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Abstract

A major challenge in active learning is to select the most informative instances to be labeled by an

annotation oracle at each step. In this respect, one effective paradigm is to learn the active learning

strategy that best suits the performance of a meta-learning model. This strategy first measures the

quality of the instances selected in the previous steps and then trains a machine learning model that is

used to predict the quality of instances to be labeled in the current step. In this paper, we discuss a new

approach of learning-to-active-learn that selects the instances to be labeled as the ones producing the

maximum change to the current classifier. The key idea is to select such instances according to their

importance reflecting variations in the learning gradient of the classification model. Our approach can

be instantiated with any classifier trainable via gradient descent optimization, and here we provide a

formulation based on a deep neural network model, which has not deeply been investigated in existing

learning-to-active-learn approaches. The experimental validation of our approach has shown promising

results in scenarios characterized by relatively few initially labeled instances.
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1. Introduction

Supervised machine learning methods typically require a large number of training data instances.

However, manually labeling training instances is a costly and time consuming process, especially

for specialized domains, where a deep expertise is required for correctly labeling data instances.

Active Learning aims at selecting the data instances to be labeled by an expert, or annotation

oracle, in order to train a machine learning model as quickly and effectively as possible. Several

strategies have been proposed in the literature [1], which select the instances to be provided

to the oracle for annotation using different heuristics; however, none of such heuristics has

shown to outperform the others in every scenario of interest. To overcome major limitations,

meta-active learning approaches have been proposed to automatically detect the best strategy

of selection of the instances to be annotated [2, 3, 4].

In this paper, we discuss the main contributions from our earlier study [5], where we intro-

duced a new meta-active learning method whose instance selection step, modeled as a regression

problem, exploits the training gradient of a deep neural network model, and in general of any
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machine learning model whose training is based on a gradient descent method. Experiments

conducted on CIFAR-10 image data, and including a comparison with some baselines, have

shown promising results by the proposed approach in terms of percentage increase in accuracy.

2. Related Work

Active learning methods typically fall into one of the following categories: Uncertainty Sampling,

Query-By-Committee, Expected Model Change, Expected Error Reduction, Variance Reduction,

and Density-Weighted [1].

Uncertainty sampling aims to improve the quality of the labeled dataset by selecting as

instances to be labeled those such that the trained classifier is most uncertain in assigning a

class label [6, 7]. Among this class of methods, the most popular one is probably least confidence

sampling (LCS) [8] which uses as uncertainty measure for an instance the difference between

100% confidence and the most confidently predicted label for the instance. Other approaches use

different multi-class uncertainty sampling variants, such as margin sampling [9] or entropy [8].

The query-by-committee approach [10] maintains a set of prediction models, or committee,

that are used to predict the label of an instance. The instance over which there is the maximum

disagreement on the labels predicted by the models in the committee is regarded as the most

informative and hence selected for labeling. Several specializations of the approach have been

proposed using different models for the committee members [11, 12, 13, 14].

The expected model change framework [15] aims to define a strategy for selecting the instance

that would yield the greatest change to the current model if we knew its label. The strategy

computes the expected gradient length and uses it as a measure of the expected change to

the model that is associated to the labeling of an instance. The key idea is to prefer instances

that are likely to have the greatest influence in changing the model. Theoretical aspects of

this framework have been well studied for support vector machines and linear regression [16],

although it can be computationally expensive for large feature space and set of labelings.

Expected error reduction aims to select the instance 𝑥 that yields the maximum reduction of

the model generalization error once it is trained using the label of 𝑥 too. However, since the

labels of some instances are not known, the model is usually approximated using the expectation

over all possible labels under the current model. This framework has been successfully used

with a variety of models such as Naıve Bayes [17], logistic regression [18], and SVM [19].

Variance reduction methods reduce the generalization error indirectly by minimizing output

variance. The early method in [20] was proposed for active learning based on the reduction

of the estimated distribution of the model’s output for regression. Applications of variance

reduction include multi-class image classification [21].

The key idea of density-weighted methods is that informative instances should not only be

the uncertain ones, but also those representative of the underlying distribution [11, 22, 23, 8, 24].

Hence, the instances are selected according to both a base selection measure (e.g., LCS) and a

density based measure (e.g., the average similarity of an instance w.r.t. the other instances).

