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Abstract  
Applying Artificial Intelligence (AI) to support Guided Experiential Learning (GEL) requires 
careful consideration from a pedagogical perspective. In this paper, we explore the role of a 
recommender engine in training decision support with a goal of optimizing the skill acquisition 
and sustainment process. This involves establishing learning science informed design 
assumptions grounded in experiential learning and defining associated data requirements and 
dependencies to drive a mathematical approach to structuring training guidance. We 
distinguish learning requirements across the different phases of competency acquisition and 
highlight the role of varying activities that address different foundational functions of the 
overall learning process. 
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1. Introduction 

Experiential learning emphasizes the central role of active engagement with real-world experiences 
in facilitating learning and expertise development [1]. By actively participating in authentic tasks and 
environments, learners gain firsthand exposure to the complexities and nuances of the domain, leading 
to the construction of meaningful mental representations and the development of domain-specific 
expertise [2]. The immersive and situated context of experiential learning provides learners with 
opportunities to encounter and resolve real-world challenges, promoting the integration of knowledge 
and skills into practical application [3]. 

Deliberate practice complements experiential learning by highlighting the im-portance of focused 
and intentional effort to improve performance at the knowledge and skill level [4]. Deliberate practice 
involves engaging in structured activities that target identified gaps, weaknesses or areas for 
improvement, with the goal of achieving incremental advancements and mastery. Through this 
approach, learners engage in repetitive and deliberate exercises that challenge their existing faculties, 
allowing for targeted feedback, reflection, and refinement of performance [5]. By systematically 
breaking down complex skills into manageable components and engaging in deliberate practice, 
learners gradually enhance their domain-specific expertise and achieve higher levels of proficiency. 

When considering Guided Experiential Learning (GEL), we explore the extension and ultimate role 
of intelligent tutoring and Artificial Intelligence (AI) to assist and optimize a learner or team’s 
progression through competency development. With advancements in simulation, eXtended Reality 
(XR) interfacing, and multi-modal analytics, focused training programs can leverage these immersive 
technologies to support early exposure and active experiential learning in safe and controlled settings. 
Furthermore, AI technologies offer unique opportunities to enhance the effectiveness of experiential 
learning by providing personalized guidance, adaptive feedback, and tailored learning pathways [6]. 

For this workshop paper, we focus on the pedagogical considerations of experiential learning, with 
a goal of conceptualizing and identifying initial design requirements for a data-driven recommender 
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engine. To focus the conversation, we examine the use of GEL to support individualized competency 
development aligned to a team context (i.e., improving the individual to benefit the team). This involves 
supporting development of interdependent cognitive, psychomotor and affective KSB associations that 
align to a set of team tasks that have individualized competency requirements. To guide the discussion, 
we consider the role of pedagogy and GEL recommendations across two learning paths and their 
underlying objective: (1) a learner progressing from novice to expert and (2) a learner sustaining 
expertise and proficiency to support future application. 

2. Navigating the Skill and Competency Acquisition Curve 

The "crawl, walk, run" framework provides a simple way to conceptualize the progression of skill 
development, highlighting the incremental nature of competency acquisition. It emphasizes the 
importance of building a solid foundation, gradually advancing skills, and continuously refining 
proficiency over time. Here are some generic definitions to help frame the discussion to follow. 

 
• Crawl. The crawl stage represents the initial phase of learning and skill development, where 
learners are introduced to foundational concepts and basic skills. At this stage, learners are acquiring 
fundamental knowledge and building a solid understanding of the subject matter. They may require 
significant guidance, repetition, and practice to grasp the basics and establish a strong foundation 
[7]. 
• Walk. The walk stage signifies the intermediate phase of skill development, where learners 
have acquired a reasonable level of proficiency and can perform tasks with increased independence 
and accuracy. In this stage, learners begin to apply their knowledge and skills in more complex 
contexts, exploring and expanding their capabilities. While still benefiting from guidance and 
support, learners become more self-directed and capable of carrying out tasks with greater fluency 
and efficiency [4]. 
• Run. The run stage represents the advanced level of skill development, where learners have 
attained a high level of expertise and can perform tasks with ease, efficiency, and mastery. At this 
stage, learners exhibit a deep understanding of the subject matter and can apply their skills in 
complex and challenging situations. They demonstrate advanced problem-solving abilities, 
adaptability, and the capacity to handle novel or demanding tasks with minimal guidance [4]. 
 
