CEUR-WS.org/Vol-3483/paper6.pdf

A Robust and Automatic Approach for Matching Algorithms

Alessandro Midolo!, Emiliano Tramontana’

!Dipartimento di Matematica e Informatica, University of Catania, Catania, Italy

Abstract

Modern software applications can have millions of lines of code. Moreover, while several developers collaborate to develop
code, each of them could have their own coding style, e.g. follow a personal code convention, prefer some data structures, etc.
Having a large amount of code and several coding styles can negatively affect the readability of the code, especially when this
has not been documented properly. Furthermore, a somewhat incorrect version of an algorithm would lead, besides to the
presence of bugs, an involute, complex and inefficient code.

This paper proposes an automatic approach that aims at matching two (or more) versions of an algorithm. By means of
static analysis, our approach finds the statements of the analysed algorithm, applies a transformation to avoid depending on
some details, e.g. naming conventions, and then computes a similarity score between the resulting statement list and a set of
known algorithms that have been collected and analysed beforehand. The similarity score will be computed according to a
custom version of the Levenshtein distance, tailored to handle a statement list. The proposed approach has been tested on

some sample algorithms to check the accuracy of the analysis and the precision of the match.
The said solution can assist the developer to ease the understanding of the source code, suggest improvements, and
propose alternative versions, e.g. from recursive to iterative or viceversa, less memory-demanding, functionally correct, etc.

Keywords

Static analysis, coding suggestions, code reuse, refactoring

1. Introduction

The bigger the repositories the greater the demanding
effort for developers when trying to understand code
implemented by their colleagues. Visually inspecting
source code to understand its structure and the function-
alities could be time consuming and error-prone, since
developers could misidentify some algorithms. Generally,
this occurs when the source code documentation is poor,
or missing, and when many developers contribute to the
same project.

Automatic Program Comprehension (PC) tries to solve
these issues by proposing several approaches that auto-
matically assist developers to understand source code [1,
2]. Several applications of the PC have been presented:

source code classification according to specific categories [3,

4, 5], code clone detection, and algorithm recognition.
Automatic approaches can help in analysing, compre-
hending and improving the source code, by means of
tools that support the works of developers [6, 7, 8].

The state of the art shows several techniques to au-
tomatically identify algorithms. Machine learning ap-
proaches have been presented [9, 10], where different
classifiers are used to label code fragments. Other pro-
posals use a hybrid approach, mixing static analysis to

SATToSE 2023: 15th Seminar on Advanced Techniques & Tools for

Software Evolution, June 12—14, 2023, Fisciano (Salerno), Italy

@) alessandro.midolo@phd.unict.it (A. Midolo);

tramontana@dmi.unict.it (E. Tramontana)

@ 0000-0002-9575-8054 (A. Midolo); 0000-0002-7169-659X

(E. Tramontana)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

===1 CEUR Workshop Proceedings (CEUR-WS.org)

extract data from the code and machine learning classi-
fiers to identify the algorithm [11, 12, 13]; their classifier
is based on a set of structural and truth value charac-
teristics that are strictly related on sorting algorithms,
therefore new beacons should be defined for different
categories of algorithms. Furthermore, these approaches
require a new training of the dataset if new labels are in-
cluded in the classification, which can be time consuming
and complex.

This paper focuses on algorithm recognition and presents
an innovative approach that automatically matches algo-
rithms by inspecting the source code. Our approach uses
static analysis to collect data from the source code and
compute a similarity score with templates of known algo-
rithms to identify the correct one. The use of templates
guarantees that: new algorithms can be easily added for
the recognition step; multiple versions of the same algo-
rithm can be used to improve the accuracy of the iden-
tification; many;, if not all, categories of algorithms can
be recognised (sorting, searching, traversing, etc.). The
proposed approach consists in four main phases: firstly,
a code parsing tool collects all the statements of the algo-
rithm analysed; secondly, a statement transformation is
performed to extract the data required for the similarity
match; thirdly, the Levenshtein distance is computed to
attribute a similarity score between the algorithm and a
set of known templates, representing other algorithms;
finally, the template with the highest similarity score is
selected.

