CEUR-WS.org/Vol-3483/paper8.pdf

A Preliminary Study of GitHub Actions Workflow Changes

Pooya Rostami Mazrae!, Alexandre Decan®®, Tom Mens’ and Mairieli Wessel?

IUniversity of Mons (UMONS), Mons, Belgium
2Radboud University, Nijmegen, The Netherlands
3F.R.S.-FNRS Research Associate

Abstract

CI/CD practices play a significant role in collaborative software development. The GitHub social coding platform introduced
GitHub Actions as a way to automate different aspects of software production such as testing, building, quality checking,
dependency and security management. We report on preliminary findings of a quantitative analysis on how GitHub Actions
workflows are being changed over time. The study is based on a dataset of 22,733 GitHub repositories containing 4 million
weekly snapshots of workflow files from November 2019 to September 2022. First, we analyse the coarse-grained changes
being made to workflows, including when repositories start using them, when they are being added, modified, renamed and
removed. Second, we analyse changes made to workflow code, including how many code lines are changed and what types
of changes are being made to them. The findings of this quantitative analysis provide preliminary insights on how GitHub
Actions workflows are being changed over time, and whether they adhere to the evolution laws of continuing growth and
continuing change. It paves the way for studying more evolution laws, as well as more in-depth analyses on the types of

changes that CI/CD workflows are subject to as well as the reasons for these changes.

Keywords

collaborative software development, workflow automation, software repository mining, continuous integration and deploy-

ment, GitHub, software changes

1. Introduction

Continuous Integration and Development (CI/CD) prac-
tices aim to help developers release high-quality software
products more efficiently and with less effort [1]. The
popularity of CI/CD has increased significantly in re-
cent years, making it a crucial aspect of modern software
development [2, 3]. Their widespread adoption can be at-
tributed to the Extreme Programming methodology [4],
which emphasizes automating various aspects of soft-
ware production. Throughout the years, various CI/CD
tools have been widely used (e.g., Jenkins, Travis, Azure
DevOps, CircleCI, AppVeyor, and GitHub Actions) to au-
tomate a broad range of software development activities
such as testing, building, quality checking, dependency
and security management [5, 6, 7].

Focusing on the GitHub social coding platform in par-
ticular, which is the largest collaborative software devel-
opment platform used by software developers, GitHub
Actions (GHA) was introduced as a new CI/CD solution
in November 2019. It has quickly gained popularity, re-
placing Travis as the dominant CI/CD tool in less than

SATToSE’23: Seminar on Advanced Techniques & Tools for Software
Evolution, June 12-14, 2023, Salerno, Italy

& pooya.rostamimazrae@umons.ac.be (P.R. Mazrae);
alexandre.decan@umons.ac.be (A. Decan); tom.mens@umons.ac.be
(T. Mens); mairieli.wessel@ru.nl (M. Wessel)

@ 0000-0002-4859-1546 (P.R. Mazrae); 0000-0002-5824-5823

(A. Decan); 0000-0003-3636-5020 (T. Mens); 0000-0001-8619-726X
(M. Wessel)

(Ztiﬂ‘fjn(‘:E)‘;r(lﬁ:ttef:;l}::‘sni?l()ércbé’;lj :)I“h()l’s. Use permitted under Creative Commons License
===1 CEUR Workshop Proceedings (CEUR-WS.org)

18 months [8]. Decan et al. [9] reported that, out of 68K+
GitHub repositories provided in their dataset, 43.9% are
utilizing GHA workflows by the end of January 2022.
This indicates the widespread adoption of GHA within
the GitHub community.

Workflow configuration files are the main components
to configure GHA pipelines. Just like ordinary source
code, they are developed and modified throughout the
project’s lifetime to meet the needs of developers. In the
case of GHA, workflows are stored in a YAML format
in the .github/workflows/ folder of the corresponding
GitHub repository.

Knowing when, why and how developers modify work-
flow files can be helpful to improve CI/CD practices, to
detect common patterns and mistakes developers do in
their workflows, and to create tools to assist them in
writing and maintaining workflows.

As preliminary steps towards such a comprehension,
this article aims to characterise the changes made to these
workflow files over their lifetime. To do so, we study
two main research goals, based on an extracted dataset
of 22,733 repositories accounting for 4,127,760 weekly
snapshots of workflow files over a 34-month period from
November 2019 to September 2022.

Goal G1 aims to quantify the coarse-grained changes
being made to GHA workflows, and is broken down into
three specific research questions:

RQ1.1 When do repositories start using GHA? As
the most primitive type of change, we investigate how
long it takes for repositories to start using GHA.

RQ1.2 Which types of coarse-grained changes are

mailto:pooya.rostamimazrae@umons.ac.be
mailto:alexandre.decan@umons.ac.be
mailto:tom.mens@umons.ac.be
mailto:mairieli.wessel@ru.nl
https://orcid.org/0000-0002-4859-1546
https://orcid.org/0000-0002-5824-5823
https://orcid.org/0000-0003-3636-5020
https://orcid.org/0000-0001-8619-726X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

workflows subject to? We analyse the four possible
types of coarse-grained changes that can be made to
workflows: adding, renaming or removing a workflow
file, as well as modifying the contents of the workflow
file.

RQ1.3 When do the different types of coarse-grained
changes occur? For all four types of coarse-grained
workflow changes, we analyse when these changes oc-
cur.

