-inspired learning solutions, which have the advantage to offer
better generalization from fewer training samples. However, scaling these solutions to real-world datasets
is a challenging problem. In my recent research, I proposed a possible approach to achieve such scalability,
based on translating bio-inspired learning models into matrix multiplications, which can efficiently be
executed on GPU. In this way, for the first time, I was able to validate bio-inspired methodologies on
large-scale datasets such as ImageNet.
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1. Introduction

Interpreting and retrieving multimedia data is difficult due to the high level of semantic ab-
straction with which information is represented. Deep Learning (DL) provides a valid aid
to handle this type of information. For example, in the context of image data, Deep Neural
Networks (DNNs), trained on supervised object recognition tasks, can provide highly abstract
feature representations, which are useful for indexing and Content-Based Image Retrieval (CBIR)
[1,2,3].

A pitfall of supervised training is the requirement of large amounts of labeled data, which are
typically difficult to gather, as opposed to unlabeled data. In this light, previous work focused on
semi-supervised learning approaches, by which labeled data could be enhanced by large amount
of unlabeled data, in order to learn higher quality feature extractors with fewer labels [4, 5, 6, 7].

Recently, it was shown that bio-inspired unsupervised learning solutions based on the Hebbian
principle [8, 9, 10] were able to achieve higher results than traditional counterparts such as
Variational Auto-Encoder (VAE) based pre-training [11, 6], especially in learning regimes with
very scarce label availability. Hebbian learning rules provide local mechanisms for synaptic
adaptation, which are connected to data analysis operations such as clustering or principal
component analysis [12], that enable training layers independently from the next ones, allowing
a more effective exploitation of the available training set information. However, the application
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of such approaches has remained limited to simple datasets like CIFAR-10 and CIFAR-100 [13].

As part of my PhD work, I aimed at extending the analysis of such methodologies also to
more realistic datasets such as ImageNet [14]. This is a collection of over 1.2 million real-
world images crawled from the web, categorized into 1000 distinct classes. The problem of
Hebbian approaches in such scenarios is that they do not scale well with the complexity of the
problem at hand. To overcome this limitation, I developed FastHebb [15], an efficient solution
for Hebbian feature learning and extraction that is based on re-expressing bio-inspired Hebbian
synaptic equations in terms of matrix multiplications, which can be executed very efficiently by
leveraging GPU acceleration. This solution permitted to achieve a speedup of Hebbian training
up to 50x compared to other solutions, while producing feature representations that proved
to be very effective in the context of neural feature-based CBIR, when validated on various
benchmarks, including ImageNet.

The remainder of this document gives an overview of the developments mentioned above,
organized according to the following structure: Section 2 discusses some related and background
material; Section 3 describes more in detail bio-inspired Hebbian feature learning for retrieval,
and, in particular, the FastHebb solution; Section 4 provides some empirical results to validate
the proposed approaches; Finally, Section 5 presents some concluding remarks.

2. Related Work

Multimedia content retrieval, and, in particular, CBIR, has observed great benefits from transi-
tioning from handcrafted feature representations learned ones. This is due to the semantic gap
between these types of features: learned representations can encode highly abstract concepts
[1]. Therefore, previous work has shown experimental evidence for the effectivenes of such
features in image retrieval tasks [16, 17, 18, 19]. While these methods use features obtained from
DNNs pre-trained on image classification tasks, in [20] the authors proposed an end-to-end
training procedure specifically designed for CBIR. They used a siamese architecture with a
triplet loss that pushes related images close in feature space (according to a given ground-truth),
while pushing unrelated images away. Finally, Bai et al. [2] presented a comprehensive experi-
mental comparison of various methods on modern computer vision datasets, including their
proposed Optimized AlexNet for Image Retrieval (OANIR) approach, in which they applied an
AlexNet-inspired [21] network architecture specifically modified and optimized for the retrieval
task.

One of the challenges of retrieval tasks is that datasets have typically a very large scale.
Manually providing ground-truth labels for training might become very expensive in these
cases, suggesting that semi-supervised learning techniques might be exploited in these cases
(5, 4, 6, 7]. Recently, bio-inspired Hebbian learning approaches have shown great promises for
unsupervised [22, 23, 24, 25, 26, 12] semi-supervised learning [8, 9, 10], but their capability to
scale to large datasets has remained limited.

In this contribution, I describe a recent solution, named FastHebb, that I developed as part of
my PhD, which enabled scaling Hebbian-based solutions for image recognition and retrieval
also to real-world and large scale datasets such as ImageNet[14].
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Figure 1: Weight update aggregation mechanism in convolutional layers. Updates are aggregated by
averaging along horizontal and vertical dimensions.

3. Scalable Neural Features from Bio-Inpired Learning: FastHebb

I have explored different types of bio-inspired learning rules, but in the following I will focus
on two types in particular: Hebbian Principal Component Analysis (HPCA) and Soft-Winner-
Takes-All (STWA). I will not delve deep into the theoretical details of these approaches, but the
interested reader can refer to [27, 26, 12].

These learning rules follow a local learning scheme, by which a neuron updates its weights
based on information that is available at the neuron site, according to biological constraints.
This is opposed to traditional backprop learning where an end-to-end error delivery mechanism
takes place. However, when dealing with convolutional network layers, neurons at different
horizontal/vertical offsets need to maintain shared weights, so they must undergo the same
weight updates. This is achieved by aggregating weight updates at different offsets through a
(weighted) averaging mechanism (Fig. 1).

