CEUR-WS.org/Vol-3483/paper5.pdf

Extracting Unit Tests from Patterns Mined in Student Code
to Provide Improved Feedback in Autograders

Julien Lienard!, Kim Mens’ and Siegfried Nijssen’

'ICTEAM, UCLouvain, Belgium

Abstract

CS1 courses with large student numbers commonly use autograders to provide students automated feedback on basic
programming exercises. Programming such feedback to integrate it into an autograder is a non-trivial and time-consuming
task for teachers. Furthermore, such feedback is often based only on expected outputs for a given input, or on the teacher’s
perception of errors that students may make, rather than on the errors they actually make. We present an early implementation
of a tool prototype and supporting methodology to address these problems. After mining the source code of earlier students’
responses to exercises for frequent structural patterns, and classifying the found patterns according to these students’ scores,
our tool automatically generates unit tests that correspond to bad practices, errors or code smells observed in students’
submissions. These unit tests can then be used or adapted by a teacher to integrate them into an autograder, in order to
provide feedback of higher quality to future generations of students.

Keywords

CS education, pattern mining, unit testing, code generation, autograders, automated feedback

1. Introduction

Automated graders [1] are often used in the context of
introductory programming courses to assist students by
providing automated feedback on their programming
exercises. This feedback should be of high quality and
as detailed as possible, so that it can help the students to
learn from and correct their errors autonomously.

Motivation

Creating such automated feedback to be integrated in an
autograder is a non-trivial and time-consuming task for
teachers. As a consequence, often they limit the feedback
to what can be checked by comparing the output of stu-
dents’ programs on given inputs to the expected outputs.
In this work, we argue that more qualitative feedback
could be derived from structural regularities discovered
in the source code of students’ submissions.

Part of the challenge is to decide what regularities
are most relevant for this purpose, and secondly how to
transform these regularities into tests that could be run
on students’ submitted source code. Our proposal is to
generate such tests after using a combination of a code
mining algorithm and a manual analysis of the outcome
of this code mining process by teachers. This data mining
algorithm looks for frequent code patterns that are more
representative for bad solutions than good solutions.

15th Seminar on Advanced Techniques & Tools for Software Evolution
— SATToSE 2023

@) julienlienard@uclouvain.be (J. Lienard);
kim.mens@uclouvain.be (K. Mens); siegfried.nijssen@uclouvain.be
(S. Nijssen)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

Reviewing earlier submissions can reveal a lot about
how students approach problems and come up with an-
swers. Teachers may be able to provide better feedback
to students if they are aware of these patterns in typical
good and bad solutions. Students who struggle with a
particular exercise may benefit from seeing positive in-
stances of ‘good’ solutions as well as from identifying
‘poor’ patterns in their code in order to understand why
it is incorrect.

Research Questions

Our long-term goal is to aid teachers of introductory
programming courses to include relevant feedback in
autograders, in order for students to better understand
and correct their mistakes. The main research questions
of this paper are:

1. Can we discover recurrent error patterns in stu-
dents’ code and use them to create more advanced
feedback?

2. Can we automatically generate test suites from
such identified error patterns, so that instances
of these errors can be detected and reported au-
tomatically to students?

To answer the first research question, we use a data
mining algorithm called FREQTALS for finding frequent
tree patterns in students’ source code [2]. This technique
was tested on a dataset of student code submissions and
was shown previously to be able to find interesting trends
representative of good and bad coding idioms. [3]

To tackle the second research question, we develop
an automated tool to generate unit tests for the discov-
ered patterns in previous student submissions. This tool

mailto:julien.lienard@uclouvain.be
mailto:kim.mens@uclouvain.be
mailto:siegfried.nijssen@uclouvain.be
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Julien Lienard et al. CEUR Workshop Proceedings

can help teachers incorporate these unit tests into an
autograder, to provide more comprehensive feedback to
students. We believe that our tool prototype has the po-
tential to enhance instruction effectiveness and improve
students’ learning outcomes.

