
Towards Complex Event Processing for Clinical
Decision Support using FHIR
Gerhard Kober1,∗, Livio Robaldo2 and Adrian Paschke3,†

1Visuapps GmbH, Vienna, AT
2Legal Innovation Lab Wales, Swansea University, UK
3Fraunhofer FOKUS and Freie Universitaet Berlin, Berlin, DE

Abstract
Clinical Decision Support (CDS) is designed to provide medical guidance and decision support based
on patient information. More and more patient data is being collected from medical devices and fitness
trackers, and some decisions need to be made quickly to allow for timely medical treatment. In our
work, we combine a Semantic Web rule-based approach for representing medical guidelines with medical
data represented in the “Fast Healthcare Interoperability Resources” (FHIR) standard. We implement a
complex event processing strategy to deliver near-real-time decisions for a physician. This is relevant
in intensive care and emergency medicine in particular, as medical treatment is time-critical and can
decide on life or death of the patients. Different approaches exist for real-time clinical decision support.
However, the integration of FHIR and Semantic Web technologies is missing. By integrating FHIR,
medical ontologies, and Prova [1] as a semantic rule engine, we can define the medical guideline and
include hooks for data extraction and decision points. We describe the entire process, starting with the
medical device submitting the FHIR observations, through the data handling and decision points, to the
notification of the attending physician. We extend the functionality of the existing rule engine for data
handling and decision-making. In this work, we outline a solution that is capable of clinical decision
support, including FHIR, and makes use of a semantic rule engine that allows medical guidelines to
be expressed in RuleML. With these features, we also include the option of real-time complex event
processing.

Keywords
CEP, FHIR, Healthcare, Rules, Medical Guidelines, Clinical Decision support

1. Introduction

Medical doctors must decide efficiently to provide the best possible treatment for their patients.
The basis for the decision includes state-of-the-art knowledge about medical treatment as well as
a patient-centric perspective and actual data. For example, in intensive care or in an emergency
medical setting, physicians need to select fast which medical treatment to apply based on the
patient’s physical condition and the guideline that ensures the best care for the specific disease.
Patients’ real-time data and the medical guideline’s actuality are fundamental. From a technical
perspective, there are two main concerns: the high amount of patient-generated data (e.g.,

RuleML+RR’23: 17th International Rule Challenge and 7th Doctoral Consortium, September 18–20, 2023, Oslo, Norway
∗Corresponding author.
Envelope-Open gerhard.kober@visuapps.com (G. Kober); livio.robaldo@swansea.ac.uk (L. Robaldo);
adrian.paschke@fokus.fraunhofer.de (A. Paschke)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gerhard.kober@visuapps.com
mailto:livio.robaldo@swansea.ac.uk
mailto:adrian.paschke@fokus.fraunhofer.de
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


from sensors and laboratory results) and the description of a medical guideline as a set of rules
combined with the requirement to take near real-time decisions.
Medical guidelines are a crucial component of the clinical medical care process, since they

enable cutting-edge medical treatment. The medical procedures are improving over time, and
find their way to the latest recommendations in the guidelines.

Medical guidelines are evidence-based (i.e., they follow a standardized method of best practice
and medical studies), ensure optimal patient treatment, and provide reassurance for the treating
physician. Medical guidelines are typically described in natural language as workflows and
diagnosis options. The guideline text also refers to literature, performed clinical trials, and
respective outcomes and explains the purpose of the guideline design and introduction.

Fast Healthcare Interoperability Resources (FHIR) is an HL7 (Health Level 7)-Standard that de-
fines the exchange and the structure of medical (data-) resources for building up interoperability
among medical facilities[2].

In FHIR architecture, messages are exchanged using JSON, XML, and RDF formats, all transmit-
ted using RESTful mechanisms. From a content standpoint, the format enables the description
of so-called FHIR resources, which provide standardized building blocks for the instance-level
description of healthcare entities. Resources exist, e.g., for a “Patient”, “Observation”, and basic
Resource-types, e.g., as a “Bundle” or a “Code System”. FHIR’s resources and RESTful API access
methods can cover various healthcare scenarios. A medical monitoring device can efficiently
provide newly generated observations about a patient to a FHIR store for persistence. In a
later step, data from the FHIR store can be selected to fulfill physicians’ diverse needs. For
example, regular measurements, such as heart rate, blood pressure, or oxygen saturation, can be
recorded if a patient is undergoing clinical treatment. However, one can also imagine any other
laboratory result or clinically relevant measurement that should be persisted in a FHIR store.
The entire feed/query process for FHIR resources is maintained using FHIR’s RESTful API.