While we differentiate the phases of skill acquisition, it is important to account for high level 

associations on the types of learning interactions associated with experiential learning, and their 
intended impact on the competency acquisition process. In this paradigm, we establish three distinct 
performance activity types, drill vs. practice/scrimmage vs. perform. 

 
• Drill. In the context of practice and skill development, a drill refers to a structured and repetitive 
exercise or activity that focuses on developing specific components or sub-skills of a larger skill or 
task. Drills often involve isolating particular aspects of a skill and providing repeated practice 
opportunities to reinforce and automate the associated actions or cognitive processes. They typically 
follow a predetermined set of steps or patterns and may involve the use of instructional cues, 
prompts, or demonstrations to guide learners in executing the desired actions accurately and 
efficiently. 
• Scrimmage/Practice. Scrimmage, also known as scenario-based practice, involves engaging 
in practice sessions or activities that simulate real-world or game-like situations. Unlike drills, 
scrimmages aim to replicate the complexity, unpredictability, and dynamics of actual performance 
contexts. Scrimmages provide learners with opportunities to apply their skills in more authentic and 
dynamic settings, often involving interactions with teammates, opponents, or changing 
environmental conditions. These practice sessions emphasize decision-making, problem-solving, 
and the integration of various skills and strategies within a realistic context. 
• Perform. This performance context associates execution of tasks in the real-world operational 
environment when it matters most. This is the ultimate activity we aim to influence through 
experiential learning, serving as a culminating event to gauge training effectiveness. 
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2.1. Going from Novice to Expert 

The integration of experiential learning and deliberate practice provides a powerful framework for 
supporting learners in their progression from novice to expert across the Crawl/Walk/Run paradigm. 
Experiential learning offers the necessary context and authenticity, enabling learners to develop deep 
understandings of the domain, while deliberate practice provides the structured and focused approach 
to refine and optimize performance. By combining these two approaches, educators and learning 
practitioners can design pedagogical interventions that effectively guide learners through the various 
stages of expertise development, ultimately leading to improved learning outcomes and increased 
expertise. 

Understanding that learning is a social process, the early competency development phases are 
inherently dependent on a more competent other (i.e., zone of proximal development [8]). From this 
perspective, a Subject Matter Expert deconstructs the KSB requirements to achieve expertise and builds 
a focused longitudinal training plan that structures lessons, resources and coaching strategies to address 
the foundational knowledge and skill components required in the crawl phase. 

An interesting case study in this area is referred to as the DanPlan [9]. Dan McLaughlin was a 
professional photographer and in his late 20’s was introduced to the theory of deliberate practice and 
the 10,000 rule to attain world class expertise [5]. After deep contemplation, Dan decided to quit his 
job, start a gofundme account, and to ultimately test this theory in the domain of golf. It’s important to 
note, at this point in his life, Dan had never held a golf club with real intent, with the exception of a few 
games of putt-putt across his life. This adventure caught the attention of world class human performance 
experts, and partnered with him to help apply learning science best practices to see what level of 
performance and proficiency could be attained through a focused deliberate practice strategy. The 
following is an excerpt from an article reviewing his journey [9]. 

 
“As he progressed, McLaughlin found that many of our instincts 
turn out to be self-defeating. “People’s intuitions about practice 
are nowhere near optimal,” says Robert Bjork, a professor in 
cognitive psychology at the University of California, Los Angeles, 
whose research has demonstrated the effectiveness of introducing 
“deliberate difficulty” into practice—for instance, constant 
variety, “interleaving” between different skills and “spacing” 
study to force students to retrieve, and embed, new knowledge 
between sessions.  “You want to increase arousal so [the brain 
encodes] in-formation at a deeper level,’” says Mark Guadagnoli, 
a professor of neuroscience and neurology at the University of 
Nevada, Las Vegas, School of Medicine. “It’s [like] using a laser 
to engrave something versus a ballpoint pen.” With advice from 
Bjork, Erics-son, Guadagnoli, and others, McLaughlin 
incorporated these principles.” 

 
While Dan never attained his goal of becoming a professional golfer, his self-administered 

experiment provides interesting insights into the real-world application of focused deliberate practice. 
He produced impressive results, but this could not be accomplished without help and support in defining 
exactly how to drill and practice in support of his overarching progression through the skill acquisition 
curve. This highlights an interesting opportunity for AI to provide world class coaching support when 
more competent peers are not available to guide your performance pursuits. 