The focus of the current paper is mainly on the process
of extracting unit tests from selected patterns. The min-
ing algorithm itself was already reported upon before,
and extending the unit tests with detailed feedback that
helps students overcome their errors is mostly a manual
effort still.

Validation

As initial ongoing validation of our tool prototype we
compiled a sizable dataset of Python code taken from an
instance of the INGInious [1] platform, an autograder
that enables students to submit and receive feedback on
programming exercises. The dataset corresponded to a
final exam for an entry-level programming course with
569 students. We applied the FREQTALS code mining al-
gorithm to this dataset to identify common patterns, and
then generated unit tests to check which of these patterns
are present in the source code of the student submissions.
A teacher selected and augmented a few of these patterns
to give more advanced feedback to students, based on the
discovered structure in their submitted code. The gen-
erated unit tests for these patterns together with their
additional feedback were then added to the autograder,
to be used by students to prepare for future exam ses-
sions. A more thorough analysis of how students use and
appreciate this feedback will be the focus of a follow-up

paper.

2. Related Work

The development of automated methods to generate feed-
back on programming exercises is an important field
when it comes to helping students who learn how to
program.

Importance of feedback

A systematic literature review on automated feedback
for programming exercises was conducted by Keuning et
al. [4]. Their survey analysed and categorised 69 papers
according to 4 factors:

Kind of feedback;

Technique used for the feedback;
Adaptability by the teachers;

4. Quality of the feedback.

W ono

According to this survey, the majority of current meth-
ods to generate automatic feedback for programming ex-
ercises look for coding mistakes by using static analysis

methods such as parsing and type checking. Depending
on the programming language used and the kind of feed-
back given, various methods can be helpful in different
situations. The need to manage multiple programming
languages, the complexity of natural language creation,
and the issue of assessing the quality of the generated
feedback were some of the challenges and restrictions
the authors mentioned.

Our proposed technique tries to improve the kind of
feedback given to students on programming exercises by
helping teachers identify recurrent errors and to auto-
matically generate unit tests that can detect such errors
in students’ code. We do not yet automatically produce a
description of the feedback in natural language for those
unit tests.

Solution errors occur in programs when they do not per-
form as expected. These errors can manifest themselves
in the form of logic errors, when a program does not
correctly accomplish a desired task. Our technique aims
to transform detected knowledge about mistakes into au-
tomated feedback capturing solution errors to be included
into an autograder.

Narciss [5] argues that feedback is very important
when it comes to online learning. Having a feedback
loop helps students to really understand and complete
their exercises successfully. She also showed that offer-
ing answer-until-correct (AUC) exercises with feedback
is generally more effective than feedback on ‘one-shot’
exercises. AUC feedback alone may not be sufficient for
some learning activities however, according to her study,
which suggests that it should be coupled with rich elabo-
rated feedback. AUC feedback is advantageous because it
provides students with numerous chances to apply what
they have learned and fix their mistakes, improving their
memory of the material. In this work, we try to make
feedback more rich by making it more personalised, by
comparing the student’s submission to recurring errors
that have been detected in submissions by earlier gener-
ations of students.

Feedback generation

The Concepts and Skills based Feedback Generation Frame-
work (CSF2) was proposed by Haldeman et al. [6] for
designing programming assignments, analyzing student
submissions, and generating hints for assisting students
in correcting their errors. In this method, the set of con-
cepts and skills, called knowledge map, that students are
required to master to complete the assignment is taken
into consideration while creating the task, creating the
test suite, gathering and organizing submissions, and re-
fining the test suite and knowledge map. Errors are then
mapped to concepts and skills into what they call a bucket.
New tests are then created by hand to assess the common
errors found in each bucket. The described framework

Julien Lienard et al. CEUR Workshop Proceedings

presents a useful structure for improving classroom in-
struction and identifying students’ errors and misconcep-
tions. The framework is described as a sequence of steps.
Our proposed approach is complementary in the sense
that it could automate some of these steps, such as the
creation of test suites.

