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Abstract

Entity Resolution is a core data integration task that relies on Blocking to scale to large datasets. Schema-
agnostic blocking achieves very high recall, requires no domain knowledge, and works on data with any
structure. The main drawback of this approach is the number of generated superfluous comparisons
(i.e. non-matching), which can be reduced by Meta-blocking techniques that aim to discard most of
them. Unsupervised Meta-blocking performs this process by scoring each comparison with a single
metric and then applying a pruning algorithm, so choosing the right metric among the existing ones is
fundamental to achieving good results. Supervised Meta-blocking improves this approach by combining
multiple scores per comparison into a feature vector that is fed to a binary classifier used to decide if a
comparison is a match or not. In this work, we generalize the Supervised Meta-blocking approach by
using a probabilistic classifier that pairs each comparison with a score that represents its likelihood to be
a match, allowing to use of any pruning algorithm.
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1. Introduction

Entity Resolution (ER) is the task of identifying records (profiles) that pertain to the same real-
world object (entity) among different data sources [1, 2, 3, 4, 5]. ER is a core data integration task
since allows removing duplicates from dirty data sets that could compromise the downstream
analysis, and joining multiple data sets when no explicit joining keys are available.

ER is a challenging task due to its quadratic time complexity: in the worst case, every profile
has to be compared with all others, obtaining poor performance in terms of scalability. To
mitigate this high complexity, Blocking is employed [6, 7, 8, 9, 10] to restrict ER to blocks of
profiles that have similar signatures. When dealing with noisy web data that does not have a
fixed structure, schema-agnostic signatures can be used effectively to perform blocking without
requiring domain or schema knowledge [11, 6], with this approach parts of any attribute value
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Figure 1: (a) The input entities (smartphone models), and (b) the redundancy-positive blocks produced
by Token Blocking.

in each profile can be used as signatures. An example of schema-agnostic blocking is reported
in Figure 1. The data set in Figure 1a contains three duplicate pairs, (e1, e3), (e2, e4) and (eg,
er), that are clustered using Token Blocking (a block is created for every token appearing in at
least 2 profiles). The resulting blocks appear in Figure 1b. ER is performed within each block,
detecting all duplicates.

The main drawback of this approach is that the resulting blocks involve high levels of redun-
dancy: every profile is associated with multiple blocks, yielding many redundant (comparisons
repeated across different blocks) and superfluous (involving non-matching profiles) comparisons.
For example, the pair (e1, e3) is redundant in b, as it is already examined in by, while the pair
(e, eg) € bs is superfluous, as the two entities are not duplicates. These comparisons can be
removed from the block collection, reducing the computational cost of ER, while keeping the
same result in terms of recall.

Meta-blocking [12] was introduced to reduce the portion of superfluous comparisons and
remove all the redundant ones. To perform this task, it relies on two components: (i) a weighting
scheme, which is a function that given a pair of profiles and their associated blocks, returns
a score proportional to their matching likelihood; (ii) a pruning algorithm, which receives as
input all weighted pairs and retains the ones that are more likely to be matching. Meta-blocking
can be unsupervised or supervised.

Unsupervised Meta-blocking. Starting from a block collection (Figure 1b) it builds a
blocking graph (Figure 2a) in which the nodes represent the profiles, and two nodes are connected
by an edge if the corresponding profiles co-occur in at least one block. The edges are weighted
by using a weighting scheme; in our example, the number of blocks shared by the connected
profiles. Then, the blocking graph is pruned using a pruning algorithm; in our example, for
each node, we discard the edges with a weight lower than the average of its edges.

Figure 2b shows the pruned blocking graph, the dashed lines represent the superfluous
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Figure 2: Unsupervised Meta-blocking example: (a) The blocking graph of the blocks in Figure 1b, using
the number of common blocks as edge weights, (b) a possible pruned blocking graph, and (c) the new
blocks.
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Figure 3: Supervised Meta-blocking example: (a) a graph where each edge is associated with a feature
vector, (b) the graph pruned by a binary classifier, and (c) the output, which contains a new block per
retained edge.

comparisons. Finally, a new block is created for every retained edge (Figure 2c), the new block
collection involves significantly fewer pairs without missing the matching ones.

