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Abstract
This paper introduces a new machine learning based comparator model to assess changes in the ease of breathing of COPD
patients during loaded breathing. The comparator model is based on a random forest classifier that detects whether breathing
becomes either more difficult, easier or remains stable. The designed model can accurately detect respiratory changes by
comparing temporal segments of physiological signals measured during loaded breathing, with an 𝐹1 score of almost 80%,
resp. 70% for the wearable solution. As the model is trained and tested with features derived from different signal modalities,
such as respiratory flow, audio, bio-impedance and accelerometer data, we also did a systematic comparison of the signal
modalities to assess their predictive power.
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1. Introduction
Chronic obstructive pulmonary disease (COPD) is a
chronic inflammatory lung disease where the airflow
from the lungs is obstructed. This can lead to several
adverse symptoms, such as breathing difficulty and short-
ness of breath, excess phlegm or sputum, and frequent
coughing or wheezing. In the United States, it is es-
timated that 16 million Americans have this disease,
whereas millions more people suffer from COPD but
have not yet been diagnosed [1]. As a result, morbidity
and mortality in COPD patients are considerably high. In
order to diagnose COPD, a spirometer test is applied as a
gold standard test for pulmonary function. The patient
inhales and then exhales with a maximal effort through a
mouthpiece, while the airflow going into and out of the
lungs is measured and analyzed [2].
A limitation of this test is that it has to be performed

by trained medical personnel, and thus does not allow
longitudinal monitoring of the respiratory status, which
is desirable, because early detection and treatment of
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exacerbations can prevent disease worsening [3].
As such, there is a need for the development of a wear-

able respiration monitoring system that uses information
captured in a real-world setting, i.e. outside of spirome-
try, to allow new steps in automatically and continuously
analyzing the patient’s status. While diagnosing COPD
severity is out of scope for such a potential system, lon-
gitudinally monitoring changes in respiratory status or
ease of breathing could be used as an additional tool in
monitoring and treatment of COPD.
Several approaches have been devised to assess the

patient’s condition, by measuring information such as
heart rate, oxygen saturation and respiratory flow [4].
Some of these approaches are based on analyzing the
respiratory rate, rather than taking into account the en-
tire respiratory pattern [5, 6]. It has also been shown
that significant correlations are present between non-
invasive physiological signals that can be recorded with
wearables, such as thoracic bioimpedance, electrocardio-
gram, or photoplethysmogram, and parameters that are
relevant to assess the respiratory status of a patient, such
as the respiratory volume or respiratory muscle disfunc-
tion [7]. Hence, signals recorded with wearable devices
may contain relevant information to detect respiratory
changes in COPD patients. A systematic comparison of
the predictive power of different physiological signals is
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Figure 1: Outline of comparator model that discriminates between an increase, stability and decrease in ease of breathing,
due to changes in inspiratory loading.

still largely unaddressed.
This paper aims to address and explore this by

proposing a new machine learning based comparator
model that detects whether breathing becomes either
more difficult, easier or remains stable. The patient’s
ease of breathing is assessed by comparing pairs of
segments of non-invasive physiological signals that were
recorded during a loaded breathing test. By analysing
the performance of the model, valuable new insights
are obtained on the choice of signals that are most
relevant to monitor changes in respiration. As such, the
outcome of this study provides useful insights to decide
which signal modalities should be measured by the
wearable device, and forms a basis for the development
of next-generation wearable respiratory monitoring
technology. The availability of such a technology can
possibly result in a faster intervention to prevent disease
worsening, potentially leading to reduced health care
costs, hospital (re)admissions and improved quality of
life.

In summary, the main contributions of this paper
are threefold:

• A systematic analysis and comparative study of
multiple physiological signals is performed, to
identify which ones are most influential to cor-
rectly detect changes in the ease of breathing of
a COPD patient during inspiratory loading.

• Relevant features are automatically extracted
from the signals, and a state-of-the-art classifi-
cation algorithm for time series data is used to
build a comparator model that accurately detects
whether breathing becomes either more difficult,
easier or remains stable.