One of the state of the art tools to create personal-
ized feedback is AutoGrader [7]. Teachers first provide a
reference solution and a list of possible mistakes before
students can use AutoGrader. This information is then
used by AutoGrader to generate potential code modifica-
tions that students could apply to reach the right answer.
The authors start from the hypothesis that student mis-
takes can be predicted by teachers. In our approach,
we do not make that assumption and instead attempt to
identify frequent mistakes made by students by studying
assignments submitted by prior student generations.

Another interesting automated tool, closer to what we
propose, is CARLA [8]. It uses existing correct student
solutions in order to try and repair the code of students
who made mistakes. In order to do so, it first groups
accurate student answers using the concept of dynamic
equivalence. The clustering, which serves as basis for
the repair process, groups together similar correct solu-
tions. The repair algorithm then uses expressions from
several correct answers that are located in a same cluster
to build minimum corrections for an incorrect student at-
tempt. The strategy reduces the adjustments required to
make a student reach a proper solution by using the most
comparable accurate solutions, written by other students.
Our technique instead uses all students’ code (not only
correct solutions) and, rather than using dynamic equiv-
alence, uses frequent tree pattern mining to group them.
From those groups we create tests that correspond to the
patterns found and let teachers pick the most interesting
ones and add meaningful feedback to those tests. Our
tool thus doesn’t focus on code repair but rather on the
automatic creation of unit tests.

Our work is comparable to a tool called Codewebs
proposed by Nguyen et al. [9]. Their strategy uses the
solutions of prior submissions to create customized feed-
back for large MOOCs. They created a queryable index
for quick searches into a sizable dataset of student as-
signment entries by breaking down online homework
submissions into a vocabulary of “code phrases”. They
argue that by force-multiplying teacher effort, tools like
Codewebs can help improve the quality of free education.
They use shared structure among submissions to create
specific feedback on student errors. Both our work and
Codewebs use the data from student submissions from
a MOOC, but our approach uses a different method to
identify shared structure in student submissions.

Other sources of inspiration

As stated in the introduction, our paper can be regarded
as an extension the experiment described by Mens et
al. [3]. They used pattern mining on students’ code sub-
missions to detect recurring errors made by students
participating in a first-year programming course. Our
main contribution is the addition of test generation for
matching the discovered patterns, in order to apply it to
new students’ code submissions. The goal of this exten-
sion is to, after having discovered frequently occurring
mistakes using the technique described by Mens et al.,
generate tests that can make students aware of such mis-
takes and as such help them correct and avoid them in the
future. We created a first tool prototype, used it to create
a test task for students using this generation technique,
and are currently analysing initial results to see if the
feedback received helps students correct their mistakes.

3. Methodology

Figure 1 summarises the different steps of our approach
and tools to help teachers integrate more advanced feed-
back for students in an autograder, based on patterns
observed in previous students’ submissions. The first
step consist of gathering the source code of these prior
submissions (cf. 3.1). The second step extracts abstract
syntax trees from this source code to be given as input to
the tree mining algorithm, which then finds frequently
occurring patterns in those ASTs (cf. 3.2). From the list of
discovered patterns, in step 3 teachers select the most in-
teresting ones that they would like to convert into python
unit tests (cf. 3.3). They can then adapt and integrate
these generated unit tests into the autograder to provide
additional feedback to the students based on the struc-
ture of their code to help them understand and correct
their mistakes (cf. 3.4).

3.1. Data gathering

To gather a sufficiently large data sample, we had access
to the source code submitted by students on small pro-
gramming exercises and exam questions in the context of
an entry-level programming course at university. They
submitted their code on and received feedback from the
INGInious platform ', an open source and online teaching
assistant used by several universities around the world.
For the experiment described in this paper, we collected
the code submitted by students in response to an exam
question, which asked students to write a program that
computes the prime factors of a given number.