Supervised Meta-blocking [13]. It trains a binary classifier to learn to classify every
comparison as positive (i.e. likely to be matching) or negative (i.e. unlikely to be matching).
Then, the classifier is used to perform the pruning of the blocking graph, retaining only positive
classified comparisons. Each pair is associated with a feature vector comprising the most
distinctive weighting schemes that are used by unsupervised meta-blocking.

An example of Supervised Meta-Blocking is shown in Figure 3. A blocking graph is
generated as for unsupervised meta-blocking (Figure 3a), pairing each edge with a feature
vector. In this example, each pair of profiles (e;, e;) is represented by a feature vector
vij = {CB(es, e5), JS(es, e5)}, where CB(e;, e5) is the number of their common blocks and
JS(e;, ej) is the Jaccard coefficient of blocks associated with e; and e;. Then, a binary classifier
is trained with a sample of labeled vectors and is used to predict whether a pair (e;, e;) is a
match (I; j=1) or not (I; ;=0). The pairs classified as positive are retained, as shown in Figure 3b
(the dashed line indicates the superfluous pair (e4, €5)). The final result, which includes a new
block per retained pair, appears in Figure 3c.

Supervised Meta-blocking requires to generate labeled data for training, but by representing
each edge with multiple features it is able to produce more accurate results, obtaining better
precision and recall than the unsupervised approach [13]. However, the binary classifier learns
a global threshold to perform the pruning of the edges since it is applied on the whole blocking
graph. Defining a local threshold for each node, as for unsupervised meta-blocking, would
allow better control of the pruning. This is the intuition behind the Generalized Supervised
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Figure 4: Generalized Supervised Meta-blocking example: (a) a graph weighted with a probabilistic
classifier, (b) the pruned graph, and (c) the new blocks.




Meta-blocking approach.

Generalized Supervised Meta-blocking. Our new approach, first, builds a graph as
Supervised Meta-blocking does (Figure 3a), then trains a probabilistic classifier, which assigns
the matching probability to each edge (Figure 4a). Now, it is possible to apply several weight-
and cardinality-based pruning algorithms on the resulting graph. In our example, we employed
the Supervised WNP: for each node, first discards all the edges with a weight lower than 0.5,
then retains only those with a weight greater than the average of the remaining ones. Figure 4b
shows the result of this step: two edges may be assigned the same weight by the probabilistic
classifier, e.g., (e1,€3) and (ey, €5), but they may be kept (e.g., the matching pair (e, e3)) or
discarded (e.g., the non-matching pair (e4, €5)) depending on their context, i.e., the weights in
their neighborhood. Note that (e4, €5) is not discarded by Supervised Meta-blocking in Figure
3b, which thus underperforms Generalized Supervised Meta-blocking in terms of precision (for
the same recall).

Our Contributions. This work is a resume of our previous article [14] published in PVLDB
2022 that aims to illustrate our major findings. In particular, we improved Supervised Meta-
blocking by generalizing it from a binary classification task to a binary probabilistic classification
process, and then using the resulting probabilities as comparison weights in order to use them
with pruning algorithms that are incompatible with the original approach [13]. We introduced
three new weighting schemes, and finally, we performed an extensive experimental study
that involves 9 real-world datasets. The results demonstrate that the new pruning algorithms
significantly outperform the existing ones. They also identify the top-performing algorithms
and feature vectors, showing that 50 labeled instances (25 per class) suffice for high performance.

The rest of the paper is organized as follows: Section 2 provides background knowledge on
the task of Supervised Meta-blocking and the problem we tackle. The experimental analysis is
presented in Section 3, the main works in the field are discussed in Section 4, and the paper
concludes in Section 5 along with directions for future work.

2. Preliminaries and problem definition

An entity profile p; is defined as a set of name-value pairs, in which both the attribute names
and the attribute values are textual. Two profiles p;, p; that pertain to the same real-world
object are called duplicates or matches, we denote them as p; = p;.

