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Abstract
The extraction of metadata from dynamic data sources represents an extremely challenging task of the
data profiling research area, since it requires to handle the update of the inferred metadata without
processing the whole dataset from scratch upon modifications. This discussion paper presents IndiBits,
an approach for discovering relaxed functional dependencies (rfds for short), which represent data
relationships relying on approximate matching paradigms. It exploits a binary representation of data
similarities, a new validation method, and specific search methods, to dynamically update the set of
rfds, based on previously holding rfds and the type of modifications performed over data. Experimental
results demonstrate the effectiveness of IndiBits on real-world datasets, even in comparison with fd
and rfd discovery algorithms in both static and dynamic scenarios.
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1. Introduction

Data profiling refers to the process aiming to analyze data in order to extract useful metadata
from them [1]. Among these metadata, Functional Dependencies (fds) received considerable
interest from the research community, mainly due to their application in advanced database
operations, such as data cleansing, query optimization, and so forth [2, 3]. In the last decade, the
definition of fd underwent several extensions, leading to the definition of Relaxed Functional
Dependency (rfd) [4, 5], to tackle more complex problems. In particular, extensions have
concerned the use of approximate comparisons between attribute values by means of similarity
constraints (rfds relaxing on the attribute comparison - rfd𝑐s), or of error measures to tolerate
possible violations for a limited number of tuples (rfds relaxing on the extent - rfd𝑒s).

As for fds, rfds have been used in several application contexts, especially those in which
data are collected from heterogeneous sources [6, 7, 8]. To provide these approaches with the
required set of rfds, discovery algorithms have been proposed to automatically infer them from
data, combining the task of searching for rfds holding on a given dataset, with the identification
of the “relaxed” constraints reflecting the meaning of the data [9, 10]. However, due to the
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dynamic nature of many real-world datasets, it is necessary to adapt discovery processes in
order to guarantee the update of the discovered metadata whenever the dataset changes [11].
Consequently, “incremental” discovery processes are demanded in many existing application
domains for rfds, like data imputation, when the underlying data continuously evolve [12].

Incremental scenarios make the rfd discovery problem more complex and challenging,
especially for the representation and management of data and results. In fact, the number of fds
and rfds holding on a given dataset can be exponential in the number of attributes, requiring
the exploration of an extremely large and complex search space [1]. Re-executing the discovery
process from scratch upon each change in the dataset is computationally burdensome [11]. Thus,
solutions for dynamic scenarios should allow to efficiently (𝑖) (re-)validate previously holding
rfds, (𝑖𝑖) discover new possibly holding rfds, and (𝑖𝑖𝑖) guarantee properties like correctness
and minimality for discovered rfds. In this discussion paper, we present IndiBits, the first
incremental discovery algorithm for rfds relaxing on the attribute comparison (i.e., rfd𝑐s). It
optimizes the rfd𝑐 discovery process through a binary representation that maps all the distances
between the attribute values in a compact way, facilitating their modifications upon data updates
through efficient bitwise operations. Furthermore, IndiBits adapts the refinement property
used for validating rfd𝑐s to the dynamic context. Finally, a proper search strategy has been
introduced for efficiently browsing the search space according to the specific data updates.

The paper is organized as follows. Section 2 presents the theoretical foundations of considered
profiling metadata. Section 3 provides an overview of IndiBits, by also describing details of the
validation method underlying it, and the discovery strategy to handle insertion and deletion data
modifications. Section 4 reports experimental results to analyze the effectiveness of IndiBits on
real-world datasets, also when compared with other fd and rfd𝑐 discovery algorithms. Finally,
summary and future directions are included in Section 5.