The following signature and specification of the func-
tion they had to write was given to the students:

!https://inginious.org/

https://inginious.org/

Julien Lienard et al. CEUR Workshop Proceedings

<4 8.8

4@

v
{5

1. Data gathering 2.a Extract AST

2.b Mine Pattern in AST

A Feedback

3. Test Generation : 4.F Creation

Figure 1: The 5 steps of our technique to provide improved feedback to students based on unit tests generated from patterns
discovered in submissions made by previous generations of students.

def factors(n):
Pre:
Post:

n a strictly positive integer
returns integer representing
number of prime factors of n

"o

code to complete

together with an example of what results the function
should return for some given cases:

factors (33) # returns 2 (33 = 3x11)
factors (12) # returns 3 (12 = 2x2x3)
factors (8) # returns 3 (8 = 2x2x2)
factors (127) # returns 1 (127 prime)

The exam context guarantees that students responded
to the questions individually and under similar condi-
tions, on university computers in a classroom setting.
Furthermore, whereas students received automated feed-
back throughout the semester and when preparing for the
exam, during the exam itself the autograder’s feedback
option was turned off. This implies that the patterns
which we discovered after analysing the student’s re-
sponses to the exam questions were not biased by any
feedback they received on those questions.

As in the mining experiment described by Mens et
al. [3], we separated the dataset in 2 groups: students
who obtained a score of 50% or more on the question and
those who obtained a score of less than 50%. This score
was calculated automatically by running a set of unit tests
that checked different input-output pairs that a correct
solution should respect. Taking these two subsets as
input, the mining algorithm would try and find patterns
that are more representative for one set than for the other.

3.2. Pattern mining

FREQTALS [2] is a tree mining algorithm designed to
identify frequent patterns in the abstract syntax trees
(ASTs) of programs. Each pattern is a tree structure that

represents a part of an AST. FREQTALS is based on the
FREQT algorithm [10] and identifies frequent patterns
in a dataset by iteratively generating candidate sets of
patterns and pruning those that do not meet a minimum
support threshold. FREQTALS requires the ASTs it takes
as input to be in a particular XML tree format. Our tool
makes sure this format is followed, by using a Python
parsing library to convert the Python programs written
by students into the format required by the miner. Code
that could not be parsed was not considered for the test
generation.

FREQTALS can be configured with various constraints,
such as the minimum number of files in which the pattern
can be found, the minimum or maximum size of the
patterns, and the list of allowed root nodes (i.e. what
types of syntactic constructs, such as Python function
bodies, the miner should focus on). All these constraints
were configured as described in the original paper.

As the ASTs of the students’ code are tree-like rep-
resentations, FREQTALS searches for patterns in tree
structures. It takes into account the structural character-
istics of the patterns, such as the placement of the child
nodes and the frequency with which particular labels
appear in the tree. The pattern miner discovers different
types of patterns, including control flow patterns, data
structure patterns, and algorithm pattern types. Com-
mon programming constructs like loops, conditionals
and function calls can be included in these patterns, as
well as more specialized language constructs like list
comprehension or generator expressions.

We used the FREQTALS tree miner to find common
patterns in the ASTs of the programs submitted by both
the group of students who obtained 50% or more and by
the group who scored less than 50%, in order to assess the
efficacy of our tool. Whereas we kept the same configura-
tion settings as in the original paper, we did experiment
with different values to set the threshold for a pattern
to be considered as ‘frequent’. We experimentally deter-

*https://docs.python.org/3/library/ast.html#ast.parse

https://docs.python.org/3/library/ast.html#ast.parse

0 NN NUT R W=

Julien Lienard et al. CEUR Workshop Proceedings

Listing 1: Example of an augmented unit test written using our technique.

class TestQ(unittest.TestCase):

def __init__(self ,=args ,=«kwargs):
super (). __init__(+args, =xkwargs)
with open(str(q.__name__)+’.py
self.ast = ast.parse(f.read())

def test_hard_coded_list(self):

if match_pattern_2(self.ast):
self.fail ("Feedback:
Try to generalise your solution

Avoid using hard coded
)

,0r’) as f:

lists of precalculated numbers.

mined that four occurrences seemed to strike a decent
compromise between too broad and too narrow patterns.