Levenshtein distance has been widely used in program
analysis, especially for code clone detection when evalu-
ating the similarity between code fragments [14, 15, 16].

mailto:alessandro.midolo@phd.unict.it
mailto:tramontana@dmi.unict.it
https://orcid.org/0000-0002-9575-8054
https://orcid.org/0000-0002-7169-659X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

However, such approaches are strictly related to detect-
ing clone fragments. Such approaches focus on detect-
ing type-3 clones that are portions of code that differ
in terms of whitespaces, comments, layouts and iden-
tifiers, and can have some modifications like addition
or removal of statements [17]. Conversely, we propose
another approach in which different statements of the
algorithms under analysis are reflected on the matching
score, hence having a varying degree of matching; more-
over, the above said approaches refer to types and names
(e.g. methods and fields names) to detect clones, whereas
our approach focuses on the statements freed from the
developer chosen names, providing a more generalised
identification.

The rest of the paper is organised as follows. Section 2
describes the proposed approach with all the steps fol-
lowed by the analysis. Section 3 shows three examples of
the use of the approach and how the similarity score is
computed on real scenarios. Section 4 displays the met-
rics obtained by the analysis of the examples previously
shown and a comparison with a text similarity approach.
Section 6 reports meaningful related works and compares
them with our approach. Finally, conclusions are drawn
in Section 7.

2. Proposed Approach

We propose an approach that gathers data by parsing
the source code and then evaluates the similarity score
of an algorithm and a set of known algorithms. The
proposed approach makes a proper generalisation of the
algorithms to avoid depending on naming conventions
or on statements that are not contributing to the main
goal of the analysed algorithm. We make use of the static
analysis of the source code, hence executable files are
not needed for the analysis. Algorithm 1 shows the main
steps, as psuedo-instructions, followed by the proposed
approach to match algorithms. The procedure takes as
input the source code, variable SC, and parses it extract-
ing the compilation units. Then, method declarations
are extracted and, for each, all the statements types are
collected and compared to the algorithm templates to
compute the similarity score. The approach can be struc-
tured in four steps: (i) parsing the source code by means
of a tailored Visitor to gather all the data needed for the
following analysis; (ii) selecting and transforming the
most relevant statements; (iii) computing an adapted Lev-
enshtein distance to determine the similarity score; (iv)
evaluating the matching degree of the algorithms.

2.1. Code Parsing

We perform code parsing, by means of the Javaparser
library, to extract all the data required to evaluate the sim-

Algorithm 1 The algorithm of the proposed approach

procedure MATCHINGALGORITHM(SC)
compilationUnits < parseAllPaths(SC)
for cu, compilationUnits do
methods < visit Methods(cu)
end for
for mDecl, methods do
stmts < mDecl.getStatementsTy pe()
for tmp, templates do
Tstmts < tmp.getStatementsTy pe()
score <— computeLV D(stmts, T'stmts)
mDecl.collectScore(tmp, score)
end for
end for
end procedure

ilarity score. Javaparser is an automatic parser that gen-
erates an abstract syntax tree (AST) from source code and
provides a set of APIs to perform operations on it [18].

The root of the AST is the CompilationUnit (represent-
ing a Java file) to which all code elements are connected,
e.g. package declaration, class and methods declarations,
etc. Code inspection has been performed by using the
VoidVisitorAdapter class, which lets us define a Visitor
class to search for a specific property. In the Visitor class,
the method visit() was implemented, which takes as pa-
rameters the type of object being searched (e.g. method
declaration, statement, field), and the container in which
data are stored; the body of the method contains all the
instructions that are executed for every object found of
the type specified as a parameter.

We have defined a Visitor which looks for MDs (method
declarations); once a MD is found, the visit() method ex-
tracts from its body all the statements, and stores them
in a List preserving the order. The list of statements pro-
vided by Javaparser is further expanded, as it would oth-
erwise miss: (i) nested statements (e.g. all the statements
present in the body of a for loop, defined as ForStmt),
and (ii) expressions, such as assignments, method calls,
variable declarations, etc. (defined as ExpressionStmt).

2.2. Statements Transformation

The statements initially gathered by Javaparser are trans-
formed to better serve the following analysis. Javaparser
provides a function, getStatements(), to get the statements
contained in the body of a method declaration; nested
statements, e.g. statements contained in a for loop, are
omitted be the said getStatements(), and just the par-
ent statement is inserted in the list. To collect all the
statements inside the method, we further extract nested
statements and we place them in the list of statements
right after their parent, preserving the order of the block.
Whereupon, for each statement in the list, we extract the

Table 1

Some examples of statement types defined in the Javaparser
library (see the documentation for the complete list'). The
ExpressionsStmt is handled differently from others, since it
can represent more types of expressions (method calls, assign-
ments, declarations, etc.).