• The performance of the model is validated on data
from a clinical study and the results are evaluated.

2. Materials and Methods

2.1. Data collection and setup
The study uses data gathered from 50 patients with COPD
and enrolled for an inspiratory loaded breathing test in
a clinical setting at Ziekenhuis Oost-Limburg (Belgium).
The data from six patients were excluded in this study
due to one or more of the collected signal modalities
being either unavailable or saturated. The resulting data
set comprises 44 patients.

The studywas approved by the local institutional medi-
cal ethics committee from Ziekenhuis Oost-Limburg with
reference 18/0047U. The study followed the World Medi-
cal Association’s Declaration of Helsinki on Ethical Prin-
ciples for Medical Research Involving Humans Subjects.
All patients provided written informed consent.

An incremental inspiratory threshold loading proto-
col was performed, where the patients were imposed to
increasing inspiratory loads proportional to their maxi-
mal inspiratory pressure (MIP). The loads are quantified
as 0%, 12%, 24%, 36%, 48% and 60% of the MIP that was
measured before the start of the test [8]. As such, a
higher load corresponds to an overall higher inspiratory
effort that is required to breathe. Each load test was ap-
plied for a period of thirty breaths (i.e. a variable time
length), with a two-minute resting period between the
tests for each different load. The loads were sequentially
applied in increasing order. The measurement of the
MIP and the imposition of the loads was both done us-
ing an inspiratory muscle trainer (POWERbreathe KH2,
POWERbreathe International Ltd, Southam, UK).

During the test, two systems were used to record sev-
eral physiological signals simultaneously. The first sys-
tem was a standard wired acquisition system (MP150,
Biopac Systems, Inc., Goleta, CA, USA), used to record
the accelerometer data and audio signals; the airflow
was measured using Biopac, together with a pneumotach
transducer (TSD107B, Biopac Systems, Inc.) connected
to a differential amplifier (DA100C, Biopac Systems, Inc.).
Given the fact that the lung sound signals have a band-



width around 4000 Hz [9], the Biopac was configured to
record at a sampling frequency of 10,000 Hz, and this was
applied to all the channels. The second system was a low-
powerwearable device (imec the Netherlands, Eindhoven,
the Netherlands) with an injecting current of 100 uAp-p
at 80 kHz that was used to record the bio-impedance sig-
nal with a sampling frequency of 16 Hz [10]. The location
and configuration of the signals were as follows:

• Respiratory flow (gold-standard, used as a base-
line)

• Accelerometer: parasternal and diaphragm
(lower intercostal spaces), three axes

• Microphone (audio): left lung, right lung, tracheal
• Bio-impedance (bioZ): 4 configurations

For the bio-impedance signals, the first of the four
channels described in [10] is used in this study, because
it was shown to have a more robust performance for es-
timating respiratory volume changes when higher loads
are imposed. The full details about this data collection
protocol for the respiratory flow, bio-impedance, and
accelerometer signals, as well as the set-up of the ex-
periments are explained in [7, 11]. Regarding the audio
signals, these were recorded using three microphones
(TSD108, Biopac Systems, Inc) with a frequency response
of 35-3500 Hz. Two microphones (for both lungs) were
positioned on the back, two to three centimeters below
the shoulder blades, at each side of the spinal cord. The
other microphone (for the tracheal sound) was positioned
on the right side of the patient’s neck. After amplifying
the sound 200 times, it was filtered with an analog low-
pass filter of 5 kHz and a high-pass filter of 0.05 Hz. In the
forthcoming sections of the paper, the respiratory flow is
referred to as an obtrusive signal modality, whereas all
others are considered as unobtrusive signal modalities.