Goal G2 focuses on quantifying the fine-grained
changes to workflow files, by analysing the changes
that are made in their contents. In this article, we restrict
ourselves to studying line-based changes through the
two following research questions:

RQ2.1 Which types of line-based changes are work-
flow files subject to? We examine the addition, modifi-
cation and removal of lines in workflow files.

RQ2.2 When do different types of line-based changes
occur? For the three above types of fine-grained work-
flow changes, we analyse when they occur over time.

2. Related Work

This section explores the existing literature on the evolu-
tion of CI/CD configuration files before the emergence
of GitHub Actions (Section 2.1) and the use of GHA as a
CI/CD tool (Section 2.2). To the best of our knowledge,
the current article is the first large-scale study investigat-
ing the evolution of GHA workflow file changes.

2.1. Evolution of CI/CD configuration
files

Even before introduction of GHA, usage of CI/CD tools
in software projects was well established and most well
known ones of them (especially Travis) have been using
YAML based configuration files. In this section, we go
through studies related to the evolution of the configura-
tion file in those CI/CD tools.

Gallaba and McIntosh [10] studied the usage and mis-
use of features in Travis configuration files based on a
dataset of 9,312 GitHub repositories. They found that
Jjob processing nodes were the most frequently modified,
indicating that most of the usage of Travis was for con-
tinuous integration rather than continuous deployment.
They also developed and evaluated a tool for identifying
anti-patterns in Travis configuration files, and a second
tool for automatical removal of those anti-patterns.

In a similar vein, Vassallo et al. [11] developed a tool to
identify anti-patterns in Java projects relying on Travis.
To determine the most critical anti-patterns in Travis log
files, they relied on Duvall’s work [2], which served as a
reference for quality checking and identifying patterns
and anti-patterns in continuous integration.

Durieux et al. [12] compiled a dataset of over 35M+
Travis jobs triggered by 272,917 projects. Their findings
indicate that out of the 709K+ commits that changed
a Travis configuration file, the majority are related to
debugging the configuration file. They also suggest the
necessity for a more in-depth analysis of the nature of
the changes made to those commits.

Zampetti et al. [13] identified 79 bad CI practices by
conducting semi-structured interviews with 13 experts
and analyzing over 2,300 Stack Overflow posts, consider-
ing posts with four different tags: continuous integration,
Jenkins, Hudson, and travis-ci. Additionally, Zampetti et
al. [14] studied the evolution of changes to Travis configu-
ration pipelines. They found that jobs and steps were the
most frequently changed. Furthermore, they observed an
increasing trend in the adoption of Docker by projects
over time.

2.2. Popularity and usage of GitHub
Actions

When GitHub introduced GitHub Actions (GHA) this
significantly impacted the CI/CD landscape for GitHub
repositories. Several studies have been conducted to
investigate the impact of GHA on the overall usage of
CI/CD tools.

Golzadeh et al. [8] conducted a longitudinal quantita-
tive study on the adoption of CI/CD tools in 91K+ GitHub
repositories related to npm packages. The study revealed
a growing reliance on CI/CD tools, with more than 50%
of repositories utilizing such tools as of May 2021. The
authors found that GHA and Travis were the dominant
CI/CD tools, being used by 90% of the considered repos-
itories that relied on a CI/CD tool. They also observed
that GHA replaced Travis as dominant CI/CD tool in
just 18 months after its introduction as a consequence of
many repositories migrating from Travis to GHA.

Kinsman et al. [15] analysed the impact of adopting
GHA in 3,190 repositories. They found that the adoption
of GHA resulted in an increase in the number of rejected
pull requests and a decrease in the number of commits in
merged pull requests. Based on a manual inspection of
209 GHA-related issues, they concluded that developers
had a generally positive perception of GHA. These find-
ings were confirmed by Chen et al. [16], who conducted
a replication study on 6,246 repositories.

Decan et al. [9] conducted an analysis of the use of
GHA in almost 70K+ GitHub repositories to gain a deeper
understanding of the GHA ecosystem. They found that
43.9% of the repositories used GHA workflows and char-
acterized these repositories and their workflow contents
in terms of the usage of jobs, steps, and reusable Actions.
They observed that almost all workflows rely on Actions,
and that workflows are primarily used for automating

the development process, despite the potential for GHA
to automate many other types of activities.

Valenzuela-Toledo and Bergel [17] conducted a prelim-
inary study to examine the usage and maintenance of
GHA workflows in ten popular GitHub repositories. They
analyzed 222 commits to propose an initial taxonomy of
workflow modifications.

Rostami Mazrae et al. [18] qualitatively investigated
the reasons behind the adoption of CI/CD tools in soft-
ware projects, the co-usage of multiple CI/CD tools, and
the migration from one CI/CD tool to another one. For
GitHub projects more specifically, they investigated the
factors that led to GHA becoming the dominant CI/CD
tool. The majority of reported migrations towards GHA
were due to its strong integration with GitHub, its ease
of use, and its large marketplace of Actions.

Saroar et al. [19] surveyed 90 Action producers and
users to understand the motivations and best practices
in using, developing, and debugging Actions, and the
challenges associated with these tasks. They report that
users prefer Actions with verified producers and more
stars when choosing between similar Actions, and often
switch to an alternative Action when facing bugs or alack
of documentation. Moreover, they report that more than
half of the Action producers consider the composition
of YAML files challenging and error-prone and would
mainly check question and answer forums to fix issues
with these YAML files.

Wessel et al. [20] suggested to consider studying GitHub
Actions as a software ecosystem that faces similar chal-
lenges as traditional software library ecosystems [21, 22].