As in other state-of-the-art ER frameworks [6, 3, 15], we employ Blocking to reduce the
quadratic time complexity of the ER. In particular, we employ Token Blocking, a redundant
blocking technique in which a profile p; can appear in multiple blocks. The performance of
blocking can be assessed through Recall and Precision. The former measures the number of
retrieved matches over the existing ones in the data set, while the latter the number of retrieved
matches over the number of retrieved entity profiles pairs.

Unsupervised Meta-blocking [16] operates in top of Blocking to restructure a collection of
blocks B, generated by a redundant blocking technique, relying on the intuition that the more
blocks two profiles share, the more likely they match. Starting from a block collection B, the goal
of meta-blocking is to produce a new block collection B’ in which Recall(B’) ~ Recall(B)
and Precision(B') >> Precision(B). To achieve this goal, Meta-blocking builds a graph



Gp = {Vp, Ep,Wg} in which: Vp is the set of nodes representing all profiles p;, E is the
set of edges; an edge e; ; between two entity profiles p;, p; exists if they co-occur in at least one
block; W is the set of weights w; ; associated to the edges. Several weighting schemes can be
used to weight the edges and capture the matching likelihood of the entity profiles that they
connect. For example, one of the simplest weighting scheme is CBS(e; ;) = |B; N Bj| that
counts the number of shared blocks among two entity profiles p;, p;. A complete description of
all the weighting schemes can be found in [14]. Finally, the graph is pruned using a pruning
algorithm that removes less promising edges. A pruning algorithms can be weight-based or
cardinality-based, the former retains edges that are weighted above a certain threshold, while
the latter the top-k weighted ones. An algorithm can be applied locally (i.e. for each node of
the graph) or globally (i.e. on all the edges of the graph). The combination of these strategies
produces the following pruning algorithms: (i) Weighted Edge Pruning (WEP), prunes all the
edges with a weight lower than a given threshold; (ii) Cardinality Edge Pruning (CEP), sorts
the edges in descending order with respect to their weights, and then keeps only the first k;
(iii) Weighted Node Pruning (WNP), considers in turn each node e; and its connected edges,
and prunes the edges with a weight lower than a calculated threshold; (iv) Cardinality Node
Pruning (CNP), for each node p; retains the top-k edges by using a cardinality threshold k;. The
node based algorithms can be also reciprocal, which means that an edge e; ; is retained only
if it is retained by both connected profiles p;, p;. Thus, other two algorithms can be derived:
RCNP and RWNP. There are also variant of these standard algorithms, like BLAST that instead
of using the average weight per node to define a threshold, relies on the maximum weight per
node [4]. After the pruning, each retained edge can be used to build a new block collection B’'.

Supervised Meta-blocking [13] models every weight w;; as a feature vector f;; =
[s1(€4,5), 52(€4,5), ---» Sn(€s,j)], where each s; is a weighting scheme. Then, 5% of the feature
vectors are labeled and used to train a binary classifier that is then used to labels the others as
matches or non-matches. Finally, to prune the edges it employs a pruning algorithm called
BCl that discards all the edges labelled as non-matches. In [13] Supervised Meta-blocking was
adapted to work also with CEP and CNP.

The run-time RT of Supervised Meta-blocking is composed by the time of: generating the
feature vectors for E'p, training the classification model M, applying M to Ep.

Problem definition. Generalized Supervised Meta-blocking differs from Supervised Meta-
blocking in two ways: (i) instead of a binary classifier that assigns class labels, it trains a
probabilistic classifier that assigns a weight w; ; € [0, 1] to every edge e; ;. This weight expresses
how likely it is to belong to the positive class. (ii) The candidate pairs with a probability lower
than 0.5 are discarded, but the rest, called valid pairs, are further processed by a pruning
algorithm as for unsupervised meta-blocking. The ones retained after pruning produce the new
block collection B’.