2. Preliminaries

In this section, we formally introduce preliminary concepts related to rfd𝑐.

rfd𝑐. Given a relational database schema ℛ, and 𝑅 = {𝐴1, . . . , 𝐴𝑚} one of its relation
schemas, an rfd𝑐 𝜙 on ℛ is denote by

𝑋Φ1 → 𝑌Φ2 (1)

where
• 𝑋,𝑌 ⊆ 𝑎𝑡𝑡𝑟(𝑅);
• Φ1 contains (for each attribute 𝑋𝑖 ∈ 𝑋) a constraint 𝜑𝑖[𝑋𝑖] that can be used to determine

whether pair of tuples with values in 𝑑𝑜𝑚(𝑋𝑖) are “similar” enough (likewise for each
attribute 𝑌𝑗 ∈ 𝑌 with 𝜑𝑗 [𝑌𝑗 ] ∈ Φ2). More specifically, each 𝜑𝑖[𝑋𝑖] (𝜑𝑗 [𝑌𝑗 ] resp.) requires
the specification of a similarity/distance function defined on the domain of 𝑋𝑖 (𝑌𝑗 , resp.),
an operator, and a threshold setting the boundaries for the satisfaction of the constraint.

Given a relation instance 𝑟 of 𝑅, 𝑟 satisfies the rfd𝑐 𝜙, denoted by 𝑟 |= 𝜙, if and only if: ∀
(𝑡1, 𝑡2) ∈ 𝑟, if Φ1 indicates true, then also Φ2 indicates also true. Without loss of generality, in
what follows we consider only candidate rfd𝑐s with a single attribute on the RHS: 𝑋Φ1 → 𝐴𝜑2 .
Moreover, in the following, we consider a more compact notation for the constraints.



One of the most important characteristics of an rfd𝑐 is the minimality guaranteeing that the
rfd𝑐 no longer holds after either (𝑖) increasing one or more thresholds on the LHS constraints,
(𝑖𝑖) removing an LHS attribute, or (𝑖𝑖𝑖) decreasing the RHS threshold. Notice that, the minimality
property can be restricted to case (𝑖𝑖) when fixed constraints for each attribute are considered.

The discovery of rfd𝑐s is the problem of finding a set of all minimal rfd𝑐s holding on a
relation instance 𝑟. One of the possible strategies for discovering rfd𝑐s (namely column-based)
models the search space as a lattice, which permits to consider candidate rfd𝑐s at different levels
in terms of edges. By following the lattice-based search space representation, a column-based
discovery strategy first generates attribute sets 𝑋 at level 𝑙, and then formulates all the possible
rfd𝑐s 𝑋Φ1 → 𝐴𝜑2 , with 𝐴 /∈ 𝑋 , to be successively validated. Then, considering the rfd𝑐s
validated at level 𝑙, several pruning strategies can be applied in order to avoid the validation of
not minimal candidate rfd𝑐s. Thus, whenever the constraints are specified for each attribute of
the relation, the discovery of rfd𝑐s reduces to verify if whenever tuples satisfy the constraints
on the LHS attributes, then they also satisfy the one on the RHS attribute. This requires tackling
a problem that, in the worst case, is exponential in the number of columns and quadratic in the
number of rows. Nevertheless, differently from the equality, the similarity does not satisfy the
transitivity property, preventing the possibility to adopt the validation methods of fds. This
leads to the necessity of conceiving new validation methods for evaluating candidate rfd𝑐s.

3. IndiBits

IndiBits is an incremental discovery algorithm for rfd𝑐s relying on a column-based search
strategy capable of discovering rfd𝑐s from a single relation. It considers an input threshold for
each attribute to form distance constraints that will be then used for validating candidate rfd𝑐s.
IndiBits monitors changes that occurred in a relation instance in terms of insertion and

deletion operations and it incrementally updates the set of valid rfd𝑐s. Notice that update
operations can be expressed as a combination of deletion and insertion operations. In what
follows, we will use the term batch to refer to groups of change operations.

An overview of the discovery process underlying IndiBits is shown in Fig. 1. The latter
describes how IndiBits iteratively performs the discovery of rfd𝑐s as data is updated over time.