3. Motivating example

In order to use GHA for a repository, one or more YAML
workflow files must be created and stored within the
.github/workflows folder. As with any other software
development component, workflow files evolve over time
to better serve their purposes.

Figure 1 presents a visual diff of some changes made
to a workflow file that automates the building, testing
and code coverage analysis of some Java project. On
the left is the old version, with lines highlighted in red
representing removed or changed lines, and the dark red
parts highlighting the parts of the line that were changed.
On the right is the new version, with lines highlighted in
green representing new or changed lines, and the dark
green parts highlighting the changes that were made
w.r.t. the previous version.

One can observe that changes may occur in different
locations for different reasons. For instance, line 2 il-
lustrates a change related to the events that trigger the
workflow. This particular change can be considered a
behaviour-preserving refactoring and simplification of

the workflow file, since declaring events without specify-
ing the branch will use the default branch of the reposi-
tory (in this case: master). A common change consists of
adding new steps (e.g., step ‘Publish Test Report’ on lines
17-19 on the right) or adding more lines to existing steps
(e.g., lines 12 and 14 on the right that add extra arguments
for the Java setup; line 26 that added an extra argument
for the JaCoCo badge generator). Line 5 on the right is
an example of a change to a job, by adding an extra name
to it. Another common change is modifying the contents
of existing lines, for example to update the version of
the Action being used (e.g., from actions/checkout@v2
to actions/checkout@v3, from actions/setup-java@v1 to
actions/setup-java@v3, and so on), to edit the name of a
step (line 31 on the right), to modify the Java version to
use for the build (line 13 on the right), and so on.

This example shows the various possible changes in
workflow files and justifies the need for studies on when,
why, and how developers modify workflow files. Such
studies are likely to improve CI/CD practices, for exam-
ple, by identifying common patterns and issues during
workflow modifications and by providing tools to assist
developers in writing and maintaining workflows.

4. Data extraction

To study the evolution of workflow files, a large dataset of
GitHub repositories relying on GHA is required. We used
the SEART [23] GitHub search engine'to select reposi-
tories. To mitigate the usual threats related to software
repository mining [24], we excluded repositories that
are used only for experimental or personal purposes, or
that exhibit minimal evidence of software development
activity. To do so, we selected repositories created before
2022 that were still active in 2022, had at least 100 stars
and 100 commits, and were not forks. Considering these
constraints, the final list of repositories included 62,673
instances.

On September 2022, we locally cloned these reposito-
ries to identify the presence of GHA workflow files in
the .github/workflows directory of their default branch
(as reported by the GitHub API) and found 22,733 reposi-
tories satisfying this criterion. Since our goal is to study
the evolution of the workflow files in these repositories,
we relied on a combination of the git rev-list and
git checkout CLI tools to materialize the content of
each workflow file in each repository for every Mon-
day between November 2019 (the official release date
of GHA) and September 2022, accounting for 148 time
points. By considering weekly snapshots instead of all
the commits that modified the workflow files, we miti-
gate the usual threats related to commits performed on
parallel branches that are eventually merged [25]. This

!https://seart-ghs.si.usi.ch

https://seart-ghs.si.usi.ch

1 name: Java CI with Maven

2 on:
3—| push:

4 branches: [master]

5— pull_request:

6 branches: [master]

7 jobs:

8 build:

9 runs-on: ubuntu-latest

10 steps:

11~ - uses: actions/checkoutev2

12 - name: Set up with Java 11

13— uses: actions/setup-java@vl

14 with:

15— java-version: 11

16 - name: Build with Maven (including running of all tests)
17 run: mvn -B package -—file pom.xml

18 - name: Generate JaCoCo Badge

19 id: jacoco

20 uses: cicirello/jacoco-badge-generator@v2

2 with:

22 generate-coverage-badge: true

23 generate-branches-badge: true

24 - name: Log coverage percentage

25 run: |

2 echo "coverage = ${{ steps.jacoco.outputs.coverage }}"
27 echo "branch coverage = ${{ steps.jacoco.outputs.branches }}"
28 - name: Commit and push the badge (if it changed)

20— uses: EndBug/add-and-commit@v7

30 with:

31 default_author: github_actions

32 message: 'commit badge'

33 add: 'x.svg'

34 - name: Upload JaCoCo coverage report

35 uses: actions/upload-artifactev2

36 with:

37 name: jacoco-report

38 path: target/site/jacoco/

1 name: Java CI with Maven
24 on: [push, pull_request]

3 jobs:
4 build:

5 name: build and analyse

6 runs-on: ubuntu-latest

7 steps:

8+ - uses: actions/checkout@v3

9 - name: Set up with Java 17

10+ uses: actions/setup-javaev3

1 with:

12+ distribution: ‘temurin‘

13 java-version: 17

14- cache: ‘maven’

15 - name: Build with Maven (including running of all tests)
16 run: mvn -B package —file pom.xnl

17+ - name: Publish Test Report

18 if: ${{ always() }}

19+ uses: scacap/action-surefire-report@vl

20 - name: Generate JaCoCo Badge

2 id: jacoco

2 uses: cicirello/jacoco-badge-generatorgv2

2 with:

24 generate-coverage-badge: true

25 generate-branches-badge: true

26+ generate-summary: true

27 - name: Log coverage percentage

28 run: |

29 echo "coverage = ${{ steps.jacoco.outputs.coverage }}"
30 echo "branch coverage = ${{ steps.jacoco.outputs.branches }}"
31 - name: Commit and push the svg badges and the json coverage summary (if it changed)
32+ uses: EndBug/add-and-comnit@va

33 with:

34 default_author: github_actions

35 message: 'commit coverage badge and summary'

36 add: '*.svg *.json’

37 - name: Upload JaCoCo coverage report

38 uses: actions/upload-artifactev3

39 with:

40 name: jacoco-report

a path: target/site/jacoco/

Figure 1: Visual diff of some changes made to a workflow file for a Java project hosted in a GitHub repository.

resulted in a dataset of 4,127,760 workflow file snapshots
(of which 271,422 are unique) in 22,733 GitHub reposito-
ries.