3.3. Unit test generation

The pattern miner’s output is an XML file containing the
tree structure of all discovered patterns. We transform
this output into a set of Python unit tests. We want each
resulting unit test to check whether a code submission
matches a pattern found by the mining algorithm. To
do so, for a given pattern, our unit test generation tool
traverses its structure. For each node of the pattern’s
tree, the tool generates a Python code block that searches
for corresponding AST nodes in the code to be checked.
If the pattern node has children, the tool searches the
children of the found AST node for matches in its children.
This search is repeated until all nodes in the pattern’s
XML structure have been checked, but if no match is
discovered, the tool backtracks to the next matching AST
node. A fragment of such a generated unit test can be
found in Listing 4 in Subsection 4.2.

3.4. Feedback creation

Our longer-term research goal is to assist teachers in
providing students with more insightful feedback on their
exercises. The generated tests are to be used to evaluate
students’ code automatically and to be augmented with
more specific feedback on the errors they make.

After having run the pattern miner on previous stu-
dents’ submissions to existing assignments, teachers can
select any pattern that catches their attention, and gener-
ate a Python unit test for it. They can then add additional
feedback to that unit test and include it into the auto-
grader for that assignment, or they can use it to design a
new assignment around that pattern.

The generated test will fail and reveal problems in stu-
dents’ code if it does not adhere to the pattern. Students
can then rely on this augmented feedback provided by
the teacher in order to help them fix their mistakes (see
Listing 1). Compared to just receiving a mark or general

feedback on the overall quality of their code, this may be
more useful.

The augmented unit test of Listing 1 would match a
pattern (match_pattern_2, shown in Listing 4) that
verifies whether a student uses a hardcoded a list of num-
bers in their solution (typically a list of prime numbers
to be used for the factorisation) and suggest the student
to avoid using such a hardcoded list in order to obtain a
more generic solution.

4. Initial Experiment

In this section we will describe the results of an initial
experiment we conducted to assess the pattern mining
tool and a first prototype implementation of our unit test
generation tool.

4.1. Patterns

For the exam question mentioned in subsection 3.1, we
gathered the code submitted by a total of 569 students.
Of these, 560 were parsed successfully and included in
our analysis. Most of the code that didn’t parse was
unfinished code or code containing syntax errors. The
code was then split into two groups: 149 submissions for
which the students obtained a score of less than 50%, and
411 submissions with a score of 50% or higher. (These
scores were calculated automatically with an autograder,
after completion of the exam, using a set of graded unit
tests that were programmed by the teacher beforehand.)

Next, playing the role of a teacher, we analysed all 147
patterns mined by the FREQTALS algorithm to identify
which of them could be interesting or potentially useful
to transform into unit tests. This analysis included a
review of the number of times each pattern appeared
in the code of the high-scoring and low-scoring groups,
as well as a manual review of the patterns themselves
to identify if they captured a common mistake made by
several students. Other criteria we used in our selection
were whether the pattern’s absence or presence affected
the code’s quality, the total number of occurrences of the

Julien Lienard et al. CEUR Workshop Proceedings

<Assign>
<_ directives>
<match-sequence/>
</__directives>

targets

value

<targets>
<Name>
<identifier>
<Dummy>
</Dummy>
</identifier>
</Name>
</targets>
<value>
<List>
<elts>
<__directives>
<match-sequence/> elts
</__directives>
<Constant>
<identifier>
<Dummy>
</Dummy>
</identifier>
</Constant>

DOODOOD

</elts>
</List>
</value>
</Assign>

Figure 2: Example of a fragment of the XML and AST for the
pattern 2

pattern and the difference between matching code in the
high-scoring and low-scoring groups.