Meta-learning algorithms have recently been proposed for the active learning tasks. In [2, 3],

several active learning heuristics are combined using a bandit algorithm exploiting a maximum

entropy criterion that estimates classification performance without knowing the actual labels.



Rather than combining existing heuristics, the meta-learning approach to active learning in [25]

models the active learning task as a regression problem: given a trained classifier and its output

for a specific unlabeled instance, it predicts the reduction in generalization error that can be

expected by providing the actual label of the instance. Note that the regressor in [25] is required

to be trained on a specific set of instance-driven features, such as the variance of the classifier

output for the instance or the predicted probability distribution over possible labels for the

instance. Our approach does not have the same constraint, since we utilize the raw features

of the instances, yet we can in principle exploit instance-driven features. More importantly,

for each active learning epoch, [25] requires to perform several training steps of the classifier

while we perform just a single training step.

3. Proposed Approach

A classification problem consists in associating every instance taken from a predefined domain

𝒟 with a label selected from a fixed domain of labels ℒ. We assume the presence of a set of

instance-label pairs 𝐿𝐼 ⊆ 𝒟 × ℒ and a set of unlabeled instances 𝑈𝐼 ⊆ 𝒟, where for each pair

⟨𝑥, 𝑦⟩ ∈𝐿𝐼 , 𝑥 is an instance in 𝒟 and 𝑦 is the label associated with 𝑥.

Algorithm 1 shows the general schema of the proposed approach, named Learning to Active
Learn by Instance Importance based Gradient Variation (LAL-IGradV). LAL-IGradV receives

in input a (small) set of labeled instances 𝐿𝐼 , a set of unlabeled instances 𝑈𝐼 , a deep neural

network model DNN, a regressor model 𝑅, the number 𝑒𝑝𝑐ℎ of active learning epochs, and the

number 𝑘 of unlabeled instances to select for oracle labeling at each active learning epoch.

Our proposed approach is comprised of two phases: initialization and an iterative phase. In

the initialization phase, the algorithm first trains DNN using 𝐿𝐼 (line 1), randomly selects 𝑘
unlabeled instances from 𝑈𝐼 and asks the oracle to label them, thus obtaining the initial set

𝑁𝐿𝐼 of oracle-labeled instances (lines 2- 3). In each step of the iterative phase (lines 4-11), the

set 𝑁𝐿𝐼 of newly labeled instances is used to train the classifier together with the set 𝐿𝐼 (line 5).

When retraining the classifier, every instance 𝑥 ∈𝑁𝐿𝐼 is associated with its importance score 𝑟𝑥.

The computation of the importance scores of the instance in 𝑁𝐿𝐼 is performed using one of the

techniques described in Section 3.1. Next, a regressor 𝑅 is trained on the set {(𝑥, 𝑟𝑥)|𝑥 ∈𝑁𝐿𝐼}
and NLI instances are added to LS (lines 6-7). The regressor 𝑅 is then applied to the instances

in 𝑈𝐼 so that, given an instance 𝑥, it predicts its importance score ̂︀𝑟𝑥 (line 8). Finally, the top-𝑘
instances having the greatest importance score are selected for oracle labeling and, once labeled,

they replace the set 𝑁𝐿𝐼 so to start the next active learning step (lines 9-11).

Following the model change framework [15], the importance score of an instance 𝑥 measures

the impact of having 𝑥 in the training set for the obtained classifier. That is, the importance

score of a (labeled) instance 𝑥 w.r.t. a set of labeled instances is a measure of the difference

between the parameters of the classifier 𝜃 trained over 𝐿𝐼 and the parameters of the classifier �̂�
trained over 𝐿𝐼 ∪{⟨𝑥, 𝑦⟩}, where 𝑦 is the label of 𝑥. Unfortunately, in the case of neural network

classifiers, for the most commonly used training methods, such as the stochastic gradient, such

difference between the parameters of the model (almost) does not exist. To overcome this issue,

we define different notions of importance score, as discussed next.