Figure 2 shows the evolution of the number of reposi-
tories and workflow files through time. We observe that
both numbers are continuously increasing through time,
indicating that more and more repositories are making
use of GHA and more and more workflow files are cre-
ated in these repositories. At the end of the observation
period, there are 65,067 workflow files spread in 22,733
repositories. The figure also reveals a slight disturbance
in the evolution of both numbers in November and De-
cember 2020. This coincides with restrictions imposed by
Travis CI on its free plan for public repositories, which
caused many repositories to switch from Travis CI to
GHA during these two months, as already observed by
Golzadeh et al. [8].

5. Goal G;: Coarse-grained
changes in GHA workflows

Research goal G aims to analyze and measure the coarse-
grained changes that occur to GHA workflows in GitHub
repositories. To accomplish this goal, we will answer
three research questions.

500004 —— repositories
workflows
40000 4
30000
20000
10000 -
04
T T T
Jan Jul Jan Jul Jan Jul
2020 2021 2022

Figure 2: Evolution of the number of repositories and GHA
workflows in our dataset.

RQ1.1 When do repositories start using
GitHub Actions?

To investigate the adoption of GHA in GitHub reposito-
ries, we analyzed the time it took for repositories to start
using it. Previous studies [8, 18] have reported that GHA
has become the dominant CI/CD tool on GitHub. This
research question aims to understand the time it takes
for repositories to adopt GHA as their CI/CD tool.

We distinguish between the repositories that already
existed when GHA was introduced on GitHub and those
that were created after. Indeed, repositories that were
created before the introduction of GHA were likely to
use another CI/CD tool before migrating to GHA and
such a migration does not come for free. In their cases,

we are interested in the time they took to adopt GHA
since its official release in November 2019. On the other
hand, repositories that were created after the introduc-
tion of GHA are more likely to adopt it as their CI/CD
tool because of its deep integration into GitHub. In their
cases, we are interested in the time they took to adopt
GHA since these repositories were created.

We therefore divided the repositories in our dataset
into two categories: those that already existed before the
public release of GHA in November 2019, accounting for
18,805 repositories; and the remaining 3,928 that were
created after.

1.0
0.91

5 o8

‘g@ 0.7

05 0.6

o

08057

29

5e 0.4 4

>% 4

g © 0.3 repositories created

3 0.21 —— before GHA
0.1 after GHA
0.0 ; . . , T y v

0 5 10 15 20 25 30 35

delay to introduce GHA (in months)

Figure 3: Cumulative proportion of repositories in function
of the time (in months) to start using GHA.

Fig. 3 shows the cumulative proportion of repositories
in function of the time they took to start using GHA.
Its worth recalling that our dataset only contains repos-
itories that are still using GHA in the latest considered
snapshot, explaining why the proportions reach 100%.

Focusing first on the repositories that were created
after GHA’s public release (orange line in Fig. 3), we ob-
serve that it takes less than 3 months for 50% of them to
adopt GHA after their creation, as indicated by the left-
most dotted line. After only 10 months, this proportion
reaches 75%. The adoption rate for the repositories that
already existed when GHA was released (blue line) is
much lower: only 15% of these repositories adopted GHA
after 3 months and it required 10 months to reach 50%
of the repositories (as indicated by the rightmost dotted
line), and even 21 months to reach 75%.

This supports our hypothesis that it takes more time
for repositories already in place to adopt GHA, likely
because they were already using another CI/CD tool,
implying a longer delay to start using GHA due to the
technical or organizational difficulties that may come
with a migration to a new CI/CD solution, or simply due
to the lack of need to carry out such a migration [8, 18].
On the other hand, adopting GHA in newer repositories
is much easier thanks to the tight integration of GHA
with GitHub, its ease of use, its low learning curve, and
the ease of setting up new workflow files from scratch
based on suggested configurable templates [19, 18].

The time to adopt GHA depends on whether the
repository was created before or after GHA’s offi-
cial release. A majority of the repositories that were
created after GHA adopted it within a few months
after their creation. On the other hand, it took more
than one year since GHA’s release for most of the
older repositories to adopt GHA.

RQ1.2 Which types of coarse-grained
changes are workflows subject to?

This research question aims to identify the kind of coarse-
grained changes workflow files are subject to. We dis-
tinguish between the four following types of changes:
addition, modification, renaming, or removal. To keep
track of these changes, we attributed to each workflow
file a unique identifier that is preserved through renam-
ings. It is worth mentioning that some of these changes
can co-occur (e.g., a file can be renamed at the same
time than its content is modified) while some changes
are causally dependent (e.g., a workflow file can only be
removed after having been added previously).