2.2. Preprocessing and segmentation
The signals contain noise due to subject movement, elec-
trical inference, measurement noise and other distur-
bances. In order to extract all relevant information, all
signals except audio are first filtered with a low-pass
zero-phase Butterworth filter with the following orders
and cut off frequencies per signal modality: a fifth-order
40 Hz low-pass filter for the respiratory flow signal, a
fourth-order 0.7 Hz low-pass filter for the bio-impedance
signal, and a eighth-order 40 Hz low-pass filter for the
accelerometer data. The filter values are based on the
characteristics of the noise present in the signals, remov-
ing higher frequency noise while retaining the relevant
information below the cut off frequencies.

All signals are resampled to a common sampling rate.
The respiratory flow, accelerometer, and audio signals
are downsampled from 10,000 Hz to 100 Hz, whereas

the bio-impedance signals are upsampled using cubic
interpolation from 16 Hz to 100 Hz.
After filtering, a bidirectional moving average and

moving variance filter is applied to remove artefacts in
the data where the patient did not breathe into the pneu-
motach transducer correctly. When either of these values
in either direction is close to zero, this is considered an
artefact and removed.
After removal of artefacts, the signal is divided into

multiple shorter signals. In order to define a common-
length input signal for the machine learning model, each
part of the signal that is not corrupted, is subdivided into
several smaller segments having a predefined window
length 𝑤. For each combination of patient and inspiratory
load, one window is sampled from the longest stable
breathing period without interruptions or artefacts. This
ensures that each segment has a consistent length.
It was found that a window length of 𝑤 = 30 sec

is the most adequate choice, because it ensures that at
least 95% of the input space (i.e. all possible patient-load
combinations) is still included in the dataset after pre-
processing, while guaranteeing the inclusion of multiple
breaths. This window length strikes the balance between
including as much data as possible in the entire window
and including as many patient-load combinations as pos-
sible, avoiding biased results.

2.3. Machine learning-based comparator
model

Fig. 1 shows an overview of the designed comparator
model. Pairs of segments from the same signal modalities
of the same patient are used as an input for the model,
and a three-way classification is calculated, depending
on whether the load of the second signal is lower than,
higher than, or comparable to the load of the first signal.
It is hypothesized that this method can then also be used
to detect increased difficulty in breathing, which may
be indicative for worsening of the respiratory condition.
The threshold 𝜏 used to separate the categories is set to
12%, to match the granularity of variations in the loads.

For each signal type, a comparator model is trained
using pairs of signals recorded at different load combi-
nations, with the labels corresponding to an increase,
decrease, or stability in inspiratory load. Since the model
is trained on data from all the patients in the training
set at once, a general model is obtained, rather than a
patient-specific one.

As six different loads were considered in the breathing
test, 21 pairs of load combinations can be generated. The
swapped pairs are also included to train the model, result-
ing in 42 load pairs. As such, it would have been possible
to have 1848 pairs. However, one patient was able to
perform only 5 loads instead of 6. For this reason, 1836
pairs were available for the development of the model.



2.3.1. Feature extraction

The tsfresh package [12] is used to compute a set of
783 features 𝑓𝑖 from the time series signals, both in the
time and frequency domains, generated from 74 unique
features with varying parameters (e.g., the window size,
the quantiles, etc.). They include statistical features or
combinations thereof, and more complex features. A
comprehensive overview is provided in Appendix A.

The features are then filtered, keeping only those fea-
tures that are determined as relevant for predicting the
label within the training data [12].

In the case of accelerometer data, the signal modality is
multivariate (tri-axial). As such, features were extracted
and filtered from the data along each coordinate axis
separately. All other signal modalities are considered as
univariate.
The difference between the normalized values of the

same features 𝑓𝑖(𝐴) − 𝑓𝑖(𝐵), is computed for every combi-
nation of two loads, belonging to the same patient, and
used as training input for a Random Forest classifier [13].
This model type is known to provide good results in other
medical studies [14], and its performance is relatively
stable due to the insensitivity to noise or overfitting, al-
lowing a fair comparison between signals. For the same
reason, and with the goal of comparing signal modalities
rather than finding the absolute best model, generic pa-
rameters are used: the classifier consists of 100 decision
trees, with no restrictions on the depth, number of leaf
nodes or splits. For splits, the Gini impurity is used along
with a maximum of √𝑛 features considered for each split.