Complex event processing is a strategy aimed at identifying meaningful events in real-time
situations and reacting as quickly as possible [3][4]. Complex event processing is about event
detection and reaction to complex events, i.e., compound event processed in near real-time.
In the case studies considered in our research, processes involve, on the one side, a medical
monitor (the event producer) and, on the other side, the physician’s workstation (the event
consumer) [5][6].
The medical domain faces many different sources of information. The problem we will

address is integrating the workflow by combining the best practice medical guideline with the
patient’s real-time medical information encoded in FHIR and presenting the outcome to the
physician for optimal medical treatment. Handling the problem can increase the quality of
care for the patient, the safety of care, and the positive success rate in care for the clinician.
By extending the capabilities of Prova [1], a Rule-based Complex Event Processing engine,
for handling FHIR requests and decision-taking based on medical guideline rules, we plan to
inform connected clients (physicians) of every decision to adopt during medical treatment of
the particular patient.

The paper is structured as follows: section 2 describes the related work, and in section 3, we
express our solution, containing a system architecture and depicting the flow of data. In section
4, we describe and evaluate our results. Finally, we discuss and conclude in section 5.



2. Related work

In previous work [7], we submitted a FHIR-Resource to Prova, extracted the coded values, and
let Prova decide. However, the work in [7] was rather limited from several perspectives. This
paper addresses these limitations thus presents a new more robust and flexible version of our
framework.
First and foremost, we had the problem that we only referenced the guideline’s content

described in RuleML but included the details that make up the decision process in our implemen-
tation. Thus, the execution of the rule set was very much tied to the specific implementation
and could not be used generically.

Second, the true or false decisions were not made solely by the ruleset but by configuration
settings in the software that communicated with Prova.

Furthermore, we used multiple hooks to send messages between different services, which are
expensive, and too slow for an external device that would send events within seconds. Finally,
since we might require historical data during the processing, we need to query a FHIR store
rather than hard-coding the data statically in configuration files. A related issue is that many
relevant codes (e.g., LOINC, SNOMED-CT) can be in place in medical guidelines, but adding
configurations for that and coding the values is mainly up to the developer, not to the guideline
designer.
Another implementation that can be found in MuleSoft has an API in place that allows the

detection of the different FHIR-Resources for event processing [8]. The event-detection tends to
be meant for delivering received messages to other actors like payers and vaccination programs
or child-health programs. This entails that MuleSoft can detect and forward FHIR resources,
but the medical guideline decision path would eventually be missing.
Cotter et al. [9] enriched the FHIR data with Semantic Web technology and then asked

queries. In their framework, incoming Health-Data is transferred to FHIR-RDF while persisting
the generated graph in a triple-store. For subsequent queries, they were using SPARQL. Esper
[10], a complex event processing engine, was used to discover conditions. Several challenges
were identified in their approach: the query engine got overloaded by high-frequency queries;
Furthermore, with each new incoming data set, the result of query-results accumulated which
also led to an overload. Additionally, Esper is a language, compiler, and runtime for Java and
.NET. It compiles Event Processing Language (EPL) to bytecode into a product. This compilation
reduces the flexibility of a guideline specialist since a new guideline would result in a new
product build.

De Laurentis [11], focuses on ECG (Electrocardiograms) and Images, where the ECG-events
are detected matching defined criteria in the knowledge base. The analysis of historical data
was necessary for detecting long-term anomalies. This was done by using and extending ISEQL
[12] (Interval-based Surveillance Event Query Language). The work uses manual and automatic
data acquisition. However, it seems the automated data is of a proprietary type and lacks the
FHIR standard, thus limiting the interoperability and reusability of the approach.
This work, and our research in general, is instead focused on the FHIR standard, which

we reason with by using the rule-based reasoner Prova. Different rule-based CEP engines,
among which Prova (but also Prolog, Drools, ETALIS, etc.), are compatible with rule interchange
standards such as Reaction RuleML, where we can implement medical guidelines with decision



points. Still, the engines cannot directly deal with health-care-specific standards like FHIR.
Furthermore, although Complex Event Processing (CEP) has been researched since decades,
including research concerning the medical domain, integrating the FHIR standard and using a
rule engine based on the RuleML standard was not done yet. This paper will contribute to these
research directions in particular.