Algorithm 1: LAL-IGradV
Data: 𝐿𝐼 : set of labeled instances, 𝑈𝐼 : set of unlabeled instances, DNN: deep neural network

model, 𝑅: importance score regressor, 𝑒𝑝𝑐ℎ: maximum number of epochs, 𝑘: number of

relevant instances to select

1 Train DNN on 𝐿𝐼
2 𝑁𝐿𝐼 ← Select 𝑘 instances from 𝑈𝐼 uniformly at random

3 The oracle annotates the instances in 𝑁𝐿𝐼
4 for 𝑖 = 1 . . . 𝑒𝑝𝑐ℎ do
5 Train DNN on 𝐿𝐼 ∪ 𝑁𝐿𝐼 and compute importance score 𝑟𝑥, for each 𝑥 ∈ 𝑁𝐿𝐼
6 Train 𝑅 on the set of pairs {⟨𝑥, 𝑟𝑥⟩ |𝑥 ∈𝑁𝐿𝐼}
7 𝐿𝐼 ← 𝐿𝐼 ∪ 𝑁𝐿𝐼
8 Apply 𝑅 to 𝑈𝐼 instances to predict importance scores ( ̂︀𝑟𝑥)

9 𝑡𝑜𝑝𝐾 ← Select top-𝑘 instances from 𝑈𝐼 by importance score ̂︀𝑟𝑥
10 The oracle annotates the instances in 𝑡𝑜𝑝𝐾
11 𝑁𝐿𝐼 ← 𝑡𝑜𝑝𝐾

3.1. Importance scoring strategies

Let 𝑓(𝑥𝑖, 𝜃) be the output of a DNN model 𝑓 characterized by a vector of parameters 𝜃 for an

input 𝑥𝑖 and let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be a set of instances used for training 𝑓 , where each sample

𝑥𝑖 ∈ 𝑋 is associated to a label 𝑦𝑖.
The training of the DNN 𝑓 over 𝑋 requires solving

argmin
𝜃

⎛⎝∑︁
𝑥𝑖∈𝑋

(𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) + 𝑟𝑒𝑔(𝜃)

⎞⎠ ,

where 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) is the loss of the model for instance 𝑥𝑖 and 𝑟𝑒𝑔(𝜃) is the regularization of

the parameters. The training of 𝑓 is done by iteratively updating the parameters 𝜃, through two

steps: (i) computing the change in 𝑓 w.r.t. all parameters, i.e., the gradient, defined as follows

𝛿(𝑋) =
𝜕

𝜕𝜃

∑︁
𝑥𝑖∈𝑋

(𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) + 𝑟𝑒𝑔(𝜃)),

and (ii) updating 𝜃 using 𝛿(𝑋), i.e., 𝜃𝑘+1 = 𝜃𝑘 − 𝜂 × 𝛿(𝑋), where 𝜂 is the update step size.

We define four strategies to associate each instance in 𝑁𝐿𝐼 with its importance score during

the training of the 𝐷𝑁𝑁 classifier. The goal shared by the various techniques is to modify

the training of the neural network model by accounting for the importance of the instances in

𝑁𝐿𝐼 involved in each training step. Each of the proposed techniques makes use of the gradient

corresponding to the instances currently in 𝐿𝐼 and 𝑁𝐿𝐼 , i.e., 𝛿(𝐿𝐼 ∪𝑁𝐿𝐼), hereinafter simply

denoted as 𝛿. The four proposed techniques differ in the way the importance of an instance

𝑥 in 𝑁𝐿𝐼 is calculated with respect to the single epoch. We will use symbol 𝛿𝑥 to denote the

value of the gradient 𝛿({𝑥}), and 𝛿¬𝑥 to denote the value of the gradient 𝛿(𝐿𝐼 ∪𝑁𝐿𝐼 ∖ {𝑥}).
In the following, we describe our proposed techniques for computing the importance scores.

Direct similarity (DS) – given an instance 𝑥 in 𝑁𝐿𝐼 , this strategy compares the learning

gradient of the neural network at the current epoch, 𝛿, with the gradient calculated with respect



to 𝑥 only, i.e., 𝛿𝑥. The importance score of 𝑥 at the current epoch is defined as the cosine

similarity between 𝛿 and 𝛿𝑥, i.e., 𝑟𝑥 = 𝑐𝑜𝑠(𝛿, 𝛿𝑥). The rationale of this strategy is that an

instance 𝑥 ∈𝑁𝐿𝐼 is likely to be more important for the training of 𝐷𝑁𝑁 at the current epoch

if there is a small difference between the directions of the gradients 𝛿 and 𝛿𝑥, as reflected by a

high value of the cosine similarity between the two gradients. That is, the more the learning

behavior of the neural network considering the whole training set is similar to the one of the

same neural network trained on 𝑥 only, the higher the importance of 𝑥 is.