To efficiently handle the representation of the similarity among tuples with respect to the
input thresholds Φ, we devised an ad-hoc data structure mapping the satisfiability degree
between attribute values, limited by the input thresholds, through a vector of integers, named
similarity vector. In particular, similarity vectors are generated for each attribute, according to
a theoretical concept called Binary Attribute Satisfiability (BAS) Distance Matrix. For a given
attribute 𝐵, a BAS Distance Matrix 𝑀 𝜏

𝐵 represents a triangular matrix whose row and column
indices correspond to the tuples of a relation instance at a given time 𝜏 . Each matrix entry will
contain either the value 0 or 1 depending on whether the pair of tuples agree with the threshold
associated with 𝐵. A BAS Distance Vector 𝑀 𝜏

𝐵[𝑡𝑘] describes the tuples similar to 𝑡𝑘 on attribute
𝐵. As an example, in Figure 1, 𝑀 𝜏

acuity[𝑡2] corresponds to the bit vector 011, indicating that
at time 𝜏 = 0, the tuple 𝑡2 is similar, with respect to the attribute acuity, only with tuple 𝑡3 as
well as itself. Finally, the similarity vector denoted as 𝑆𝜏

𝐵 , is a vector whose length is to the
dataset size. Each element of the vector is characterized by the decimal conversion of the bit
vector for a given tuple, where the more significant bit is the far-most right. As an example,
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Figure 1: Overview of the process underlying IndiBits.

each element of similarity vector 𝑆𝜏
𝑎𝑐𝑢𝑖𝑡𝑦 is the decimal conversion of the corresponding BAS

Distance Vector produced for a certain tuple at time 𝜏 , i.e., 𝑑𝑒𝑐(𝑀 𝜏
acuity[𝑡1]) = 𝑑𝑒𝑐(001) = 1,

𝑑𝑒𝑐(𝑀 𝜏
acuity[𝑡2]) = 𝑑𝑒𝑐(011) = 6, and 𝑑𝑒𝑐(𝑀 𝜏

acuity[𝑡3]) = 𝑑𝑒𝑐(011) = 6. Thus, the similarity
vector 𝑆𝜏

𝑎𝑐𝑢𝑖𝑡𝑦 is 166. Further updates on the dataset over time are transposed to similarity
vectors by means of bitwise operations, optimizing their management in an efficient way. A
more detailed and formal description of similarity vectors is provided in the full article [13].

According to the similarity representation underlying IndiBits, we can now describe the
overall process of IndiBits (see Figure 1). In particular, IndiBits reads the first batch of tuples
at time 𝜏 = 0 and creates the binary representation of the data according to the thresholds
in Φ defined as input. Then, it performs the discovery process by considering only insertion
operations and extracts the set of holding rfd𝑐s. For each time 𝜏 > 0, IndiBits first processes
all the deletions defined in a batch (represented in the image by the tuple crossed out in red), and
then the insertion operations (green highlighted tuples), enabling the correct handling of the
update operations on tuples. Consequently, IndiBits browses the search space according to the
types of operations, and starting from rfd𝑐s holding at time 𝜏 , it properly generates candidate
rfd𝑐s by means of specialization/generalization strategies (see Section 3.2). In particular, for
each rfd𝑐 𝜙 holding at time 𝜏 as a new candidate rfd𝑐 at time 𝜏 +1, it will be surely valid if the
last operation was a deletion, but it could no longer be minimal; whereas it might not hold if the
last operation was an insertion. In case the operation is a deletion, 𝜙: 𝑋Φ′

1
→ 𝐴𝜑2 not minimal,

then IndiBits must generate and validate new candidate rfd𝑐s 𝜙′ that are generalization of 𝜙,
that is, 𝜙′ : 𝑋 ′

Φ′
1
→ 𝐴𝜑2 , with 𝑋 ′ ⊂ 𝑋 , and Φ′

1 is a conjunction of the similarity constraints
defined on attributes in 𝑋 ′. Accordingly, in case the last operation is an insertion, then it
must generate and validate new candidate rfd𝑐s 𝜙′′ that are specialization of 𝜙, that is, 𝜙′′ :
𝑋 ′′

Φ′′
1
→ 𝐴𝜑2 , with 𝑋 ⊂ 𝑋 ′′ and Φ′′

1 is a conjunction of the similarity constraints defined on
the attributes 𝑋 ′′. Furthermore, IndiBits efficiently validates each candidate rfd𝑐 following
the methodology described in Section 3.1.