3. Methods

This paper, and the implementation, are part of a larger project, where we introduced a so-
called Distributed Medical Rule engine[13]. Over time, the limitations were identified and the
limited capabilities were re-engineered to a “Distributed Medical Service Engine” (DiMSE). This
Service Engine can receive RESTful calls, perform different actions, and even encode medical
information via Semantic Web technologies.
For the implementation part of the project, we are using Prova. Prova is a (semantic) Web

rule language and a highly expressive distributed (Semantic) Web rule engine at the same time.
It supports complex reaction rule-based workflows and rule-based complex event processing.
Furthermore, distributed inference services, rule interchange, and rule-based decision logic are
possible. The option of dynamic access to external data sources is highly relevant during the
usage of our work[14]. Prova is built on top of ISO Prolog syntax from a syntactic perspective,
and it offers serial Horn logic’s expressiveness with a linear resolution for extended logic
programs from a semantic perspective. Prova’s capabilities allow us real-time event processing,
as well as integrating external data sources, which are, in our case, FHIR stores.

3.1. Addressing real-time event processing

To address the problem of Complex Event Processingwith FHIR, we are extending the capabilities
of the DiMSE by using already implemented FHIR-RESTFul-APIs and injecting the FHIR standard
into Prova. In more detail, the entire workflow (from a broader perspective) is described as
follows and visualized in Figure 1:

1. Data-acquisition of FHIR-Observation.
2. Submission from FHIR-Observation to RESTFul API of the DiMSE.
3. Forward FHIR-Observation to Prova-Codebase (with the targeted medical guideline).
4. Parsing and extraction of the relevant values via Prova; these values are then provided to

a subsequent internal function (compare-function).
5. The extracted value is validated against the target value.
6. The compare-function of Prova evaluated in Nr. 5 decides if the target value matches the

FHIR value or not, and returns a truth value to the rule engine.
7. Decision/result is returned to Prova-initiating calls and initiating a WebSocket call to

notify attached clients.

The data acquisition and health-status sensoring is a task of a medical device (like an ECG-
Monitor). Such devices should be able to create patient-related FHIR-Observations to submit
these to a designated endpoint. For example, a heart-rate measurement is permanently done,



Figure 1: Workflow from a top-level perspective

and therefore a submission (for persistence purposes) should be performed at regular intervals.
This applies to many different devices that serve different duties in the healthcare domain.

The FHIR observation submission is made using the FHIR standard methods, considering
that FHIR is defined as a “RESTful” specification [15]. In our case, we defined and implemented
a corresponding RESTFul-Service in the Distributed Medical Service Engine (DiMSE) capable of
handling these requests. The FHIR-Observation-Resource that is implemented in the DiMSE
is defined by the standard, allowing the DiMSE to handle all different sorts of Observations
(such as heart rate, blood pressure, and breathing rate). Acting as a FHIR server allows us to
operate as a proxy and intercept requests, where we can, on the one hand, use the FHIR resource
content for the Prova-Rule-Engine, and, secondly, eventually forward it to another FHIR-Store.
Once we have received the FHIR-Observation, which is technically a JSON-Request, in the

DiMSE, we parse it and call the implemented Prova-Service, which allows messaging to the
rule base as well as messaging from the rule base back to our implementation. During the
initialization phase of the Prova-Service, we load the rule base, which comprises the medical
guideline. Furthermore, we send the FHIR observation as a payload to the Prova service to be
used in the future execution process.
In the following step, the Prova-Rule engine with its capabilities comes into play. We are



using Prova’s “rcvMult’’-function, which enables us to receive multiple incoming messages [16].
This function is used to accept the FHIR-Observation and pass it to subsequent functions in the
rule base. We extended Prova to handle specific functions:

• fhirExtractValueFromObservation
• fhir_results
• fhirCompareBigDecimalValues

The fhirExtractValueFromObservation function: The signature of fhirExtractValueFro-
mObservation contains the FHIR observation object, a QueryID, meant for temporarily holding
the result available for the following function, and a code.

fhirExtractValueFromObservation(FHIR-Object,QueryID,``Code'')

The code expresses which Observation-Code-meaning should be extracted. It is a Code out of the
LOINC-Codesystem, defining the value of the observation. For example, if a FHIR-Observation
with a LOINC code “LP415755-0”1 is submitted, this means that we are going to detect a heart
rate and extract the observation’s value. This value gets then assigned to a “QueryID”.