We detect the four different types of changes as fol-
lows. The addition of a workflow file is detected when the
workflow file is seen for the first time in a snapshot. Sim-
ilarly, the removal of a workflow file is detected when the
file is no longer visible in a snapshot. The modification of
a workflow file is detected in a snapshot by comparing
its content in the current snapshot with its content in
the previous snapshot. These modifications are detected
by comparing the SHA-256 hashes in consecutive work-
flows. Finally, the renaming of a workflow file is detected
based on the following heuristic. The heuristic detects a
renaming from A to B when A is removed at the same
time that B is added. If A and B have exactly the same
content (i.e., they have the same SHA-256 hash), we con-
sider that A was renamed to B. If A and B differ in their
content, we check whether there is no other workflow
file C' that was added or removed at the same time. If
there is no such C, then we consider that A was renamed
to B. By doing so, we ensure we are not exposed to false
positives even if this implies we may miss renamings,
e.g., in the case multiple workflow files are renamed at
the same time.

For each repository and each pair of consecutive snap-
shots, we relied on the above approaches to detect changes.
The most frequent workflow change type is modification,
accounting for 73% of all changes. The second most fre-
quent change type is addition, accounting for 22.8% of
all changes. Removal is less common, accounting for
less than 3.9% of changes. Renaming is the least com-
mon change type, accounting for 0.1% of all changes over
entire considered period.

0.12
—— addition removal

0.10 1 —— modification ~ —— renaming
0.08 -
0.06 -
0.04 1
0.02 AW%
0.00 T T T

Jan Jul Jan Jul Jan Jul

2020 2021 2022

date

Figure 4: Evolution of the proportion of repositories exhibiting
a change in a workflow file.

Since a repository may have many workflow files be-
ing changed at the same time, we also computed for each
snapshot the proportion of repositories exhibiting the ad-
dition, removal, modification and renaming of a workflow
file. Figure 4 shows the evolution of these proportions.
We observe that the most frequent change is modification,
exhibited in around 9% of the repositories at the begin-
ning of the observation period and slowly decreasing to
around 6% of the repositories at the end of the observa-
tion period. Unsurprisingly, additions and removals are
less frequently observed in repositories, ranging from
2.4% t0 0.7% and from 1.5% to 0.2% of the repositories, re-
spectively. Finally, renamings are barely never observed
in the considered repositories.

Each week, on average, 7.2% of the repositories mod-
ify a workflow file, while 1.4% of them add a new
workflow and 0.5% remove a workflow.

RQ1.3 When do different types of
coarse-grained changes occur?

Previous research question reported on the various types
of changes that occur in workflow files. With the current
research question, we aim to understand when those
changes occur with respect to the adoption of GHA in
each repository. We posit that the first few weeks after
introducing GHA, workflow maintainers are likely to
make many changes until the workflows reach a stable
state and that, afterwards, only occasional changes are
needed further. In order to verify this hypothesis, for each
change detected in previous RQ, we computed the time
between the introduction of GHA in the corresponding
repository and the date of the change to the workflow
file.

Figure 5 shows the proportion of repositories that ex-
hibit a change in function of the time elapsed (in weeks)

0.25

—— addition
4] e .
£ 0.201 —— modification
2 removal
g —— renaming
il) 0.15 4
Py
o
_5 0.10 4
g
© 0.05 A
° w
0.00 : : : : . . ;
0 20 40 60 80 100 120 140

weeks since GHA has been in use

Figure 5: Proportion of repositories exhibiting a change in
function of the time elapsed (in weeks) since their adoption
of GHA.

since GHA was introduced in each repository. We ob-
serve that the proportion of repositories exhibiting a
change, regardless of the change type, is higher during
the first weeks, and that this proportion quickly decreases
through time to reach a quite stable value. For instance,
more than 15% of the repositories made changes to their
workflow files during the first week, but this proportion
decreases to around 6% after six weeks only. Similarly,
the proportion of repositories adding workflow files de-
creased from around 5% in the first week to approxi-
mately 1.5% after six weeks.

The slight variations that can be observed starting from
week 100 is a consequence of the much lower number of
repositories that have been using GHA for 100 weeks or
more. For instance, while we have 22K repositories for
the first week, we only have 4.8K repositories at week
100, 2.4K at week 120, and 574 at week 140.

These observations suggest that workflow files fol-
low Lehman’s evolution laws [26] of continuing change
(workflows are regularly modified through time) and con-
tinuing growth (workflows are being added more often
than they are removed). Although it is not surprising that
workflow files are regularly modified in order to integrate
new pipelines or new functionalities, we postulate that
part of the observed modifications are the consequence of
the difficulty to debug, test and validate workflows. This
challenge was already identified by Saroar et al. [19] and
in a qualitative study conducted by Rostami et al. [18]:
“You will see that you do a lot of typos and try to run the
CI/CD 20 times until it works once. You copy-paste some
examples from the Internet, you adapt it, but you forget to
like there’s a lot of details. It’s often YAML files that are
really prone to mistakes. So you make [lots of] commits
until you get to the result you want to have. And there’s
no way to pre-test it on your local machine. So you just
commit, push, wait for the build to run, and then look at
the results.”

Repositories are more likely to change their workflow
files within the first weeks after having adopted GHA.
Nevertheless, we observe that each week, around
6% of the repositories modify a workflow file. This
confirms that workflows are subject to the laws of
continuing change and continuing growth.

6. Goal Ga2: Fine-grained changes
in GHA workflows

The second research goal G2 focuses on analysing fine-
grained changes in workflow files at a line-based level.

RQ2.1 Which types of line-based changes
are workflow files subject to?