Statement Type ~ Code

BreakStmt break;

ContinueStmt continue;

DoStmt do{.. }while(a > 0);
ExpressionStmt ~ *

ForEachStmt for(Object : objects)f...}
ForStmt for(a=3;a<99%a++){..}
IfStmt if(a==0){.}

ReturnStmt return a;

class type, avoiding collecting other parts such as names,
types, comments and expressions, to better generalise
the approach, so as to recognise different versions of the
same algorithm; e.g. statement for(int i=0; i<size; i++) is
represented in Javaparser by a ForStmt type, whereas all
the other parts, such as the variable declaration (int i=0),
the binary expression (i<size) and the unary expression
(i++) are omitted. For all the statements that can con-
tain nested statements in their body, e.g. for, if, while,
a custom statement is inserted at the end of the nested
statements; its name is given by the concatenation of the
“End” prefix with the type of the statement containing
the nested ones, e.g. EndlIf, EndFor, EndWhile. This cus-
tom statement allows us to identify which statements
are nested, thus improving the precision of the approach
when comparing algorithms.

The extracted types are defined by the Javaparser li-
brary!. Table 1 shows some examples of statement types:
the column Statement Type represents the type defined by
the library, and the column Code shows an example of the
code associated with the type; further types can be found
in the documentation. The ExpressionStmt type does not
have a code example because it can represent any type
of expression: AssignExpr (a = b +c;), MethodCallExpr
(method();), VariableDeclarationExpr (int a = 0;) etc. This
class type is too generic, hence we select and insert in
the statement list the type of the expression contained
in the statement. If there are nested expressions, e.g. a
method call with argument an ObjectCreationExpr (e.g.
method(a, new object())), we select the parent expression,
in this example the MethodCallExpr.

Listing 1 shows an example of data extracted from a
method: the code on top shows the method bubbleSort();
the bottom part displays the list of statements extracted
by our visitor. The statement list extracted by Javaparser

'https://www.javadoc.io/doc/com.github.javaparser/javaparser-
core/latest/index.html

contains just a ForStmt because all the other instructions
are nested into it, whereas our approach has properly
handled this occurrence and the statement list is defined
as follows: the first two instructions are for statements,
the third is a if statement, the fourth is a variable decla-
ration expression and the last two are assign expressions.

public static void bubbleSort (
int [] sort_arr, int size){
for (int i=0;i<size-1;++1){
for (int j=0;j<size-i-1; ++j){
if (sort_arr[j+1]<sort_arr[j]){

int tmp = sort_arr[j];
sort_arr[j] = sort_arr[j+1];
sort_arr[j+1] = tmp;
}
}
}
}
Statements Type:
ForStmt,
ForStmt,
IfStmt,
VariableDeclarationExpr,
AssignExpr,
AssignExpr
EndIf
EndFor
EndFor

Listing 1: The upper part shows an iterative version of the
bubblesort algorithm implemented in Java, whereas the
bottom part displays the list of statements extracted by
our approach, using the class types defined in Javaparser.

2.3. Adapting the Levenshtein Distance

The Levenshtein distance is a string metric for measuring
the difference between two sequences [19]. It is defined
as the minimum number of operations (replace, insert
and delete) required to change a sequence into the other.
A string can be seen as a list of single characters; the Lev-
enshtein algorithm iteratively compares all the characters
and finds the minimum number of operations (insertion,
deletion or substitution) required to make the two se-
quences equal. We have implemented a custom version
of the algorithm where two lists of statements are the
compared sequences, and every character represents a
single statement. Once defined the number of minimum
instructions, the similarity score is computed as [20]:

levDist(Sy, Sy)
max(size(S;), size(Ss))

Similarity(S;,S;) = 1 —

where S; and S; are the two sequences of statements,
levDist() gives as output the Levenshtein distance, and
size() gives the number of elements in a sequence.

2.4. Algorithm Recognition

Once all the data needed for the analysis have been ob-
tained, we can compute the similarity scores according to
the extracted list of statements, i.e. the analysed method
is compared with a set of known algorithms that have
been gathered and parsed beforehand. We have created
a set of Java files containing the source code of several
known algorithms, and for each one at least two versions
are stored: iterative and recursive. For some algorithms,
more versions have been implemented as the aim is to
improve the accuracy of our analysis. E.g., the bubblesort
algorithm has two different versions, besides the iterative
and recursive versions: the one shown in Listing 1, and
an optimised version where a boolean flag breaks the
execution if no elements are swapped in the inner loop.