The fhir_results function: The allocation is also implemented in a Prova function. This
is sort of a decision support function. This was done to separate the tasks - to have the
extraction and the following comparison disjunct and more globally available. Usually, the
Prova functions return boolean values. In this case, we are not in the comparison phase, only in
the “preparation”-phase.

fhir_results(QueryID, ObservationValue)

We need this assignment to have the observation value available in a later step in the pro-
cess. Since we now have the extracted value as a single- entity (the type of this value is now
BigDecimal) available, we can hand over this value now to a compare function.

The fhirCompareBigDecimalValues function: This function takes as input the value,
the target value, and the comparison parameters. The implementation reads these values and
evaluates the term as true or false.

fhirCompareBigDecimalValues(ObservationValue, 3.02, ``<='').

Allowed comparison parameters are: <,>,==,<=,>= and !=. Internally, the FHIR observation
value, that was extracted beforehand, is compared with the target value. In the case, the
comparison does not hold, we are returning “false” to the rule engine. In theory, this function is
generic enough, to not only compare FHIR observation values, but any arbitrary BigDecimal
values.

Since Prova rules are Horn rules, we have to evaluate our function to be true to ensure the
entire rule is true. The following example shows the embedded fhirCompareBigDecimalValues-
function within the Horn Rule in Prova:
1https://loinc.org/LP415755-0

https://loinc.org/LP415755-0


Example:
normal(ObservationValue) :-

%println(["normal - observationValue: ", ObservationValue]),
fhirCompareBigDecimalValues(ObservationValue, 3.02,"<=").

This rule expresses that we want to evaluate for a “normal” result. If fhirCompareBigDecimal-
Values evaluates to “false”, the “normal” expression resolves to false, and the rule breaks the
processing.

As a final step in the Prova rule base, we are sending back the result to the initiating Java code
using the “sendMsg” function. This function has a corresponding section in the implementation,
introducing the option to push the results directly to attached clients using WebSockets. In this
implementation, we are registering web socket clients with their sessions. If a result from the
rule engine is captured, we forward this result as a JSON formatted message to the client. We
have a simple website for our simulation case that prints out the result.

3.2. Using ex-post-queries

The second option of integrating the FHIR-Data, where the interception is performed in a
different way. The workflow, in general, is similar to the one described above. However, there
are slight changes: Firstly, the monitoring device stores the FHIR-Observations as they are in a
FHIR store. Secondly, an arbitrary trigger to the DiMSE can issue the execution of the medical
guideline. These independent, asynchronous events, the FHIR submission, and the guideline
event trigger, have the problem that they can overtake each other from a timing perspective,
so the medical guideline execution engine is not aware of the latest FHIR observation. Even if
triggers are correctly sequenced, FHIR queries to a FHIR store are required. To enable FHIR
queries, we implemented two functions in the Prova rule engine:

• fhir_connect
• fhir_native_query

The fhir_connect function: This function handles the connection to which specific FHIR
store the rule engine should bind, and the following query should be executed. As an example,
we have

fhir_connect(Fhirserver,``https://hapi.fhir.org/baseR4/'')

where we define a particular naming for later use in the Prova rule engine (here, this is called
“Fhirserver”). This function establishes and verifies if a connection to the destination endpoint
is available. In our case, we connect to a public FHIR store, but any other FHIR store can be
approached with the same method since the FHIR standard describes how to approach FHIR
stores and the respective data.

The fhir_native_query function: It takes as input parameters the “Fhirserver” from the
function above and then the needed URL-Parameters. For our example, we have the following
parameters in place:



Observation?subject=Patient/1398961
&code=http://loinc.org|706-2&_sort=-date&_count=1

This means, that we connect to the FHIR store and search for Observation-Resources be-
longing to a particular patient. The patient’s reference is encoded as “subject’’ in the FHIR-
Observation. Apart from the patient, we search for all Observations having a “code” from
the code-system LOINC and a specific code - here 706-2. To ensure that we have the latest
information from the FHIR store in place, we added sorting criteria to the date that is ordered
in a descending way. This sorts all received observations from the newest to the oldest ones.