As a first step towards reaching our goal of studying the
fine-grained changes in GHA workflows, we aim to iden-
tify how frequently lines are added, removed and modi-
fied in workflow files. To do so, we relied on the CLOC
command-line tool [27]. CLOC is a tool that counts the
number of lines in files. It has an option to compare
two files, and reports on the number of lines that were
added, removed, modified and untouched between the two
files, distinguishing between lines of code, blank lines and
comments.

We applied CLOC on all the workflow files that were
modified, comparing the content of each workflow file
with the content of the previous version of this workflow
file. We found that the very large majority of the changes
are related to lines of code. For instance, 87.8% of the lines
that were either added, removed or modified are lines
of code. A further examination of the modifications of
the workflow files indicates that 69% of the modifications
made to a workflow exclusively involve lines of code, 15%
involve code and blanks, 7% involve code and comments,
and 6.6% involve all types of lines (i.e., code, comment
and blank lines). Overall, that implies that 97.6% of the
modifications made to workflow files involve lines of
code.

We also looked at how frequently lines are added, re-
moved or modified. Figure 6 shows a Venn diagram re-
porting on the proportion of workflow modifications in
which lines were added, modified or removed (or any
combination of those). We observe that 40.11% of the
changes consist of line modifications only, and lines are
modified in 78.69% (40.11% + 18.86% + 6.09% + 13.63%) of
the changes. Adding lines is the second most frequent
change observed in workflow files, especially in combi-
nation with modifying lines. For instance, half of the
changes (50.13% = 14.58% + 18.86% + 3.06% + 13.63%) in-
volves adding lines, while “only” 26.23% of the changes (=

added modified

18.86%
40.11%
6.09%

3.45%

\
\
\\ removed

Figure 6: Percentage of workflow file changes containing
added, removed or modified lines.

14.58%

3.45% + 3.06% + 6.09% + 13.63%) involve removing lines.
It is noteworthy that removing lines alone is infrequent.

Nearly all the changes made to workflow files in-
volve lines of code accounting for almost 9 out of
10 lines added, removed or modified. Modifying and
adding lines are the most frequent operations made
to workflow files.

R(Q2.2 When do different types of
line-based changes occur?

We already observed in RQ)1.3 that, while repositories
are more likely to change their workflow files within the
very first weeks after having adopted GHA, changes are
nevertheless observed during the whole lifetime of these
files. With RQ)2.2, we aim to gain a better understanding
of the type of changes that are made to lines of code in
workflow files, hypothesizing that many lines of code will
be added to the workflow files during their first weeks
to add new functionalities until a stable point is reached,
and then lines will be mostly modified for maintenance
purposes.

As a first step, we start by computing the proportion
of lines of code that are touched (i.e., lines that are added,
removed or modified) during workflow changes. Figure 7
shows the evolution of this proportion in function of
the time elapsed since GHA was adapted by the corre-
sponding repositories. The figure shows the median and
mean values, as well as the 25" and 75" percentiles, rep-
resented by the shaded light blue area. As explained in
RQ1.3, the higher variation on the rightmost part of the
figure are due to the lower number of repositories that
have been using GHA for more than 100 weeks.

0.25
—— median

0.20 1 mean
0.151
0.101
0.05 AWA/\’W/\/\M//\/\/A'
0.00 T T T T T T T

0 20 40 60 80 100 120 140

weeks since GHA has been in use

Figure 7: Proportion of lines of code touched during workflow
changes. The shaded area corresponds to the interval between
the 25t and 75™ percentiles.

We observe that both the median and mean values
exhibit a gradual decrease during the first year. The
difference between the median and mean values indicates
that the distribution exhibits a positive skew. Focusing
on the mean value, the decrease in the number of lines
of code touched is particularly visible in the first weeks,
going from an average of 13.6% during the first six weeks
to an average of 10.2% for the next year. This indicates
that more changes are applied to the lines of workflow
files in the early phase of the workflows’ lifetime.

Since a line can be touched either because it is added,
removed or modified, the two following analyses focus
on the evolution of the number of lines that are added
and modified. We do not report on the number of lines
that are removed given that we observed in R()2.1 that
removing lines is very infrequent.

Ll f— median
21 1 mean
18 A
154
12 A
9 B
6 B
3 B
o+— LW MA - - - -
0 20 40 60 80 100 120 140

weeks since GHA has been in use

Figure 8: Number of lines of code added during workflow
changes.

Figure 8 shows the evolution of the distribution of the
number of lines of code added in workflow files, in func-
tion of the time elapsed since GHA has been adapted by
their corresponding repositories. As observed in RQ)2.1,
only half of the changes involve adding lines, explaining
why the median value is very low (either 0 or 1). Focusing
on the mean number of added lines of code, we observe

a gradual decrease through time. For instance, the mean
number of added lines decreased from an average of 7.4
during the first six weeks to an average of 5.6 during the
next year.

10 { —— median
mean

8 B

6 B

4 B

2 A I‘M
0 T T T T T T T

0 20 40 60 80 100 120 140

weeks since GHA has been in use

Figure 9: Number of lines of code modified during workflow
changes.

Figure 9 shows the evolution of the number of lines
of code modified in workflow files. As for Figure 8, the
difference between the median and mean values indi-
cates a positively skewed distribution. Focusing on the
mean value, we observe that the number of lines of code
modified is quite stable through time, only exhibiting a
slight increase during the first weeks. For instance, the
mean number of modified lines slightly increased from
an average of 2.8 during the first six weeks to an average
of 3.1 during the next year.