Listing 2 shows one of the templates of the iterative
version for the bubblesort algorithm used in our analy-
sis: the code on top displays the implementation of the
algorithm, while the list below represents the statements
extracted by our approach. We show this template be-
cause, according to our approach, it is the most similar
to the code shown in Listing 1. However, the two meth-
ods have several textual differences: firstly, the name of
some variables is different, e.g. the variable representing
number of elements, size and length, the array containing
the elements, sort_arr and list, and the variable used for
the swap, tmp and swap; secondly, the condition in the
IfStmt is inverted; finally, the template has an additional
statement compared to the example, the first statement
VariableDeclarationExpr.

Despite these differences, our approach correctly iden-
tifies the algorithm implemented. According to the Lev-
enshtein distance, the number of operations needed to
match the two sequences is one (an insertion because
the list of statements differ in only one element). Indeed
the similarity score between these two sequences is com-
puted as Similarity = 1 —(1/7) = 0.857, where the the
size of the longest sequence is 7.

3. Evaluation

We tested our approach on four different algorithms, each
implemented as a method. All the templates used by our
approach can be found on a public repository?. The first
example is shown in Listing 1 previously discussed; here,
we discuss three other algorithms: a version of factorial
and two versions of quicksort.

*https://github.com/AleMidolo/MatchingAlgorithms

void iterativeBubbleSortTemplate(int list[],

-~ int length) {

int length = list.length;

for(int i=0; i < length; i++) {

for(int j=1; j < length-i; j++) {

if(list[j-1] > list[j]){
int swap = list[j-1];
list[j-1] = list[j];
list[j] = swap;

Statements Type:
VariableDelcarationExpr,
ForStmt,

ForStmt,

IfStmt,
VariableDeclarationExpr,
AssignExpr,

AssignExpr

EndIf

EndFor

EndFor

Listing 2: The upper part shows one iterative version
of the bubblesort algorithm stored in our template db,
whereas the bottom part displays the list of statements
extracted by our approach, according to the types defined
in Javaparser.

Listing 3 shows a method implementing the factorial
algorithm for an integer value in a recursive form. The
list of statements is as follows: IfStmt, ReturnStmt, Re-
turnStmt. The analysis carried out by our approach has
identified the method as the recursive version of the fac-
torial algorithm with a similarity of 1.0. In such a case,
the similarity is the maximum possible value since given
the simple structure of the algorithm, the types of state-
ments used by such a method match 100% the factorial
algorithm template.

public static int factorial(int n) {

if (n == [] n==1)
return 1;
return n * factorial(n - 1);

Listing 3: An example of the recursive factorial algorithm
implemented in Java.

Moreover, two versions of the quicksort algorithm are

considered to test the approach on different versions of
the same algorithm; both versions propose an iterative
solution.

Firstly, Listing 4 shows an iterative version of quick-
sort algorithm that uses a stack as a support to sort the
elements contained in the array passed as argument. The
method consists in twelve statements, in order: two Vari-
ableDeclaration, MethodCall, WhileStmt, VariableDecla-
ration, AssignExpr, MethodCall, VariableDeclaration, and
two IfStmt with a MethodCall in their body. Therefore,
the method is characterised by such statements, indeed
comments, names and types will be ignored for the pur-
pose of the identification. Our template storage includes
an implementation of the quicksort using a stack to sort
the elements?®; the differences between the template and
this method are: the template has an additional Vari-
ableDeclarationExpression before the first push() call; in
the example, the first instruction after the WhileStmt is
a VariableDeclarationExpr, while in the template it is an
AssignExpr; the partition() method call takes one more
argument in the template; types and names of the vari-
ables are different. Considering the said differences, our
analysis has computed a similarity score of 0.85, correctly
identifying the algorithm.