By explicitly considering the difference, rather than
providing the union, a more compact representation is
obtained, and the model is enforced to learn that the same
characteristics between both signals should be compared.
By running experiments for different configurations of
feature extraction method and signal modalities, it was
experimentally verified that this approach leads to an 𝐹1
score that is consistently higher.

2.3.2. Model training and cross-validation

The performance of the models is evaluated using 10-
fold cross-validation, ensuring no overlap of samples
from patients between different folds. For each training
and test step, features are extracted from the 9 training
folds with the exact same parameters each time. The
model performance is assessed for every pair of loads
from patients in the test fold. Note that the evaluation
is based on a weighted 𝐹1 score to take into account
the small class imbalance, as instances from the stable
condition are less common than from the worsening and
improving conditions.
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Figure 2: Weighted 𝐹1 score (with 95% confidence interval)
for different input signal modalities and comparator models

Figure 3: Confusion matrix of the best performing model,
where each row/column represents the true/predicted in-
stances for a class. The class labels refer to changes in ease
of breathing due to inspiratory loading. The majority of the
instances are classified correctly. Misclassifications are more
common between neighbouring classes.

3. Results
An overview of the model performance for various signal
modalities is shown in Fig. 2.

A one-way ANOVA analysis is performed on all results
of the unobtrusive signal modalities, with 𝛼 = 0.05 [15].
For this, all 𝐹1 scores are considered from each signal
modality as a separate group, with the null hypothesis
that the means for each group are sampled from the same
distribution. The resulting p-value of 0.029 < 𝛼 and re-
jection of this null hypothesis confirms that there is a



Class Sens. Spec. PPV NPV Acc. 𝐹1
Easier 0.82 0.90 0.82 0.90 0.87 0.82
Stable 0.69 0.88 0.71 0.88 0.83 0.70
More dif-
ficult

0.82 0.90 0.81 0.90 0.87 0.82

Table 1
Quality metrics of best performing model (sensitivity, speci-
ficity, positive predictive value, negative predictive value, ac-
curacy and 𝐹1 score)

statistically significant difference in the mean 𝐹1 scores
of the signal modalities. Amongst those signal modal-
ities, bioZ, accelerometer (parasternal) and audio (tra-
cheal) seem to provide the best predictive power to detect
changes in the ease of breathing. A paired t-test with
𝛼 = 0.05 confirms that the 𝐹1 score for the tracheal audio
signal is significantly higher than the left lung (𝑝 = 0.002)
and right lung (𝑝 = 0.028) signals. Furthermore, the
𝐹1 score for parasternal accelerometer signal is signifi-
cantly higher than the diaphragm accelerometer signal
(𝑝 = 0.025). There is no significant difference between
the 𝐹1 score of the bioZ and accelerometer (parasternal)
signals (𝑝 = 0.821), the bioZ and audio (tracheal) sig-
nals (𝑝 = 0.401), and the accelerometer (parasternal) and
audio (tracheal) signals (𝑝 = 0.64).
Fig. 3 shows the confusion matrix of the overall best

performing model, i.e. the random forest model based on
tsfresh features, that considers the (obtrusive) respiratory
flow signal. It is seen that the majority of the instances
are classified correctly, and misclassifications are more
common between neighbouring classes. Table 1 pro-
vides an overview of the performance metrics calculated
to assess the quality of the model, including sensitivity,
specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), accuracy and the 𝐹1 metric for each
of the three classes. From both Fig. 3 and Table 1, it is
seen that changes in breathing difficulty can be identified
more accurately than stability. This is not unexpected, as
the stable class is more similar to the other two classes,
than they are to each other.