We discovered several patterns that could reveal poten-
tial bad practices or errors in students’ code. An example
of such a bad practice is illustrated in Listing 2. This
code corresponds to a match of the second pattern that
was found. The corresponding XML pattern and AST
representation are shown in Figure 2.

The part of the code that matches the pattern is high-
lighted in red in Listing 2. The pattern matches code
fragments where students hard coded the list of prime
factors to check. We found 6 students’ code that matched
this pattern. A high-level feedback that the teacher may
want to add for this pattern is that computing those num-
bers is probably a more generic solution than hard-coding
them in a list.

Listing 3 is an occurrence of another pattern showing
a student’s code that is close to a good solution. Unfortu-
nately the student should have used a while-statement
instead of an if-statement at line 9. This pattern was
found in the code of 8 students. A teacher may want to
provide as feedback to these students that they may have
confused an ‘if” for a ‘while’.

In addition to analysing the discovered patterns them-
selves, the mere fact of having to walk through code
fragments that match certain patterns, sometimes leads
to the discovery of other recurrent errors that were not

Listing 2: Example of a student’s bad practice: hard cod-
ing the list of prime numbers to check.

def factors(n):
1=1[23,5,7,11,13,17,19] #list of primes
i =0
t=[]
for i in range(le
if nzl[i] =

Listing 3: Example of a student’s code close to the correct
solution, but confounding ‘if” and ‘while’.

def factors(n):
count=0
if n==1:
return 0
if n<o0:
return False
s=n
for i in range (2,n):
if n%i==0:
s=s/i
print(s)
else:
count+=1
return count

found by the miner. One such error is the overuse of
nested loops. Even if we found some cases where stu-
dents achieved to create correct code using more than
2 nested loops, we did observe that such code becomes
quite hard to read and is to be avoided.

It should also be said that not all patterns that were
mined were of interest. Some of them do capture re-
curring Python code fragments but do not necessarily
provide any information on the student’s code quality.
For example, pattern number 60 described a code frag-
ment containing an if with a return inside followed
by a return at the end of the function. That by itself
doesn’t say anything about whether the code is good
or bad. It is the teacher’s job to filter, from all patterns
discovered by the miner, the most relevant ones worth
checking.

O 0 N N U R WD =

—_
(=]

O 00 N N U R W N =

N el ol
B W N =R O

[S

O 0 I

Julien Lienard et al. CEUR Workshop Proceedings

Listing 4: Example of test block generated for the pattern 2 that will search a function definition inside all blocks in the AST

def match_pattern_2(myast):
blocks1 = [val for val
if len(blocks1) < 1:
return False
for block1l in blocks1:
functiondefs1 = [val for val
val, ast.FunctionDef)]
if len(functiondefs1) < 1:
continue
functiondef1l in functiondefs1:
more test blocks

for

in ast.walk(myast)

in ast.iter_child_nodes(block1) if

if hasattr(val, ’body’)]

isinstance (

4.2. Test generation

The FREQTALS algorithm identified a total of 147 fre-
quent patterns in the code submitted by both groups of
students. The patterns can occur in one or both the high-
scoring and low-scoring groups. When a same pattern
occurs in the high-scoring group or in both groups at
the same time, it often means that the pattern is either
a part of or close to a good solution (such as the pattern
depicted in Listing 3) or an uninteresting pattern. When
a pattern can only be found in the low-scoring group, it
is often a pattern representing an error or bad practice
(such as the pattern depicted in Listing 2) but sometimes
also a pattern of no interest. For each of the discovered
patterns, our tool could produce a unit test.