Secondly, Listing 5 displays an iterative version of
the quicksort algorithm that uses a supporting array to
sort the elements of the array passed as argument. The
method consists in fifteen statements, in order: three
VariableDeclaration, two AssignExpr, WhileStmt, three
AssignExpr, and two IfStmt with two AssignExpr in their
body. There are two main differences in the structure
between the two versions of the same algorithm: the total
number of statements, twelve against fifteen, and the
absence of MethodCall statements in the second version.
An iterative version of the quicksort algorithm is stored
in our template storage, and it uses an array to sort the
elements like the method given as an example. The main
differences between the template and the method are the
following: the method has three VariableDeclarationExpr
before the WhileStmt, whereas the template has only two;
types and names of variables are different. The analysis
has computed a similarity score of 0.86.

Our approach correctly identified both versions be-
cause the analysis uses templates for different versions
of the same algorithm, making the recognition more ac-
curate. Still, the storage containing all templates can be
updated with more versions of algorithms to make the
approach more sensitive to differences and up-to-date.

3The templates in the db can be found in the github repository
given above.

public void quickSortStack(short[] array) {
// create a stack for storing
// subarray start and end index
Stack<Pair> st = new Stack<>();
short finish = array.length -1;
// push the start and end index
// of the array into the stack
st.push(new Pair(0, finish));
// loop till stack is empty
while (!s.empty()) {
// remove top pair from the list and get
// subarray starting and ending indices
short begin = st.peek().getX();
finish = st.peek().getY();
st.pop();
// rearrange elements across pivot
short pv = partition(array, begin);
// push subarray indices with elements
// less than the current pivot to stack
if (pv - 1 > begin) {
st.push(new Pair(begin, pv - 1));
}
// push subarray indices with elements
// more than the current pivot to stack
if (pv + 1 < begin) {
st.push(new Pair(pv + 1, begin));

Listing 4: An iterative version of the quicksort algorithm
using a stack of objects to sort the elements.

4. Results

We have compared our approach to a text-based search
approach between methods and the templates of the al-
gorithms. Table 2 shows the metrics obtained for the
four methods previously described: column method dis-
plays the method considered for the analysis, respectively
bubblesortV1 (listing 1), factorialV1 (listing 3), quicksort-
Stack (listing 4) and quicksortArray (listing 5). The other
five main columns are the templates used by our approach
to match the algorithms: ItBubblesort is the bubblesort
iterative version (the one displayed in Listing 2); RecFac-
torial is the factorial recursive version; ItfQuicksortST is
the quicksort iterative version using a stack to sort the
elements; ItQuicksortAr is the quicksort iterative version
using an array to sort the elements; ItMergesort is the
mergesort iterative version. We have also considered the
mergesort to show how the analysis is able to distinguish
different algorithms. Each of these columns have two
subcolumns: sim and text are respectively the similarity
score of our approach and the similarity score of the text

Table 2

Similarities between the examples shown before and five different known algorithms used by our approach as templates. The
first column, method, shows the name of method analysed, while the other columns displays for each template the similarity
score given by our approach, column sim, and by a text comparison approach, column text.

ItBubblesort ~ RecFactorial 1tQuicksortSt ItQuicksortAr ItMergesort
method sim text sim text sim text sim text sim text
bubblesortV1 0.85 0.52 0.16 0.05 0.15 0.28 0.21 0.30 0.16 0.21
factorialV1 0.14 0.07 1.0 0.7 0.07 0.09 0.07 0.05 0.06 0.04
quicksortStack 0.25 0.21 0.08 0.06 0.84 0.37 0.42 0.29 0.23 0.26
quicksortArray 0.26 0.21 0.06 0.02 0.46 0.28 0.86 0.34 0.30 0.33

public static void quickSortArray(identification.

long arr[], long low, long high) {
// Create an auxiliary stack
long[] list = new long[high - low + 1];
long max = -1;
long pivot = 0;
// push initial values to stack
list[++max] = low;
list[++max] = high;
// Keep popping from stack while not empty
while (max >= 0) {
h = list[max--];
1 = list[max--];
// Set pivot element at its correct
// position in sorted array
pivot = partition(arr, low, high);
// If there are elements on left side
// of pivot, push left side to stack

if (pivot - 1 > low) {
list[++max] = low;
list[++max] = pivot - 1;

}

// If there are
// of pivot, push right side to stack

elements on right side

if (pivot + 1 < high) {
list[++max] = pivot + 1;
list[++max] = high;

Listing 5: An iterative version of the quicksort algorithm
using an array to handle the sort of the elements.

comparison approach.