4. Discussion
The results confirm that differences in the respiratory
pattern during the inspiratory load protocol applied to
COPD patients can be assessed by our machine learning
based comparator model. The best performance is ob-
tained when considering the respiratory flow signal, with
an 𝐹1 score of 0.78. This demonstrates the ability of the
model to discriminate between an increase, remaining
stable or decrease in the ease of breathing for patients.

However, there is still an error margin associated with

the classification performance of the model. For exam-
ple, the model has a 10% chance of missing an increase
in difficulty and a 19% chance of being wrong when an
increase is detected. As such, it is important to interpret
the classification results carefully and weigh the poten-
tial consequences of false positives and false negatives,
as the acceptable margin of error may vary depending on
its application. For example, this error margin may be ac-
ceptable for regular monitoring of stable COPD patients,
while it may not be acceptable for high-risk patients.

When considering other signals that can easily be ac-
quired with wearable devices, a lower 𝐹1-score is ob-
served when compared to the use of the respiratory flow
signal. Nevertheless, the actual performance of these
models is less important from a clinical perspective, be-
cause the comparator model in this study is only used
to benchmark and rank the different signal modalities
according to their predictive power. Having these in-
sights can be valuable, because an identification of the
best-performing signal modalities can help to make an
informed choice of sensors during the design of a wear-
able.

Such a wearable can collect longitudinal data from pa-
tients during normal daily activities, on which the com-
parator model can be retrained. Having more lengthy
signalsmakes it possible to considermultiplewindow seg-
ments, which can further boost the model performance.
Furthermore, the availability of more extensive data sets
creates new possibilities to apply advanced deep learn-
ing techniques that have shown to be effective on similar
problem settings with respiratory data [16], while also en-
hancing the generalizability of the current feature-based
model.
Future work will focus on the identification of an op-

timal combination of unobtrusive signal modalities to
avoid redundancy in the selection of signal modalities
within a certain category. Longitudinal, clinical and ex-
ternal validation of the approach will also be performed.
Additionally, to increase trust in the model, interpretable
machine learning methods will be explored. Generating
explanations alongside classifications also allows for phy-
isicans to incorporate the reasoning of the model within
their own decisions.

5. Conclusion
This paper presents a novel machine-learning based com-
parator model that detects changes in the ease of breath-
ing of COPD patients during inspiratory loaded breathing.
Numerical results provide a comparison of different input
signals and models. When applied to the respiratory flow,
a weighted 𝐹1 score of 0.78 is obtained. When considering
other signal modalities that are not as obtrusive, and can
be measured with wearable devices, the ones that offer



the best predictive performance are bioZ, accelerometer
(parasternal) and audio (tracheal), with a weighted 𝐹1
score of 0.69, 0.69 and 0.68 respectively.
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A. Overview of extracted features

Simple features
mean (𝜇) median
standard deviation (𝜎) variance (𝜎 2)
(absolute) minimum (absolute) maximum
absolute energy root mean square
quantiles (10𝑡ℎ) skewness
kurtosis value and range count

Combinations of simple
features
𝜎 2 > 𝜎 𝜎 > 𝑟 ⋅ (max - min)
standard error ⋅ 1

𝜇
duplicate value (max / min)

average over differences mean of second derivative
longest subsequence above
and below mean

count above and below
mean

sum of reoccuring values percentage of reoccuring
values

symmetry percentage of unique values
index of of mass quantiles
(10𝑡ℎ)

number of zero-crossings

energy ratio by chunks 𝑟 ⋅ 𝜎 > 𝜇
mean of 𝑛 largest values first and last location of

minimum
first and last location of
maximum

Complex features
Benford correlation time reversal asymmetry

statistic
c3 statistic complexity-invariant dis-

tance
autocorrelation statistics number of (unique) peaks
binned entropy permutation entropy
fourier entropy CWT coefficients
cross power spectral density autoregressive process coef-

ficient
FFT statistics Langevin coefficients
linear trend statistics augmented Dickey-Fuller

test
Lempel-Ziv complexity esti-
mate

matrix profile
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