Ranked direct similarity (RDS) – this strategy first applies the DS technique, then the

importance scores of the instances in 𝑁𝐿𝐼 computed by DS are ordered and divided into three

bins, which correspond to the top quartile of the importance scores, the bottom quartile, and

the union of the second and third quartiles. The instances falling into the top quartile will be

associated with score 1, the ones falling into the bottom quartile with score 0, and the other

instances with score 0.5.

Leave-one-out distance (LD) – given an instance 𝑥 in 𝑁𝐿𝐼 , this strategy compares 𝛿 with

the gradient calculated when leaving out 𝑥, i.e., 𝛿¬𝑥. The importance score of 𝑥 at the current

epoch is defined as the complement of the cosine similarity (i.e., cosine distance) between 𝛿
and 𝛿¬𝑥, i.e., 𝑟𝑥 = 1− 𝑐𝑜𝑠(𝛿, 𝛿¬𝑥). The rationale of this strategy is that an instance 𝑥 ∈𝑁𝐿𝐼 is

likely to be more important for the training of 𝐷𝑁𝑁 at the current epoch if leaving it out will

lead to large differences between the learning behavior of the neural network considering the

whole training set and the learning behavior of the same neural network trained without 𝑥, i.e.,

a large change in the direction of the gradient 𝛿¬𝑥 w.r.t. the gradient 𝛿, as reflected by a high

value of the cosine distance between the two gradients.

Ranked leave-one-out distance (RLD) – analogously to RDS w.r.t. DS, the RLD strategy

adds the same discretization step over the importance scores computed by LD.

4. Experimental Evaluation

Data. We used the well-known CIFAR-10 dataset [26], which consists of 60000 instances

representing 32x32 colour images, labeled using 10 mutually exclusive classes, with 6000 images

per class. The dataset is organized into 50000 instances as the training set and 10000 instances

as the test set. The latter contains exactly 1000 randomly-selected images from each class, while

the training set is comprised of five training batches, which contain 5000 images from each

class. We divided the training set into two parts, the one corresponding to the set of labeled

instances (𝐿𝑆), and the other corresponding to the set of unlabeled instances (𝑈𝑆).

Baseline methods. We compare the performance of our methods with a Random baseline

and the LCS method [8]. The Random baseline, hereinafter denoted as Rnd, simply selects 𝑘
instances to be annotated at each epoch uniformly at random from the set of unlabeled instances.

The LCS method follows an uncertainty sampling approach, therefore the unlabeled instance

selection is driven by the uncertainty of the instances. More precisely, given an instance 𝑥
and a classification model 𝜃, the LCS method measures the uncertainty of 𝑥 w.r.t. 𝜃 (𝜑(𝑥)) as

𝜑(𝑥) = (1−𝑃𝜃(𝑦
*|𝑥))× 𝑚

𝑚−1 , where 𝑃𝜃(𝑦
*|𝑥) denotes the probability that the model 𝜃 assigns

to the label 𝑦* for the instance 𝑥, 𝑦* is the label for which 𝜃 yields the maximum probability

on 𝑥 (i.e., 𝑦* = argmax𝑦 𝑃𝜃(𝑦|𝑥)), and 𝑚 is the cardinality of the set of labels. Note that the



Table 1
Performance of our proposed methods: initial and final accuracy, percentage increase w.r.t. Rnd and
w.r.t. LCS, and active learning time (sec) averaged over the epochs, for various percentage values of
unlabeled instances.