We have highlighted in bold text the highest score cor-
responding to the correct identification of the algorithm
in subcolumn sim; whereas in subcolumn text the maxi-
mum score has been highlighted for the text match. We
can see that the score assigned by our approach is much
higher in each case, indicating a higher precision in the

5. Discussion

For all the five methods shown in Table 2, our approach
shows a higher identification score compared to the text
similarity approach. Indeed, we have a higher similar-
ity score that is more than double for the quickSortStack
(0.84 compared to 0.37) and quickSortArray (0.86 and 0.34)
methods, and values about 40% greater for bubblesortV1
(0.85 and 0.52) and factorialV1 (1.0 and 0.7) methods. Our
approach performs better because it can generalise the
matching, without considering names of variables, com-
ments and names of types.

Moreover, the matching scores given by our analysis
are clearly greater than the score of other algorithms,
whereas, with a text similarity approach, we can see
that the quicksortArray method has a similarity score of
0.34 for ItQuickSortAr, 0.33 for ItMergesort and 0.28 for
ItQuicksortSt, hence the closeness of such scores can bring
ambiguity in the correct identification of the algorithm.

Finally, our approach can distinctly recognise two dif-
ferent versions of the same algorithm: the quicksortStack
has 0.84 score as ItQuicksortSt and 0.42 as ItQuickSortAr,
while the quicksortArray method has respectively 0.46
and 0.86. The accurate identification of the version used
is crucial when suggesting improvements or proposing
different versions.

The ability to recognise an algorithm is related to the
set of templates, which is not easy to maintain and grow.
An algorithm can be matched if a similar template of
the same algorithm is already part of the templates. To
handle this, the database can be populated with the most
popular algorithms, and, if an algorithm is not included,
it could be added by a developer using our approach and
tool.

The approach extracts the statement’s type to evaluate
the similarity between algorithms. On the one hand, two
algorithms can have similar statements despite having a
different behaviour, thus showing low accuracy in identi-
fying code’s behaviour. On the other hand, the approach
can give a degree of generalisation, since it is not depen-

dent on names and types encountered, therefore it is not
based on the comprehension of how the algorithm was
implemented, but on its structure. This property is the
main difference between our approach and type-3 clone
approaches.

6. Related Works

Algorithm recognition has been tackled by several ap-
proaches in the state of the art, both for the software
engineering industry and for academic settings. In [9],
the authors present a solution for automatic algorithm
recognition using machine-learning techniques; they ex-
tract a dataset of source code containing algorithms, then
a feature extraction is carried out to collect all the charac-
teristic data (e.g. count-vars, operators, constructs etc.),
finally a tag updating is done to remove redundant tags.
They have trained the dataset and built a group of clas-
sifiers to identify the algorithm. In order to add a new
algorithm or category of algorithms to the classification,
all the previous steps have to be executed again in order
to properly train the new dataset, which it could be time
consuming; conversely, since our approach uses static
analysis to match templates, a new template can be added
to the collection without the need for further operations.

In [13], the authors propose an algorithm recognition
method that detects sorting algorithmic schemas; these
schemas consist in a set of loops, features, operations
etc. Another approach discussing sorting algorithms
is presented in [12, 11], where numerical (number of
blocks, number of loops etc.) and descriptive (iterative,
recursive) characteristics are extracted from the source
code and a C4.5 decision tree classifier is builded to detect
sorting algorithms. These approaches focus on sorting
algorithms under some assumptions such as algorithms
are expected to be implemented in a well-established
way, e.g. quicksort algorithm should be implemented
in a recursive way since it is more common. Moreover,
they define a set of characteristics that are mostly related
to sorting algorithms. In contrast, our approach can
identify a wider spectrum of algorithms since the static
analysis can be performed to any Java source code, and
we consider different versions of the same algorithm to
increase the identification ability.

Many tools have been presented to measure source
code similarity. Most of these approaches address prob-
lems such as code clone detection, software licensing
violation and software plagiarism [21]. The Levenshtein
distance is often used for clone detection. In [16], a hy-
brid technique is presented where source code is lexically
analysed to detect and extract sub-blocks, then similar
blocks are grouped and hashed, finally the Levenshtein
similarity and the Cosine Similarity are used to compute
similarity between blocks and find Type-3 clones. In [14],

the authors propose a cross-language clone detector for
C, C++ and Java, the input code is tokenized to obtain
the keywords of the corresponding language, then these
keywords are compared with the Levenshtein distance
and finally the clone types are classified based on similar-
ity of keywords match. In [15], the authors present a tool
to detect clones of a faulty code fragment, a Normalised
Compression Distance is defined to detect duplicate code
fragments.