It should be noted that out of the 147 frequent code pat-
terns found, about two thirds were patterns too generic
to be useful (for example a pattern that just matches the
presence of two assignment statements in the code). Of
the remaining patterns, about half were representative
of code fragments occurring in good solutions and the
other half were patterns occurring mostly in the bad solu-
tions. Some patterns often tend to be quite close to other
patterns as well, so in the end the teacher kept only a
handful of relevant patterns to be transformed into unit
tests.

Apart from this problem of having to wade manually
through the many patterns found to retain only a few
relevant ones, we also faced another issue which was
to ensure that the Python code generated for unit tests
remained understandable to teachers. This is desirable
as it allows teachers to understand the pattern just by
looking at the Python code. It also allows them to adapt
the tests afterwards if need be. This is not easily achieved,
however, since we want our generated unit tests to match
exactly the same code fragments as the patterns found by
the miner and since this matching is non-trivial, amongst
others due to the need to for backtracking.

To keep the tests understandable, we construct them
using test blocks. An example of two combined test

blocks is shown in Listing 4. In the first block (lines
2-5), we search for all instances of a ‘body’ node in the
code. If no ‘body’ nodes are found, the pattern cannot
be matched (lines 3-4). Then, we iterate through each
identified ‘body’ node (line 5). The second block is visible
from lines 6 to 9.

The first block employs the ast.walk()’ func-
tion to search for the root node of the pattern any-
where in the code, while the second block uses
ast.iter_child_nodes ()" to search only within the
direct child nodes of the currently matched node. A
return statement only appears in the first block, while
the cont inue statement on line 8 allows us to fall back to
the next matching node. This same structure is followed
by all of the other test blocks as well.

We believe that, to some extent, this block structure
allows us to reach an acceptable trade-off between read-
ability and correctness of the test. We do think that,
once a teacher understands the block structure of the
generated unit tests, the tests remain sufficiently under-
standable. Adapting the tests slightly to capture slight
variations of the pattern is possible, although not trivial.

4.3. Feedback creation

For our dataset consisting of student submissions for an
exam question, we created 4 unit tests generated from or
inspired by the mined patterns. We offered this question,
with the additional unit tests adorned with the dedicated
feedback we added, to new students as a revision exercise
to help them prepare for an upcoming exam session. Of
the 4 unit tests that we added, 3 of them were generated
directly from the patterns found by FREQTALS, including
the two patterns shown in red in Listings 2 and 3. The
third pattern that we used was one which represents the
usage of return inside of loops. The last one did not
correspond to a mined pattern but rather to a recurrent

Shttps://docs.python.org/3/library/ast html#ast.walk
“https://docs.python.org/3/library/asthtml#ast.iter_child_
nodes

https://docs.python.org/3/library/ast.html#ast.walk
https://docs.python.org/3/library/ast.html#ast.iter_child_nodes
https://docs.python.org/3/library/ast.html#ast.iter_child_nodes

Julien Lienard et al. CEUR Workshop Proceedings

error that we discovered manually in the students’ code
while analysing the dataset, as explained in Section 4.1.

At the time of writing, about 66 students have given
this revision exercise at least one try. Of those, 23 stu-
dents received at least one of the 4 dedicated feedbacks
that we added to this exercise. We analysed the submis-
sion of those 23 students and saw that the given feedback
was useful for at least 6 of them. Indeed, we could ob-
serve that, after they took the feedback into account, the
students obtained a better score for the question and
didn’t match the pattern anymore after they corrected
their code.

5. Conclusion

In this paper we explored whether we could identify re-
current patterns highlighting errors or bad practices in
students’ code and use them to create more advanced
feedback to be included in an autograder. We did so by
first mining the solutions of a large amount of students
for frequently occurring patterns using the FREQTALS
tree mining algorithm. We then manually analysed each
of these patterns to find those that match typical mis-
takes that many students seem to make in their solution.
We also found that for some of these patterns, creating
advanced feedback when they are detected could help
student produce code of better quality.