2.2. Sustaining Proficiency and Expertise 

Experiential learning continues to play a crucial role in maintaining superior performance for 
learners who are already experts in a specific domain. While experts have attained a high level of 
proficiency, their ongoing engagement in experiential learning allows them to adapt, refine, and extend 
their expertise to remain at the forefront of their field. Part of this is maintaining an emphasis on the 
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basic fundamentals and their role in successfully executing novel tasks with desired performance 
outcomes. These KSB elements are the focal point in the crawl and early walk phase of skill acquisition 
but require application at appropriate intervals and under context free conditions to maintain proficiency 
and automaticity when they are required under novel and critical performance situations. 

Anecdotally, here’s a quote from an interview with Kobe Bryant on his practice regiments. Kobe is 
considered one of the best basketball players of all time and was meticulous with his approach to 
training. 

 
Alan Stein, Jr.: “Kobe, you are the best player in the world, why 
are you doing the most basic drills?” 

 
Kobe Bryant: “Why do you think I am the best player in the 
world? I never get bored with the basics!” 

 
For this purpose, a recommender engine must account for drill level training requirements at 

appropriate intervals to maintain required levels of proficiency. An associated competency model 
aligned to experiential learning will require evidence of ex-pert application of fundamentals prior to 
initiating more context-oriented practice scenarios. 

3. What is a Recommender Engine 

The role of a recommender engine in the context of intelligent tutoring and adaptive instruction is 
to provide personalized recommendations and guidance to learners based on their individual needs, 
preferences, and performance data. A recommender engine employs algorithms and machine learning 
techniques to analyze vast amounts of learner data, such as their past interactions, learning outcomes, 
and demographic information, to generate tailored suggestions for instructional content, learning 
activities, or learning pathways [10]. By leveraging these data-driven insights, recommender engines 
can offer adaptive and individualized support, ensuring that learners receive targeted recommendations 
that align with their specific learning goals and capabilities. 

3.1. Recommender Engines in the Context of GEL 

In our case, GEL extends a recommender engine type service to support interaction across an 
ecosystem of learning resources that can combine to drive the competency acquisition process. In this 
instance, we theorize that there are a number of technologies that can be used to support a learning 
requirement, and a learner’s current acquisition phase will dictate the type of environment and 
psychological fidelity to support their associated goals. This can involve use of simulations, game 
environments, and XR modes of interaction to target specific KSB elements that are required to across 
the cognitive, psychomotor and affective learning dimensions. This also accounts for personalization 
of interaction characteristics (e.g., task difficulty and complexity) that assist in facilitating ideal 
deliberate practice [11]. When considering a recommender engine, the with an emphasis on driving 
experiential learning benefit. 

4. Design Considerations 

When considering the goals of GEL and the role AI can play in supporting learner objectives, a 
recommender engine capability requires a mathematical approach to represent the variables and theories 
that drive skill acquisition theory [12]. In this section, we examine the role of a recommender engine to 
help learners plan and prioritize their scheduled training sessions, with a goal of selecting competencies 
that need most attention and balancing activity types based on current competency and proficiency 
levels. 

4.1. Mathematical Model 
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To create a mathematical equation for planning a scheduled session for experiential learning, we 
consider a weighted sum approach that takes into account the competency state, recency, decay rate of 
each competency, and an associated ratio looking at the balance between drill and scrimmage task 
recommendations. The following variables are considered: 

 
• N: The number of competency frameworks aligned to tasks 
• S_i: Current competency state for competency framework i (untrained, practiced, proficient) 
• R_i: Recency of competency application for competency framework i (measured in time units, 
e.g., days) 
• D_i: Decay rate for competency framework i (measured in competency loss per time unit, e.g., 
proficiency points per day) 
• T: Training session time allotment (measured in time units, e.g., hours) 
 
The equation for planning a scheduled session could be: 
 

Total_score = Σ (w_i * S_i * exp(-D_i * R_i)) * ratio  (1) 
 
In this equation, the total score is multiplied by the ratio parameter. This allows you to adjust the 

balance between drill and practice time based on the learner's current acquisition phase. To clarify the 
interpretation of the ratio parameter: 

 
• If ratio > 1: It indicates a greater emphasis on drill time compared to practice time. The learner 
will spend more time on structured exercises, repetitive tasks, or knowledge acquisition. 
• If ratio < 1: It indicates a greater emphasis on practice time compared to drill time. The learner 
will spend more time on hands-on application, real-world tasks, or problem-solving activities. 
• If ratio = 1: It represents an equal balance between drill and practice time. 
 