This subdivision into phases of update computation and aggregation results in slow processing
when dealing with large data streams. In order to overcome this limitation, the ideas of FastHebb
are twofold: first, update computation and aggregation phases are merged in a unique phase;
second, Hebbian update computations are translated into matrix multiplications. The resulting
computation can leverage GPU processing much more efficiently, enabling Hebbian-based
approaches at a much larger scale. The details can be found in [15].

4. Experiments and Results

This Section presents an experimental validation of the FastHebb method in the context of
CBIR. In order to show the scalability of the FastHebb approach to complex scenarios, the
ImageNet ILSVRC2021 [14] benchmark was used for evaluation. To evaluate the approaches
in conditions of label scarcity, I considered various sample efficiency regimes, i.e. scenarios in
which we assume that only a given percentage of the available training samples is labeled. We
adopted a semi-supervised training protocol where a network model (shown in Fig. 2) was
pre-trained using Hebbian methods on all the available training samples, and then fine-tuned
using supervised backprop training on the labeled samples only. As a baseline for comparison,
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Figure 2: Network architecture used for the FastHebb experiments on the ImageNet benchmark.

Table 1

Analysis of algorithm performance for unsupervised pre-training on ImageNet, comparing VAE, Hebbian

PCA (HPCA), Hebbian PCA with FastHebb (HPCA-FH), soft-WTA (SWTA), and soft-WTA with FastHebb
(SWTA-FH) methods.

Dataset | Method | Epoch Duration Num. Epochs Total Duration
VAE 2h 59m 19s 16 47h 49m 4s
SWTA 105h 13m 24s 3 315h 40m 12s
ImageNet | SWTA-FH 3h 38m 6s 3 10h 54m 18s
HPCA 155h 41m 39s 3 467h 4m 57s
HPCA-FH 3h 39m 18s 3 10h 57m 54s

we considered Variational Auto-Encoder (VAE) based semi-supervised training [6].

In order to assess the improvements in scaling properties of FastHebb, compared to traditional
Hebbian learning, we measured duration and total number of training epochs required by each
approach, for the unsupervised pre-training phase (while the successive supervised fine tuning
phase is comparable across methods). The number of epochs is counted as the epoch at which
weights stop changing. The results, shown in Tab. 1, demonstrate significant improvements (up
to 50x) due to the FastHebb solution. Moreover, when the number of epochs is also considered,
Hebbian pre-training results to be faster than the backprop-based VAE counterpart.

Trained networks were then used to extract feature representations from the last hidden layer
(before the final classifier), to be used for retrieval. The neural feature based retrieval process
works as follows: given a query image, taken from the test set, its feature representation is
computed by feeding it to the network model. The feature representation of dataset images is
also pre-computed in the same way, and stored for indexing and retrieval purposes. Given the
query feature representation, we search for the closest dataset elements in feature space, and
rank them according to Euclidean distance. Finally, we evaluate the mean Average Precision
(mAP) over all the queries, where a retrieved image is considered a positive if its label, according
to the ground-truth, corresponds to the query label.

Tab. 2 shows the retrieval results, in terms of mAP, achieved with the different methods, in
various regimes of sample efficiency. It should be noticed that the results without FastHebb are
not reported in this Table, because they coincide with the FastHebb results. Indeed, FastHebb
is a reformulation of weight updates that improves the computational efficiency, but it does
not change the synaptic dynamics itself. From the results we can see that Hebbian approaches
exhibit better results than the backprop-based VAE method, especially in regimes with fewer



Table 2
Retrieval results on ImageNet, comparing VAE-based and FastHebb-based (HPCA-FH and SWTA-FH)
semi-supervised methods.

Regime | Method | mAP
VAE 0.95
1% SWTA-FH 1.94
HPCA-FH | 4.88
VAE 1.39
2% SWTA-FH 2.54
HPCA-FH | 5.72
VAE 2.02
3% SWTA-FH 3.21
HPCA-FH | 6.56
VAE 3.83
4% SWTA-FH | 3.77
HPCA-FH | 7.19
VAE 5.49
5% SWTA-FH | 4.19
HPCA-FH | 7.75
VAE 13.27
10% SWTA-FH | 9.14
HPCA-FH | 10.56
VAE 24.50
25% SWTA-FH | 20.75
HPCA-FH | 21.24
VAE 44.21
100% SWTA-FH | 39.60
HPCA-FH | 43.81

labels (below 10%). The latter is able to improve only when a larger number of labels is available
for the fine-tuning phase.

5. Conclusions

The problem of sample efficient training for DNNs is of strong practical interest, due to the
difficulty to gather labeled training samples. In this contribution, I discussed some semi-
supervised training approaches based on bio-inspired Hebbian learning methods, which are
promising in these scenarios. Scaling these approaches to real-world CBIR settings, which are
well captured by benchmarks such as ImageNet, is a significant challenge, that I proposed to
address through the FastHebb solution. Results showed a significant performance increase
during training thanks to FastHebb. Moreover, evaluation of Hebbian neural features in retrieval
settings showed promising results, especially in scenarios of label scarcity.

As possible future work directions, I suggest to explore further Hebbian rules which can be
used for feature extraction and unsupervised pre-training, for example derived from Independent
Component Analysis (ICA) [28]. Finally, in the context of semi-supervised learning, Hebbian



approaches can also be combined with pseudo-labeling and consistency-based methods [29, 30].
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