Our second step was then, for the selected patterns, to
automatically extract unit tests that match exactly the
same source code as the mined patterns. These unit tests,
which would thus check for typical coding errors made
by students, could then be extended by a teacher with
a more personalized feedback on that particular kind
of error. These unit tests can then be included in an
autograder so that students making these mistakes get
more accurate feedback on the errors they make.

As both the FREQTALS miner and the test generation
tool in essence only require an AST to mine for patterns
and generate the tests, these tools can easily be applied
to other programming languages than Python as well.

In this work in progress paper, we mainly presented
our vision and the current implementation of our tool
prototype. Although we have started exploring the usage
of this tool on real data, for now the purpose of the vali-
dation was more to ensure that the tool has potential and
is working correctly. Obviously a more thorough and
in-depth validation on more data and with real students
and teachers is still needed. On the one hand we want to
study and understand how teachers use the tool and how
the tool can be improved further to satisfy their needs.
On the other hand we want to validate that the students
effectively benefit from the improved feedback provided
by the generated test suites (i.e., better scores and better
code quality).

References

[1] G. Derval, A. Gego, P. Reinbold, B. Frantzen,
P. Van Roy, Automatic grading of programming
exercises in a MOOC using the INGInious platform,
European Stakeholder Summit on experiences and
best practices in and around MOOCs (EMOOCS’15)
(2015) 86-91.

[2] H. S. Pham, S. Nijssen, K. Mens, D. D. Nucci,
T. Molderez, C. D. Roover, J. Fabry, V. Zaytsev, Min-
ing patterns in source code using tree mining algo-
rithms, in: International Conference on Discovery
Science, Springer, 2019, pp. 471-480.

[3] K. Mens, S. Nijssen, H.-S. Pham, The good, the
bad, and the ugly: mining for patterns in student
source code, in: Proceedings of the 3rd Interna-
tional Workshop on Education through Advanced
Software Engineering and Artificial Intelligence,
2021, pp. 1-8.

[4] H.Keuning, J. Jeuring, B. Heeren, Towards a sys-
tematic review of automated feedback generation
for programming exercises, Association for Com-
puting Machinery, New York, NY, USA, 2016.

[5] S.Narciss, Feedback Strategies for Interactive Learn-
ing Tasks, 2008, pp. 125-144.

[6] G.Haldeman, A. Tjang, M. Babes-Vroman, S. Bartos,
J. Shah, D. Yucht, T. D. Nguyen, Providing mean-
ingful feedback for autograding of programming
assignments, Association for Computing Machin-
ery, New York, NY, USA, 2018.

[7] R.Singh, S. Gulwani, A. Solar-Lezama, Automated
feedback generation for introductory programming
assignments, in: Proceedings of the 34th ACM
SIGPLAN conference on Programming language
design and implementation, 2013, pp. 15-26.

[8] S. Gulwani, I. Radicek, F. Zuleger, Automated clus-
tering and program repair for introductory pro-
gramming assignments, ACM SIGPLAN Notices 53
(2018) 465-480.

[9] A.Nguyen, C.Piech,J. Huang, L. Guibas, Codewebs:

Scalable homework search for massive open on-

line programming courses, in: Proceedings of the

23rd International Conference on World Wide Web,

ACM, 2014, pp. 491-502. doi:10.1145/2566486.

2568023.

T. Asai, K. Abe, S. Kawasoe, H. Sakamoto,

H. Arimura, S. Arikawa, Efficient substructure

discovery from large semi-structured data, IEICE

TRANSACTIONS on Information and Systems 87

(2004) 2754-2763.

(10]

http://dx.doi.org/10.1145/2566486.2568023
http://dx.doi.org/10.1145/2566486.2568023

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data gathering
	3.2 Pattern mining
	3.3 Unit test generation
	3.4 Feedback creation

	4 Initial Experiment
	4.1 Patterns
	4.2 Test generation
	4.3 Feedback creation

	5 Conclusion