Here are some additional assumptions to take into consideration of an early design. In the initial 

stages of learning, during the crawl phase, it is beneficial to focus more on drill activities to build a 
solid foundation of knowledge and basic skills. A recommended ratio for the crawl phase could be in 
the range of 70% drill to 30% practice. As the learner progresses to the walk phase, they have developed 
a basic understanding and proficiency in the skills. At this stage, it is important to start increasing the 
emphasis on practice activities to enhance the application and problem-solving abilities. A 
recommended ratio for the walk phase could be around 50% drill to 50% practice, striking a balance 
between reinforcing foundational knowledge and promoting practical application. In the advanced stage 
of skill development, the run phase, the learner should focus more on practice activities to further refine 
their skills and apply them in real-world scenarios. Practice activities in this phase could involve 
complex, challenging tasks that require higher-order thinking and decision-making. A recommended 
ratio for the run phase could be in the range of 30% drill to 70% practice. 

These recommended ratios provide a general guideline, but it's important to adapt them based on the 
specific learning objectives, the complexity of the competencies, and the individual learner's progress 
and needs. Regular assessment and feedback can help gauge the learner's readiness to progress from 
one phase to another and adjust the ratio accordingly. Remember that the purpose of these ratios is to 
strike a balance between building foundational knowledge (through drill) and promoting practical 
application and problem-solving (through practice) to support effective skill development throughout 
the crawl-walk-run continuum. 

4.2. Reinforcement Learning Algorithm 

The mathematical equation for planning a scheduled session can be modified to incorporate 
reinforcement learning concepts such as reward and value functions. Instead of using state values or 
action values directly, we can adapt the competency math model to incorporate reinforcement learning 
components. Let's assume we have a reward function R(s, a) that provides a numerical reward for taking 
action a in state s. The modified equation can be expressed as: 
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Total_score = Σ (w_i * R(s_i, a_i) * exp(-D_i * R_i))   (2) 

 
Here, s_i represents a specific state or competency associated with a task, and a_i represents the 

corresponding action or practice activity. R(s_i, a_i) represents the reward obtained from taking action 
a_i in state s_i. R_i represents the recency of the state-action pair, and D_i represents the decay rate 
associated with the competency. 

4.2.1. Ratio in Reinforcement Learning 

In the context of reinforcement learning, the ratio of drill vs practice activities can be associated with 
the exploration vs exploitation trade-off. Exploration involves taking actions to gather more information 
about the environment and learn better strategies, while exploitation involves selecting actions that are 
known to yield high rewards. 

To incorporate the ratio, we can adjust the balance between exploration and exploitation during the 
learning process. A higher ratio would encourage more exploration, allowing the learner to try different 
actions and gain a better understanding of the task. A lower ratio would prioritize exploitation, focusing 
on actions that have previously resulted in high rewards. By dynamically adjusting the ratio parameter 
during the reinforcement learning process, we can influence the learner's exploration-exploitation trade-
off and guide their decision-making. 

5. Conclusion and Future Work: Linking to a Data Strategy 

In this paper, we introduce considerations for a recommender engine designed around the tenets of 
experiential learning and deliberate practice principles. We emphasize the need for a balance of focused 
drill type activities that target specific knowledge, skill and behavior components with realistic hands-
on practice opportunities that replicate the real-world environment these competencies are applied 
within. This involves identifying and prioritizing training requirements aligned to tasks and the 
underlying competencies required for optimal performance. We identify specific variables that must be 
tracked at the learner and learning resource level, and emphasize sustainment of basic fundamental 
skills required for expert proficiency.  

As a limitation, the work introduced above has been presented in a relatively general manner. The 
forward goal is to take these modeling assumptions and directly align them to an implementation of a 
training ecosystem and data modeling approach that supports the GEL requirements. The first 
application will be within the Synthetic Training Environment Experiential Learning for Readiness 
(STEEL-R [6]) data strategy, which leverages adaptive instructional systems components and standards 
aligned to the ADL Total Learning Architecture (TLA [13]). A carefully developed eXperience 
Training Support Package (XTSP) data model was established to support the measurement of discrete 
experience events within a GEL type setting, and is used to support the configuration and calibration of 
assessment and data management techniques that will guide recommender engine design and 
implementation [11]. 
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