Our implemented Prova function should only care about the most recent observation. How-
ever, in such a FHIR query result, we receive many different observations. Furthermore, de-
pending on the FHIR store’s implementation, some sort of paging is in place that returns the
first ten entries and provides links to the following pages. Since we need only one entry (the
latest FHIR-Observation), we can “limit” the result by adding the parameter_count=1. The
fhir_native_query-function also includes the comparison to the target value. This was done
since there is no need to hold the particular FHIR-Observation for subsequent tasks.

The implementation details can be found on the GitHub repository associated with this
paper2, but to use the project’s full capabilities, it must be packaged and deployed on a web
server. This is necessary to support RESTFul requests and use the WebSocket API.

3.3. A medical example

The medical guideline on intensive care of cardiac surgery patients[17] describes the basic
patient monitoring, an extended so-called “hemodynamic monitoring”, the target parameters
of cardiovascular therapy, and the therapy options themselves. The therapeutic goals of the
cardiovascular system, through volume substitution or drug therapy, are sufficient body-tissue
perfusion and, thus, an adequate oxygen supply to the organs.
“Hemodynamic monitoring” can be used to assess the pumping function of the heart. A

“target value parameter” list is also available, which defines a wide range of values. For example,
there is a target value of 65 mmHg as the target value for mean arterial blood pressure or a
target value of >70% for central venous oxygen saturation. Depending on the values obtained
from monitoring, a recommendation for medication (e.g., beta-blockers or catecholamines) is
made. Depending on whether the target values are reached by therapy or not, a re-evaluation
or therapy optimization takes place. Patients in intensive care units are usually connected to
monitoring systems to enable continuous monitoring and adjustment of therapy.
The medical guideline describes a variety of parameters that are transmitted during moni-

toring and are taken into consideration for a therapy decision. Depending on the measured
values transmitted for the treatment diagnosis, the outcome of the submitted values to the target
values of the guideline determines which therapy to select. Four therapeutic options exist for
so-called left heart failure, each using a distinct therapy. After treatment, the patient’s status is
re-evaluated towards the described measurement targets.

2https://github.com/gkober/CEP_FHIR_PROVA

https://github.com/gkober/CEP_FHIR_PROVA


4. Results and evaluation

The initial implementation considered solution number two as the favorite since it seemed that
a simple FHIR client handling the calls might fulfill the requirement to fetch information for
the clinical decision support. As a result of testing the solution with simulation data, it was
determined that the many requests stored in the FHIR store and additionally triggered rule
engine executions caused delays. Multiple threads were running, waiting to be completed. The
bottleneck was mainly concerned with the connection to the FHIR store itself. In addition,
the query’s outcome is greatly influenced by how the particular FHIR store is implemented.
Therefore, it cannot be guaranteed that the result is the most recent one to make the decision.
Furthermore, if a medical device stores its data elsewhere, multiple queries are necessary, and
therefore more network delays could occur.

Whenwe encountered these issues, we implemented the described first approach: intercepting
the request in the DiMSE and taking the decision there. We also executed our simulation, and
the performance increased in comparison to FHIR-native queries to a FHIR store.

Since we want to assess performance and the operation of the implemented Prova workflow,
the simulation is based on two random FHIR observations: The two observations distinguish
between a “normal” and a “non-normal” heart rate. The RESTful call is omitted because the
FHIR-Observation is directly submitted to the Prova-initiating function. However, in terms of
performance, the dispatching approach is economical. The execution time for 10100 submissions
was 84 seconds. This indicates that we can process 100 entries for decision-making on average
every second. We discovered that the memory consumption was consistent for a streamed
technique in which we continuously get FHIR observations, and no memory exception occurred.
In figure 2, we depict the number of FHIR requests in conjunction with the duration in seconds
and the memory consumption. The lower blue line outlines the duration: as expected, with
an increasing number of requests, the overall execution time grows. The upper orange line
describes the memory behavior of our test environment for the process. Initially, we have a
low-level memory consumption; over time, the memory behavior stabilizes. Even a single run,
with 120000 FHIR requests, did not exceed the memory limit.