3.1. rfd𝑐 Validation

Starting from the representation provided by the similarity vectors 𝑆𝜏 , it is possible to efficiently
verify if a candidate rfd𝑐 is satisfied on a given relation instance 𝑟 at time 𝜏 by exploiting the
refinement property between patterns of similarity values introduced in [14].

More formally, given an attribute set 𝑋 , it is possible to consider 𝑆𝜏
𝑋 [𝑡𝑘] computed as⋀︀

𝐵∈𝑋 𝑆𝜏
𝐵[𝑡𝑘], where each 𝑆𝜏

𝐵[𝑡𝑘] is an element of 𝑆𝜏
𝐵 and whose binary representation maps

all tuples that are similar to 𝑡𝑘 on the values of each attribute in 𝑋 , according to the similarity
constraints defined by Φ. Then, according to the refinement property, if we consider a set
𝑋∪𝐴 ⊃ 𝑋 , it is possible to say that 𝑆𝜏

𝑋∪𝐴 always refines 𝑆𝜏
𝑋 , since each tuple pair is similar

on 𝑋∪𝐴 if and only if it is also similar on 𝑋 . Thus, it is possible to count the number of tuples
that are similar to each tuple 𝑡𝑘, by counting the number of bits having the value 1 in 𝑆𝜏

𝑋 [𝑘],

according to the following formula: ||𝑆𝜏
𝑋 || =

∑︀
𝑡𝑘∈𝑆𝜏 (|𝑆𝜏

𝑋 [𝑡𝑘]|−1)

2 where |𝑆𝜏
𝑋 [𝑡𝑘]| is the number

of bits equal to 1 in the binary representation of 𝑆𝜏
𝑋 [𝑡𝑘], and represents the number of similar

tuples in 𝑆𝜏
𝑋 . The value 1 is subtracted to exclude comparing the tuple with itself, whereas the

division by 2 allows to consider each tuple pair only once.

Example. Let us suppose we have the following similarity vectors: 𝑆𝜏
pain = [65, 350,

350, 350, 350, 928, 95, 672, 830, 928], 𝑆𝜏
chiefcomplaint = [1, 130, 100, 280, 280, 612, 612, 130, 280,

608], and 𝑆𝜏
o2sat = [1021, 2, 1021, 1021, 1021, 1021, 1021, 1021, 1021, 1021] then, the follow-

ing rfd𝑐 is valid: pain(≤2), chiefcomplaint(≤8) −→ o2sat(≤1) since it is possible to compute the
vectors 𝑆𝜏

𝑋 = 𝑆𝜏
{pain, chiefcomplaint} = [1, 2, 68, 280, 280, 544, 68, 128, 280, 544] and 𝑆𝜏

𝑋∪𝐴 =
𝑆𝜏

{pain, chiefcomplaint, o2sat} = [1, 2, 68, 280, 280, 544, 68, 128, 280, 544], yielding the same number of
similar pairs: ||𝑆𝜏

𝑋 || = 0+0+1+2+2+1+1+0+2+1
2 = ||𝑆𝜏

𝑋∪𝐴||.
3.2. Handling Insertions and Deletions

During the discovery process, the insertion operations can or cannot confirm the validity of
rfd𝑐s already validated at time 𝜏 . This strategy enables IndiBits to avoid re-executing the
discovery process from scratch, by keeping track of the previously holding rfd𝑐s. Notice that
during the first execution of IndiBits, the most general rfd𝑐s in the search space are considered
as starting points. Then, IndiBits performs the validation from the most general to the most
specialized rfd𝑐s. More specifically, IndiBits validates each candidate rfd𝑐 and prunes the
search space according to the strategy proposed in [2], enabling IndiBits to greatly reduce the
number of candidate rfd𝑐s. Instead, if there exists at least one candidate rfd𝑐 that is no longer
valid at time 𝜏 + 1, IndiBits specializes it and generates new candidate rfd𝑐s. To ensure the
minimality of the resulting rfd𝑐s at time 𝜏 + 1, before analyzing each newly specialized rfd𝑐,
IndiBits checks if there exists at least one valid rfd𝑐 at time 𝜏 + 1 that generalizes it. If so,
the specialization is a valid and not minimal rfd𝑐, since an rfd𝑐 that generalizes it has already
been validated at time 𝜏 + 1.