One out of ten lines of code are touched when a work-
flow file is modified, and this proportion is higher
during the first weeks after the considered reposi-
tories started to adopt GHA. On average, 3.1 lines
of code are modified and 5.8 lines of code are added
during each modification of a workflow file. This
suggests that the content of workflow files is subject
to continuing change and continuing growth.

7. Threats to Validity

In this section, we discuss the threats that may affect the
validity of our findings.

Internal validity relates to the extent to which the
study results are influenced by the experimental treat-
ment or condition being studied [28]. We analyzed the
evolution of workflows in software development reposi-
tories by studying weekly snapshots.

Although one can study workflows commit by commit,
Bird et al. [25] stated that git lacks a mainline and a file
can change in parallel in different branches, which makes
it difficult to track the linear history of a file. Therefore,

we chose to analyze snapshots instead of checking com-
mits directly.

External validity concerns the generalisability of the
results [28]. We only consider public software reposi-
tories with more than 100 stars and commits which are
still under development and maintenance. These criteria
are used to find projects best suited for software evolu-
tion studies in the case of GHA CI/CD tool. However,
we can not generalize these findings on other GitHub
repositories, including personal webpages.

Construct validity concerns the relation between
the theory behind the experiment and the observed find-
ings [29]. To detect the use of workflows in GitHub
repositories, we identified the presence of a YAML file in
the .github/workflows folder. This approach may lead to
an overestimation of the presence and correctness of a
YAML file. It can be due to problems in the correspond-
ing workflow files or simply not being triggered for use.
However, we believe that most of these workflows are
indeed used since developers are unlikely to keep GHA
workflows without using them or do not solve the issues
in the workflow files.

Conclusion validity threats concern the degree to
which reasonable conclusions have been derived from
our analysis [30]. As our results only report quantitative
observations, they are not exposed to such threats.

8. Conclusion

This study investigated the evolution of GitHub Actions
workflows in collaborative software development by con-
ducting a quantitative analysis on a dataset of 22,733
GitHub repositories containing over 4 million weekly
snapshots of workflow files. This study aimed to pro-
vide preliminary findings on the changes made to these
workflows over time.

As a first goal, we aimed to quantify the coarse-grained

changes in GitHub Actions workflows in software projects.

Our findings revealed that the majority of repositories
created after the introduction of GHA tend to adopt it as
their primary CI/CD tool within a few months. Further-
more, we investigated the types of changes observed in
workflow files and found that modifications are the most
common type of change, followed by additions, with a
significant difference between the two. This seems to
confirm that Lehman’s software evolution laws of con-
tinuing change and continuing growth [26] also hold for
workflow files. A notable difference with the evolution
of regular source code, however, appears to be that most
of the changes made to workflows occur within the first
six weeks of adopting GHA in the project.

As a second goal, we aimed to quantify the fine-grained
line-based changes in GHA workflow files. Our findings
reveal that changes to code lines constitute 87.8% of all

workflow file changes. These changes are present in over
95% of all snapshots studied and are predominantly in
the form of line modification, addition, or a combination
of both. Furthermore, we observed that the proportion of
untouched lines generally increases with the workflow’s
lifetime, whereas most line additions occur within the
first six weeks. In contrast, code modification occurs
steadily throughout the workflow files.

This preliminary research showed the prevalence of
changes in GitHub Actions workflow files. In future work,
we aim to seek evidence for two other laws of software
evolution postulated by Lehman [26], namely increas-
ing complexity (stating that complexity increases unless
work is done to maintain or reduce it) and declining qual-
ity (stating that quality will decline unless the system
is rigorously maintained and adapted to operational en-
vironment changes). We will therefore study to which
extent we can find evidence of quality-related problems
such as code smells in workflow files, as well as the ef-
fect of preventive changes such as refactorings aimed at
increasing the quality and reducing the complexity of
workflow files.

Acknowledgments

This work is supported by the ARC-21/25 UMONS3 Ac-
tion de Recherche Concertée financée par le Ministére
de la Communauté frangaise - Direction générale de
I’Enseignement non obligatoire et de la Recherche scien-
tifique, and by the Fonds de la Recherche Scientifique -
FNRS under grant number F.4515.23.

References

[1] T. Savor, M. Douglas, M. Gentili, L. Williams,
K. Beck, M. Stumm, Continuous deployment at
Facebook and OANDA, in: International Confer-
ence on Software Engineering (ICSE), IEEE, 2016,
pp- 21-30.

P. M. Duvall, S. Matyas, A. Glover, Continuous inte-
gration: improving software quality and reducing
risk, Pearson Education, 2007.

M. Shahin, M. A. Babar, L. Zhu, Continuous integra-
tion, delivery and deployment: a systematic review
on approaches, tools, challenges and practices, IEEE
Access 5 (2017) 3909-3943.

K. Beck, Extreme programming explained: embrace
change, Addison-Wesley Professional, 2000.

B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov,
Quality and productivity outcomes relating to con-
tinuous integration in GitHub, in: Joint Meeting on
Foundations of Software Engineering (FSE), 2015,
pp. 805-816.

(8]

(9]

(17]

M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig,
Usage, costs, and benefits of continuous integration
in open-source projects, in: International Confer-
ence on Automated Software Engineering (ASE),
IEEE, 2016, pp. 426-437.