𝐴(0) DS RDS LD RLD
𝐴 %Rnd %LCS time 𝐴 %Rnd %LCS time 𝐴 %Rnd %LCS time 𝐴 %Rnd %LCS time

10% 0.793 0.831 2.32 0.43 186 0.832 2.44 0.54 191 0.831 2.28 0.39 625 0.828 1.90 0.01 769
20% 0.783 0.826 1.90 0.75 178 0.825 1.79 0.65 217 0.824 1.72 0.57 623 0.822 1.46 0.32 796
30% 0.784 0.827 1.95 0.50 170 0.828 2.06 0.61 250 0.826 1.75 0.30 620 0.822 1.46 0.32 827
40% 0.763 0.819 4.01 1.08 170 0.811 3.04 0.13 295 0.811 3.02 0.11 620 0.811 2.96 0.05 872
50% 0.733 0.801 5.97 2.84 162 0.800 5.82 2.70 352 0.799 5.80 2.67 619 0.779 3.07 0.03 1002
60% 0.728 0.801 6.32 3.21 162 0.798 5.96 2.86 423 0.795 5.57 2.48 614 0.777 3.20 0.18 1089
70% 0.708 0.778 6.49 2.50 154 0.778 6.38 2.40 513 0.773 5.82 1.86 607 0.760 4.01 0.12 1190
80% 0.640 0.705 5.39 1.82 139 0.704 5.27 1.71 613 0.700 4.62 1.08 604 0.694 3.78 0.27 1310
90% 0.570 0.644 5.89 2.22 129 0.636 4.60 0.98 732 0.632 3.95 0.35 602 0.636 4.59 0.97 1395

uncertainty function ranges between [0, 1], where 1 is the most uncertain score.

Settings and assessment criteria. In our experimental evaluation, we used 6 Convolutional

Neural Network (CNN) 2D layers, with 3 input channels, kernel size 3, stride size 3, padding

size 1, ReLU activation function. The CNN module has on top a fully-connected network with

an input layer of size 4096, one hidden layer with input size 4096 and output size 1024, another

hidden layer with input size 1024 and output size 512, an output layer of size 10 (i.e., number of

classes), and a dropout layers with probability 0.1.

In our LAL-IGradV algorithm, the DNN model was trained using cross entropy as loss function

and Adam optimizer (with learning rate 1e-4 and weight decay 5e-4), a number of epochs equal

to 10 for both the initialization step of training (Line 1) and the training steps in the main loop

(Line 5). Also, the maximum number of iterations of the algorithm, i.e., number of epochs in

the active learning process (𝑒𝑝𝑐ℎ) was set to 10. Unless otherwise specified, the number 𝑘 of

instances to select from 𝑈𝐼 was set to 500; the size of 𝐿𝐼 , resp. 𝑈𝐼 , was experimentally varied.

As the regressor (𝑅), we used two models: the Gradient Boosting Regressor, with least absolute

deviations (LAD) loss function and 200 estimators, for the DS and LD strategies, and the Random

Forest Classifier, with maximum depth 5, for the RDS and RLD strategies.

To simulate the oracle for annotating the instances, we resorted to the availability of class

label information for the CIFAR-10 data: whenever an instance was used in the 𝑈𝐼 set, we

masked its actual label during the learning process, and we unveiled the label only if the instance

was selected within the 𝑡𝑜𝑝𝐾 set of instances to annotate.

To assess the performance of the methods, we considered the accuracy of the classifier

during the various training batches, in absolute terms as well as in terms of percentage increase

w.r.t. the early accuracy of the classifier itself or the accuracy of a reference method. More

precisely, we computed: the accuracy at the initial step of training of LAL-IGradV (line 1),

denoted as 𝐴(0)
, and the accuracy at the end of the active learning process, denoted as 𝐴; the

percentage increase in the accuracy of LAL-IGradV, which is defined as 100(𝐴 − 𝐴(0))/𝐴(0)
;

the percentage increase in the accuracy of LAL-IGradV w.r.t. Rnd, resp. LCS, which is defined

as %Rnd = 100(𝐴 − 𝐴Rnd)/𝐴Rnd, resp. %LCS = 100(𝐴 − 𝐴LCS)/𝐴LCS, where 𝐴Rnd and 𝐴LCS

denote the accuracy at the end of the active learning process for Rnd and LCS.

Results. Table 1 reports on the performance of our LAL-IGradV variants corresponding

to the four importance scoring techniques, for varying percentages of the set of unlabeled



instances (𝑈𝐼). As expected, the accuracy values (i.e., columns corresponding to 𝐴 and 𝐴(0)
)

tend to decrease as the percentage of unlabeled instances gets higher, since the LAL-IGradV
method is forced to handle progressively reduced sets of labeled instances on its initial training.