On the other hand, the deletion of one or more tuples always confirms, at time 𝜏 + 1, the
validity of the previously holding rfd𝑐s, but it could lead to the validation of some rfd𝑐s that
were not valid at time 𝜏 . In the last case, it is necessary to check the minimality of previously
valid rfd𝑐s with respect to those newly validated at time 𝜏 + 1. In particular, IndiBits starts by
considering the minimal rfd𝑐s holding on a relation instance 𝑟 at time 𝜏 and for each of them
considers their direct generalizations as new candidate rfd𝑐s at time 𝜏 + 1. If none of these
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Figure 2: Performances of IndiBits over real-world datasets (a), speedup comparison with DiM𝜀 (b).

are valid, IndiBits confirms the validity of the rfd𝑐 from which the generalizations have been
produced. On the contrary, for each candidate rfd𝑐 validated at time 𝜏 + 1, IndiBits removes
all the rfd𝑐s that are specializations of it, and it continues to generalize them as long as possible.

4. Experimental Evaluation

We present experimental results concerning the performances of IndiBits and compare them
with those of DiM𝜀 [14], an rfd discovery algorithm for static scenarios, and DynFD [15], an
fd discovery algorithm for dynamic scenarios.

We implemented IndiBits in Java 17, using the Levenshtein distance for comparing textual
attributes, the absolute difference for numerical attributes, and the alphabetic distance for indi-
vidual characters. We evaluated IndiBits on different real-world datasets whose characteristics
are publicly available on the official repository1. For each dataset, we used the same threshold 𝜀
for all of their attributes, i.e., 0, 1, 2, 4, and 8, and we considered 4 batch size (e.g., the number of
changes, in terms of insertion and/or deletion operations, to be considered at each time instant),
i.e., 1, 10, 100, 1000. Finally, we considered a time limit (TL) of 3 hours.

4.1. Performances on real-world datasets

Our first experiment measured the execution times and the memory consumption of IndiBits
on the top-6 datasets in terms of attributes (see Fig. 2 (a)). Since these datasets have not been
designed for incremental discovery, we simulated an incremental scenario in which tuples are
first inserted and then deleted. In particular, for each dataset, we first performed the insertion
operations of all tuples, and then we randomly deleted 90% of them.

We report the average runtimes and memory peaks in Fig. 2 (a), by grouping the results
according to batch sizes and distance constraints. In particular, IndiBits almost always required
less than 104 MB of memory, except for Movement-Libras, Uniprot, and Tuandromd, in which
the resulting memory peaks never exceed 105 MB. In general, the low memory consumption of
IndiBits is mainly due to the lightweight representation of data and distances that makes the

1https://github.com/DastLab/TestDataset
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Figure 3: Runtimes evaluation with respect to DynFD on insertions (a), and deletions (b) operations.

memory requirements not severely affected by the dimensionality of datasets and the number
of holding rfd𝑐s.

In general, we can notice that runtimes are quite stable or slightly grow when the batch
size increases. Moreover, the average times are over a few seconds, except for particularly
borderline configurations, where IndiBits still requires no more than 1 sec. Only on last three
datasets IndiBits exceeded the TL in some configurations. Although such datasets represent the
three biggest datasets in terms of attributes, for the Movement-Libras and Tuandromd datasets,
IndiBits reached a time limit only with threshold 0 in the last batch size, but the average
runtimes for other configurations do not exceed 103 sec. Instead, concerning the Uniprot
dataset, IndiBits completed the discovery process with the two highest attribute comparison
thresholds, considering batch sizes equal to 1, 10, and 100.

Summarizing, for the biggest considered datasets (i.e., Movement-Libras, Uniprot, and Tuan-
dromd) IndiBits achieved good time performances with respect to both the number of tuples
and attributes. Overall, we cannot identify a strict correlation between the dimensionality of
the datasets and both the number of rfd𝑐s and the IndiBits runtimes.