M. Beller, G. Gousios, A. Zaidman, Oops, my tests
broke the build: An explorative analysis of Travis
CI with GitHub, in: International Conference on
Mining Software Repositories (MSR), IEEE, 2017,
pp. 356-367.

M. Golzadeh, A. Decan, T. Mens, On the rise and fall
of CI services in GitHub, in: International Confer-
ence on Software Analysis, Evolution and Reengi-
neering (SANER), 2022.

A. Decan, T. Mens, P. R. Mazrae, M. Golzadeh, On
the use of GitHub Actions in software development
repositories, in: International Conference on Soft-
ware Maintenance and Evolution (ICSME), IEEE,
2022.

K. Gallaba, S. McIntosh, Use and misuse of contin-
uous integration features: An empirical study of
projects that (mis) use Travis CI, Transactions on
Software Engineering 46 (2018) 33-50.

C. Vassallo, S. Proksch, H. C. Gall, M. Di Penta, Au-
tomated reporting of anti-patterns and decay in
continuous integration, in: International Confer-
ence on Software Engineering (ICSE), IEEE, 2019,
pp. 105-115.

T. Durieux, R. Abreu, M. Monperrus, T. F. Bissyandé,
L. Cruz, An analysis of 35+ million jobs of Travis CI,
in: International Conference on Software Mainte-
nance and Evolution (ICSME), IEEE, 2019, pp. 291-
295.

F. Zampetti, C. Vassallo, S. Panichella, G. Canfora,
H. Gall, M. Di Penta, An empirical characterization
of bad practices in continuous integration, Empiri-
cal Software Engineering 25 (2020) 1095-1135.

F. Zampetti, S. Geremia, G. Bavota, M. Di Penta,
CI/CD pipelines evolution and restructuring: A
qualitative and quantitative study, in: International
Conference on Software Maintenance and Evolu-
tion (ICSME), IEEE, 2021, pp. 471-482.

T. Kinsman, M. Wessel, M. A. Gerosa, C. Treude,
How do software developers use GitHub Actions
to automate their workflows?, in: International
Conference on Mining Software Repositories (MSR),
IEEE, 2021, pp. 420-431.

T. Chen, Y. Zhang, S. Chen, T. Wang, Y. Wu, Let’s
supercharge the workflows: An empirical study of
GitHub Actions, in: International Conference on
Software Quality, Reliability and Security Compan-
ion (QRS-C), IEEE, 2021, pp. 01-10.

P. Valenzuela-Toledo, A. Bergel, Evolution of

(23]

[24]

(25]

GitHub Action workflows, in: International Confer-

ence on Software Analysis, Evolution and Reengi-
neering (SANER), IEEE, 2022, pp. 123-127.

P. Rostami Mazrae, T. Mens, M. Golzadeh, A. Decan,
On the usage, co-usage and migration of CI/CD
tools: A qualitative analysis, Empirical Software
Engineering 28 (2023) 52.

S. G. Saroar, M. Nayebi, Developers’ perception
of GitHub Actions: A survey analysis, in: Interna-
tional Conference on Evaluation and Assessment
in Software Engineering (EASE), 2023.

M. Wessel, T. Mens, A. Decan, P. Rostami Mazrae,
The GitHub development workflow automation
ecosystems, in: Software Ecosystems: Tooling and
Analytics, Springer, 2023.

A. Decan, T. Mens, P. Grosjean, An empirical com-
parison of dependency network evolution in seven
software packaging ecosystems, Empirical Soft-
ware Engineering 24 (2019) 381-416.

A. Decan, T. Mens, E. Constantinou, On the im-
pact of security vulnerabilities in the npm package
dependency network, in: Proceedings of the 15th
international conference on mining software repos-
itories, 2018, pp. 181-191.

O. Dabic, E. Aghajani, G. Bavota, Sampling projects
in GitHub for MSR studies, in: International Confer-
ence on Mining Software Repositories (MSR), IEEE,
2021, pp. 560-564.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, D. Damian, An in-depth study of the
promises and perils of mining GitHub, Empirical
Software Engineering 21 (2016) 2035-2071.

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, P. Devanbu, The promises and perils of
mining git, in: International Working Conference
on Mining Software Repositories (MSR), IEEE, 2009,
pp. 1-10.

M. M. Lehman, Laws of software evolution revis-
ited, in: European Workshop on Software Process
Technology (EWPST), Springer, 1996, pp. 108-124.
A. Danial, CLOC, 2021. doi:10.5281/zenodo.
7455676.

A. Ampatzoglou, S. Bibi, P. Avgeriou, M. Verbeek,
A. Chatzigeorgiou, Identifying, categorizing and
mitigating threats to validity in software engineer-
ing secondary studies, Information and Software
Technology 106 (2019) 201-230.

P. Ralph, E. Tempero, Construct validity in soft-
ware engineering research and software metrics,
in: International Conference on Evaluation and As-
sessment in Software Engineering, 2018, pp. 13-23.

[30] J. Maxwell, Understanding and validity in qualita-

tive research, Harvard educational review 62 (1992)
279-301.

http://dx.doi.org/10.5281/zenodo.7455676
http://dx.doi.org/10.5281/zenodo.7455676

	1 Introduction
	2 Related Work
	2.1 Evolution of CI/CD configuration files
	2.2 Popularity and usage of GitHub Actions

	3 Motivating example
	4 Data extraction
	5 Goal G1: Coarse-grained changes in GHA workflows
	6 Goal G2: Fine-grained changes in GHA workflows
	7 Threats to Validity
	8 Conclusion