The run-time of Generalized Supervised Meta-blocking, RT', adds to that of Supervised
Meta-blocking the time required to process the assigned probabilities by a pruning algorithm.



Table 1

Characteristics of the datasets used in the experimental study. | E;| number of entities, | D| number of
duplicate pairs, and |C| number of distinct candidate pairs. The rightmost part reports the performance
of the original blocks that are given as input to the supervised meta-blocking methods.

Dataset E1] | |E2] D] |C] Recall | Precision F1
AbtBuy 11k | 11k | 1.1k | 36.7k 0.948 2.7810" % | 5.40-10 2
DblpAcm 2.6k | 23k | 2.2k | 46.2k 0999 | 4.81-1072 | 9.18-1072
ScholarDblp 25k | 613k | 2.3k | 8327k || 0.998 | 2.80-1073 | 5.58-1073
AmazonGP 1.4k | 33k | 1.3k | 84.4k 0.840 | 1.29-1072 | 2.54-1072
ImdbTmdb 51k | 6.0k | 19k | 109.4k || 0988 | 1.78-1072 | 3.50-1072
ImdbTvdb 51k | 7.8k | 1.1k | 119.1k 0.985 | 8.90-1073 | 1.76:1072
TmdbTvdb 6.0k | 7.8k | 1.1k | 198.6k || 0989 | 5501072 | 1.09-1072
Movies 27.6k | 23.1k | 22.8k | 26.0M 0976 | 859-107% | 1.72.1073
WalmartAmazon | 25k | 22,1k | 1.1k | 27.4M 1.000 | 4.22-107° | 8.44-107°

3. Experimental evaluation

3.1. Experimental setup

Hardware and Software—All the experiments were performed on a machine equipped with
four Intel Xeon E5-2697 2.40 GHz (72 cores), 216 GB of RAM, running Ubuntu 18.04. We inte-
grated Generalized Supervised Meta-blocking in the SparkER library, code and usage examples
are available on the GitHub page of the project!. Unless stated otherwise, we perform ma-
chine learning analysis using Python 3.7 and the Support Vector Classification (SVC) model
of scikit-learn [17]. We used the default configuration parameters, enabling the generation of
probabilities and fixing the random state so as to reproduce the probabilities over several runs.
We performed all experiments with logistic regression, too, obtaining almost identical results,
but we omit them for brevity.

Datasets—Table 1 lists the 9 real-world datasets employed in our experiments. They have
different characteristics and cover a variety of domains. Each dataset involves two different,
but overlapping data sources, where the ground truth of the real matches is known. AbtBuy
matches products extracted from Abt.com and Buy.com [18]. DblpAcm matches scientific
articles extracted from dblp.org and dl.acm.org [18]. ScholarDblp matches scientific articles
extracted from scholar.google.com and dblp.org [18]. ImdbTmdb, ImdbTvdb and TmdbTvdb
match movies and TV series extracted from IMDB, TheMovieDB and TheTVDB [19], as suggested
by their names. Movies matches information about films that are extracted from imdb.com
and dbpedia.org [11]. WMAmazon matches products from Walmart.com and Amazon.com [20].

Blocking—The initial block collection is extracted through Token Blocking [7]. The original
blocks are then processed by Block Purging [11], which discards all the blocks that correspond
to highly frequent tokens (e.g., stop-words). Finally, we apply Block Filtering [16], removing
each profile p; from the largest 20% blocks in which it appears. The performance of the resulting
block collections is reported in the rightmost part of Table 1. To apply Generalized Supervised
Meta-blocking to these block collections, we performed 10 runs and averaged the values of
precision, recall, and F1. In each run, a different seed is used to sample the pairs that compose
the training set.