More interestingly, the percentage increase of each of the LAL-IGradV variants w.r.t. both Rnd
and LCS is always positive — up to 6.5% against Rnd and up to 3.2% against LCS — and it tends

to improve with higher percentages of unlabeled instances, with peaks around 70% against Rnd
and around 50-60% against LCS. As concerns the impact of the importance scoring technique,

we observe that all the LAL-IGradV variants are able to improve upon the accuracy at the initial

training step. Moreover, the direct similarity based techniques, i.e., DS and RDS, reveal to be

more efficient
1

as well as more accurate than the leave-one-out distance based techniques, for

each percentage of unlabeled set. We tend to ascribe this fact to a higher sensitivity of the

approach in capturing the gradient direction change due to the individual contribution of an

instance rather than to the masking of a single instance in the training gradient, which would

result in a more diluted signal of variation of the training gradient.

We analyzed the percentage increase in accuracy that each active learning method achieves

by varying the fraction of unlabeled instances. As expected due to the advantage of performing

an active learning task, the percentage increase values (results not shown) tend to improve for

higher fractions of unlabeled instances. The trends are steeper for our LAL-IGradV methods

(around 10% increase), particularly for DS and RDS, followed by LCS. Indeed, it is worth

emphasizing that our LAL-IGradV methods achieve the best performance gain against the two

baselines as the fraction of labeled instances becomes smaller.

In Fig. 1, we delve into the trends of accuracy percentage-increase obtained by a particular

active learning method, for varying 𝑘, i.e., number of unlabeled instances to be selected at each

epoch of the active learning process. At a first glance, in each of the plots, we notice that the

curve of the percentage increase values over 𝑘 is more likely to change for larger fractions of

the set of unlabeled instances, with the most evident changes corresponding to 90%.

A few interesting remarks can be drawn from Figs. 1(a)-(d). When portions of 𝑈𝐼 below 90%

are selected, we observe a relatively small range of variation of the percentage increase values

(approximately from 5% to 10%), with peaks around 𝑘 = 500 for the DS and LD variants, and

around 𝑘 = 900 for the RDS and RLD variants. This would hint at higher requirements (i.e.,

higher 𝑘) needed for the importance scoring strategies that compute discretized importance

scores. Another remark is on the curves corresponding to the use of 90% of the set of unlabeled

instances: compared to the cases with lower fractions of 𝑈𝐼 , the percentage increase values

are higher on average, and the trends are quite different, especially for the DS variant where

we observe a minimum (rather than a maximum) for 𝑘 = 500. Apart from this exception, it

is worth noticing that better percentage increase of accuracy do not necessarily correspond

to a higher number 𝑘 of selected instances. This might be explained since the more unlabeled

instances are selected for labeling, the more the method is less likely to make a correct choice

for changing the most the current model, as the latter is being trained only on few instances,

thus lacking full knowledge on the class distribution of all the instances for available training.

Concerning the baseline methods, two different situations occur between the Rnd plot

1

Experiments were carried out on an Intel Core i7 CPU @2.90GHz, 32GB RAM, with NVIDIA GeForce RTX 2070

Super GPU
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Figure 1: Percentage increase due to active learning, by varying the number of selected instances (𝑘)
and the percentage of labeled instances [5].

(Fig. 1(e)) and the LCS plot (Fig. 1(f)). The former shows a decreasing trend until mid values of

𝑘 (i.e., around 500) followed by a rising trend, which sheds light on the divergent behavior of

a random selection of the unlabeled instances w.r.t. all the other instance selection methods.

Also, the LCS plot shows curves that tend to monotonically decrease, resp. remain substantially

unchanged, for larger, resp. smaller, fractions of 𝑈𝐼 , which again puts in evidence how our

LAL-IGradV variants behave differently from an uncertainty sampling approach like LCS.

5. Conclusions

We proposed a learning-to-active-learn approach whose key novelty is twofold: the integration

of a regression-based meta-learning approach within a maximum model-change framework,

and the definition of policies for scoring the instance importance based on the amount of change

in the learning gradient of a deep neural network model. Our experimental evaluation has

shown that our proposed LAL-IGradV outperforms both a random baseline and the LCS method,

especially when the number of initially available labeled instances gets smaller. As a future

work, we plan to evaluate the impact of measuring the importance of an instance not only in

terms of its own contribution to the model change but also w.r.t. other instances according to

some instance locality principle.
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