4.2. Comparative evaluation

We also compared the performances of IndiBits to those of DiM𝜀 [14] and DynFD [15].
In this experiment, we will focus on the discovery of rfd𝑐s by analyzing in which conditions

IndiBits under- or out-performs DiM𝜀. To this end, we gradually scale up the size of the
dataset according to a defined batch size, each time executing DiM𝜀 on an increased dataset.
Then, we plot the average runtimes of IndiBits against those of DiM𝜀, by considering the
speedup measure. A speed-up of 10 indicates that IndiBits has been 10 times faster than DiM𝜀,
1 indicates that they obtained the same runtime, while a value lower than 1 indicates that DiM𝜀
is faster. Fig. 2 (b) shows the results of the comparative evaluation. We can notice that IndiBits
is almost always faster than DiM𝜀. Conversely, only a few times DiM𝜀 outperforms IndiBits,
i.e., on the Lymphography dataset with threshold 0 and batch sizes set to 100 and 1000, and
on the Sonar dataset with threshold 0 and batch sizes set to 100 and 1000, and with thresholds
4 and 8 and batch size 1000. As mentioned above, this can be due to the fact that IndiBits
performs worse when there are many invalidations in each batch. Moreover, for the Sonar
dataset, a static approach like DiM𝜀 performs better because its discovery strategy exploits
rfd𝑐s discovered on lowest lattice levels to reduce the execution of validation processes. In



general, we notice that DiM𝜀 suffers when executing datasets with a high number of attributes
since it reaches the TL in many configurations. Instead, IndiBits reaches the TL only in a few
cases of the three datasets with the highest number of columns.

Concerning the comparative evaluation between IndiBits and DynFD, we set up insertion
and deletion operations by considering the experimental configuration introduced in Section
4.1, but limiting the analysis to only the similarity threshold 0, i.e., the fds. This is due to the
fact that DynFD focuses only on holding fds upon the insertion and deletion of batches of
tuples, but not on rfd𝑐s. In Fig. 3 we show the execution times achieved considering insertions
only (Fig. 3 (a)) and deletion only (Fig. 3 (b)). Notice that, although IndiBits is not optimized
for the discovery of fds, it is able to achieve competitive runtimes with respect to one of the
most efficient incremental fd discovery algorithms. In fact, the results show that in many cases
IndiBits outperforms or achieves average execution times similar to DynFD. In particular,
concerning the insertion operations, we notice that IndiBits typically outperforms DynFD with
smaller batches of tuples, i.e., 1, 10, and 100, while for batches with sizes 1000, although it seems
that DynFD outperforms IndiBits for Glass and Australian datasets, the average execution times
are of the same order of magnitude. The gap in execution times is greater for Lymphography,
which represented an extremely challenging dataset for IndiBits when the similarity threshold
is set to 0 due to the large amount of fds with a high number of attributes on the LHS.

Fig. 3 (a) highlights that IndiBits is capable of completing the discovery process without
reaching the TL also when DynFD exceeded it, as in the case of Sonar, Movement-Libras, and
Tuandromd. On the other hand, Fig. 3 (b) highlights that the task of updating fds after deletion
operations is more challenging for both algorithms, which on average required more time for
completing the discovery process, as can be seen by the gap between the algorithms in terms of
average execution times being significantly reduced. Finally, both algorithms reached the TL
when processing datasets with a high number of columns, except for the Tuandromd, dataset
for which IndiBits was able to complete the discovery process for 1, 10, and 100 batch sizes.

5. Conclusion

In this paper, we presented IndiBits, an rfd𝑐s discovery algorithm for incremental scenarios.
To the best of our knowledge, IndiBits represents the first incremental discovery algorithm
for rfd𝑐s. It relies on a novel method for representing similarities between tuple pairs, which
permits to efficiently update rfd𝑐s holding at a given time instant, starting from those holding at
a previous time instant. Experimental results show that IndiBits considerably reduces execution
times for discovering rfd𝑐s with respect to a static discovery algorithm and turns out to be
competitive also for the discovery of fds in dynamic scenarios.

In the future, we would like to extend IndiBits in order to enable the discovery of rfd𝑐s
also from data streams. Another interesting issue concerns the possibility of updating rfd𝑐s
together with thresholds forming similarity constraints. Finally, we would like to investigate
the meaningfulness of the discovered rfd𝑐s in different application domains.
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