The above said approaches use the Levenshtein dis-
tance to detect code clone fragments, whereas our pro-
posal defines a tailored distance to match methods with
algorithm templates in order to achieve algorithm recog-
nition. Furthermore, these tools are sensitive to differ-
ences in term of statements between code fragments, be-
cause the presence or absence of multiple statements can
lead to a misidentification of a code similarity; whereas
our approach proposes a similarity score which, despite
the statements differences, is able to define a matching
grade for all templates, where the highest one is the most
similar to the implemented algorithm.

7. Conclusion

This paper presented an automatic approach to recognise
algorithms using static analysis. By parsing the source
code it is possible to identify all the statements compos-
ing a method, transform them according to a specified
format, then compute Levenshtein distance for obtain-
ing a similarity score between the method and several
templates of known algorithms. The template having the
highest score is suggested as the algorithm matching the
analysed method. We performed an experiment on four
methods to test our approach; the results obtained high-
light a high accuracy when recognising the algorithm
compared to a textual similarity.

The versatility of the approach allows us to add more
templates to widen the spectrum of recognisable algo-
rithms and to increase the number of different versions of
algorithms. This approach can be employed both for pro-
gram comprehension purposes on software development,
supporting developers in understanding and implement-
ing source code, by proposing alternative versions of the
same algorithm, and for academic purposes to automati-
cally assess students’ assignments.

Acknowledgments

The authors acknowledge project TEAMS funded by Uni-
versity of Catania PIACERI 2020/22.

References

(1]

(2]

(7]

(8]

(9]

(10]

J. Siegmund, Program comprehension: Past,
present, and future, in: Proceedings of 23rd IEEE In-
ternational Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), volume 5, 2016,
pp- 13-20. doi:10.1109/SANER. 2016. 35.

W. Maalej, R. Tiarks, T. Roehm, R. Koschke, On the
comprehension of program comprehension, ACM
Transactions on Software Engineering Methodol-
ogy 23 (2014). doi:10.1145/2622669.

S. Ugurel, R. Krovetz, C. L. Giles, What’s the code?
automatic classification of source code archives,
in: Proceedings of 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD), 2002, p. 632-638. doi:10.1145/775047.
775141.

K. Tian, M. Revelle, D. Poshyvanyk, Using latent
dirichlet allocation for automatic categorization of
software, in: Proceedings of 6th IEEE International
Working Conference on Mining Software Reposi-
tories (MSR), 2009, pp. 163-166. doi:10.1109/MSR.
2009.5069496.

S. Srikant, V. Aggarwal, Automatic grading of com-
puter programs: A machine learning approach, in:
Proceedings of 12th International Conference on
Machine Learning and Applications (ICMLA), vol-
ume 1, 2013, pp. 85-92. doi:10.1109/ICMLA.2013.
22.

A. Midolo, E. Tramontana, Refactoring java loops
to streams automatically, in: Proceedings of 4th
International Conference on Computer Science and
Software Engineering (CSSE), 2021, p. 135-139.
doi:10.1145/3494885.3494910.

A. Midolo, E. Tramontana, An api for analysing
and classifying data dependence in view of paral-
lelism, in: Proceedings of 10th International Con-
ference on Computer and Communications Man-
agement (ICCCM), 2022, p. 61-67. doi:10.1145/
3556223.3556232.

A. Midolo, E. Tramontana, Automatic generation
of accurate test templates based on junit asserts,
in: Proceedings of the 7th International Conference
on Algorithms, Computing and Systems (ICACS),
2023.

M. Shalaby, T. Mehrez, A. E1 Mougy, K. Abdulnasser,
A. Al-Safty, Automatic algorithm recognition of
source-code using machine learning, in: Proceed-
ings of 16th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), 2017, pp.
170-177. doi:10.1109/ICMLA.2017.00033.

W. Crichton, G. G. Sampaio, P. Hanrahan, Au-
tomating program structure classification, in: Pro-
ceedings of 52nd ACM Technical Symposium on
Computer Science Education (SIGCSE), 2021, p.

(11]

(12]

[20]

1177-1183. doi:10.1145/3408877.3432358.

A. Taherkhani, L. Malmi, A. Korhonen, Algorithm
recognition by static analysis and its application
in students’ submissions assessment, in: Proceed-
ings of 8th ACM International Conference on Com-
puting Education Research (ICER), 2008, p. 88-91.
doi:10.1145/1595356.1595372.