'https://github.com/Gaglia88/sparker
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3.2. Comparison with Supervised Meta-blocking

The whole experimental evaluation is available in our paper [14], we report here for sake of space
only the comparison with Supervised Meta-blocking. To compare Generalized Supervised Meta-
blocking with Supervised Meta-blocking[13] we follow these steps by using a balanced training
set composed of 500 samples: first, we selected the best weight and cardinality based pruning
algorithms for Generalized Supervised Meta-blocking by using the feature vector proposed in
[13], obtaining as result BLAST and RCNP respectively. Then, for both pruning algorithms we
selected the best feature combination by using a brute force approach, so trying all possible
weighting scheme combinations. Finally, we compared BLAST and RCNP in combination with
the best features selected with BCl and CNP (the original Supervised Meta-blocking algorithms),
which use the feature set proposed in [13].

The average performance is presented in Figure 5a. Between the weight-based algorithms,
we observe that BLAST outperforms BCI with respect to all measures: its recall, precision and
F1 are higher by 1.6%, 13.6% and 13%, respectively, on average. Thus, BLAST is much more
accurate in the classification of the candidate pairs and more suitable than BC! for recall-intensive
applications. While, among the cardinality-based algorithms, RCNP trades slightly lower recall
than CNP for significantly higher precision and F1: on average, across all datasets, its recall is
lower by -4.1%, while its precision and F1 are higher by 34.9% and by 33.6%, respectively. As a
result, RCNP is more suitable than CNP for precision-intensive applications.

Regarding time efficiency, Figure 5b reports the running times of these algorithms on the
largest datasets, i.e., Movies and WalmartAmazon. We observe that BCI, CNP and RCNP
exhibit similar RT in both cases, since they all employ more complex feature sets. BLAST
is substantially faster than these algorithms, reducing RT by more than 50%. In particular,
comparing it with its weight-based competitor, we observe that BLAST is faster than BCl by 2.1
times over Movies and by 3.2 times over WalmartAmazon.

We also demonstrated that Generalized Supervised Meta-blocking can obtain better results
than Supervised Meta-blocking by using a balanced training set composed only of 50 labeled
samples as shown in Figure 6. We observe that BLAST with a balanced training set composed
of 50 pairs outperforms BC| with respect to all measures: its recall, precision and F1 are higher
by 7%, 5% and 9.9%, respectively, on average. The same behaviour is shown by RCNP over CNP,
the recall is improved by 9.2%, the precision by 16.4% and the F1 by 18.3%.

We can conclude that Generalized Supervised Meta-blocking bring significant improvements
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Figure 6: Comparison of Supervised meta-blocking (BCI, CNP)[13] with the original features and 5%
of comparisons as training set and Generalized Supervised Meta-blocking (BLAST, RCNP) with new
features and 50 labeled samples as training.

with respect to Supervised Meta-blocking.

4. Related work

The unsupervised pruning algorithms WEP, WNP, CEP, and CNP were introduced in [12].
WNP and CNP were improved in [16] to avoid the generation of redundant comparisons.
Unsupervised RWNP and RCNP were defined in [16], while unsupervised BLAST was proposed
in [21].

The most similar work to this one is BLOSS [22] which introduces an active learning method
that reduces the size of the labeled comparisons needed by Supervised Meta-blocking. BLOSS
divides the unlabelled candidate pairs into groups based on CF-IBF weighting schema. Then,
it applies a rule-based active sampling inside each group to select the pairs to label with the
lowest commonalities with the already labeled ones to maximize the captured information. In
the final step, BLOSS cleans the labeled sample from non-matching outliers with high Jaccard
weight.

5. Conclusions
We have presented Generalized Supervised Meta-blocking, which casts Meta-blocking as a
probabilistic binary classification task and weights all candidate pairs in a block collection
with the probabilities produced by the trained classifier. These weights are processed by a
pruning algorithm that can be weight-based (promoting recall) or cardinality-based (promoting
precision). Through a thorough experimental study over 9 established, real-world datasets,
we verified that BLAST and RCNP constitute the best weight- and cardinality-based pruning
algorithms, respectively. We determined the best feature set for these algorithms and we
demonstrated they are able to obtain good results with a balanced training set composed of 50
samples.

In the future, we plan to leverage Generalized Supervised Meta-blocking as a means for
optimizing the performance of Progressive Entity Resolution [23].
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