A. Taherkhani, Recognizing sorting algorithms
with the c4.5 decision tree classifier, in: Pro-
ceedings of 18th IEEE International Conference on
Program Comprehension (ICPC), 2010, pp. 72-75.
doi:10.1109/1CPC.2010.11.

A. Taherkhani, L. Malmi, Beacon-and schema-based
method for recognizing algorithms from students’
source code, Journal of Educational Data Mining 5
(2013) 69-101. doi:10.5281/zenodo. 3554635.

S. B. Ankali, L. Parthiban, Development of port-
ing analyzer to search cross-language code clones
using levenshtein distance, in: Proocedings of
Fourth International Conference on Smart Com-
puting and Informatics (SCI), Springer, 2021, pp.
623-632. d0i:10.1007/978-981-16-0878-0_60.
T. Ishio, N. Maeda, K. Shibuya, K. Inoue, Cloned
buggy code detection in practice using normal-
ized compression distance, in: Proceedings of
IEEE International Conference on Software Main-
tenance and Evolution (ICSME), 2018, pp. 591-59%4.
doi:10.1109/ICSME. 2018.00022.

A. Sheneamer, J. Kalita, Code clone detection
using coarse and fine-grained hybrid approaches,
in: Proceedings of 7th IEEE International Confer-
ence on Intelligent Computing and Information
Systems (ICICIS), 2015, pp. 472-480. doi:10.1109/
IntelCIS.2015.7397263.

Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam,
B. Magbool, A systematic review on code clone
detection, IEEE Access 7 (2019) 86121-86144.
doi:10.1109/ACCESS.2019.2918202.

N. Smith, D. Van Bruggen, F. Tomassetti, Javaparser:
visited, Leanpub, oct. de (2017).

V. L. Levenshtein, et al., Binary codes capable of
correcting deletions, insertions, and reversals, in:
Soviet physics doklady, volume 10, Soviet Union,
1966, pp. 707-710.

A. Niewiarowski, et al., Short text similarity algo-
rithm based on the edit distance and thesaurus, Cza-
sopismo Techniczne 2016 (2016) 159-173. doi:10.
4467/2353737XCT.16.149.5760.

C. Ragkhitwetsagul, J. Krinke, D. Clark, A com-
parison of code similarity analysers, Empirical
Software Engineering 23 (2018) 2464-2519. doi:10.
1007/s10664-017-9564-7.

http://dx.doi.org/10.1109/SANER.2016.35
http://dx.doi.org/10.1145/2622669
http://dx.doi.org/10.1145/775047.775141
http://dx.doi.org/10.1145/775047.775141
http://dx.doi.org/10.1109/MSR.2009.5069496
http://dx.doi.org/10.1109/MSR.2009.5069496
http://dx.doi.org/10.1109/ICMLA.2013.22
http://dx.doi.org/10.1109/ICMLA.2013.22
http://dx.doi.org/10.1145/3494885.3494910
http://dx.doi.org/10.1145/3556223.3556232
http://dx.doi.org/10.1145/3556223.3556232
http://dx.doi.org/10.1109/ICMLA.2017.00033
http://dx.doi.org/10.1145/3408877.3432358
http://dx.doi.org/10.1145/1595356.1595372
http://dx.doi.org/10.1109/ICPC.2010.11
http://dx.doi.org/10.5281/zenodo.3554635
http://dx.doi.org/10.1007/978-981-16-0878-0_60
http://dx.doi.org/10.1109/ICSME.2018.00022
http://dx.doi.org/10.1109/IntelCIS.2015.7397263
http://dx.doi.org/10.1109/IntelCIS.2015.7397263
http://dx.doi.org/10.1109/ACCESS.2019.2918202
http://dx.doi.org/10.4467/2353737XCT.16.149.5760
http://dx.doi.org/10.4467/2353737XCT.16.149.5760
http://dx.doi.org/10.1007/s10664-017-9564-7
http://dx.doi.org/10.1007/s10664-017-9564-7

	1 Introduction
	2 Proposed Approach
	2.1 Code Parsing
	2.2 Statements Transformation
	2.3 Adapting the Levenshtein Distance
	2.4 Algorithm Recognition

	3 Evaluation
	4 Results
	5 Discussion
	6 Related Works
	7 Conclusion