5. Discussion and conclusion

We found that the two approaches can provide decision results for the medical guideline. These
are described and executed as rules. With the integration of FHIR, we enabled the inclusion
of medical devices capable of submitting FHIR observations. With this, we can overcome the
limitations of [11]. With the usage of Prova, and its compatibility with RuleML, we define the
medical guideline as a set of Rules as introduced in [18]. The work of Cotter et al. [9] and Kober
et al. [18] transformed the FHIR JSON representation into FHIR RDF and also enriched these
FHIR observations with ontologies for reasoning support. This enrichment is necessary for
particular needs and can even fulfill more sophisticated queries using SPARQL. However, for
the purpose of Complex Event Processing, the FHIR-to-RDF-transformation and the selective
queries might cause too much overhead. The RDF approach is more suitable for ex-post-queries
that are in use for “historical’’ data (e.g., the heart rate value 5 minutes ago). So, with our



Figure 2: Duration and Memory consumption per FHIR-Requests

implementation, we can define in the rules which code for the value-extraction is needed to be
evaluated, and Prova itself can describe the rules very precisely.

In the future, we need to investigate how to allow other FHIR resources as well, as currently,
we are limited to the observation-resource. Furthermore, the comparison method takes care of
decimal values, while textual representations might occur.

For processing FHIR-Observations, Prova has two different types of implementations ready.
While the second solution does ex-post queries to a FHIR store, the first method intercepts the
incoming request. We strive for request interception within a medical guideline when real-time
execution is crucial for medical treatment. These queries to various FHIR stores are quite useful
regarding historical data and medical standards that permit longer treatment times.

References

[1] A. Kozlenkov, A. Paschke, M. Schroeder, Prova language for rule based scripting of java
and agents, and knowledge and information integration, 2023. URL: https://prova.ws/,
accessed on June 14, 2023.

[2] Fhir v5.0.0, 2023. URL: https://www.hl7.org/fhir/, accessed on June 14, 2023.
[3] M. Eckert, F. Bry, Aktuelles schlagwort” complex event processing (cep)”, Informatik-

Spektrum (2009) 163–167.
[4] A. Buchmann, B. Koldehofe, Complex event processing, 2009.
[5] B. Linnert, Vorlesung alpv netzprogrammierung 2015, 2015. URL: http://www.mi.fu-berlin.

de/w/SE/VorlesungALPVNetzprogrammierung2015, accessed on May 31, 2023.
[6] e. a. Francois Bry, Debs2009 event processing languages tutorial, 2009. URL: https://www.

slideshare.net/opher.etzion/debs2009-event-processing-languages-tutorial, accessed on
May 31, 2023.

https://prova.ws/
https://www.hl7.org/fhir/
http://www.mi.fu-berlin.de/w/SE/VorlesungALPVNetzprogrammierung2015
http://www.mi.fu-berlin.de/w/SE/VorlesungALPVNetzprogrammierung2015
https://www.slideshare.net/opher.etzion/debs2009-event-processing-languages-tutorial
https://www.slideshare.net/opher.etzion/debs2009-event-processing-languages-tutorial


[7] G. Kober, A. Paschke, Using prova-rule engine as dispatching-service for fhir-observation-
resources., in: RuleML+ RR (Supplement), 2020, pp. 1–9.

[8] T. Huegle, Event-driven apis in the healthcare industry, 2022. URL: https://blogs.mulesoft.
com/api-integration/event-driven-apis-healthcare/, accessed on May 31, 2023.

[9] D. Cotter, V. Bumgardner, Semantic enrichment of streaming healthcare data, arXiv
preprint arXiv:1912.00423 (2019).

[10] Esper - espertech, 2022. URL: https://www.espertech.com/esper/, accessed on May 31,
2023.

[11] L. De Lauretis, F. Persia, S. Costantini, Intelligent Agents and Complex Event Processing
to enhance Patient Monitoring, CEUR Workshop Proceedings 3203 (2022) 212–218.

[12] S. Helmer, F. Persia, Iseql, an interval-based surveillance event query language, In-
ternational Journal of Multimedia Data Engineering and Management 7 (2016) 1–21.
doi:10.4018/IJMDEM.2016100101.

[13] G. Kober, Distributed medical rule engine (dmre)-project., in: RuleML+ RR (Supplement),
2020, pp. 87–94.

[14] A. Paschke, Rules and logic programming for the web, Reasoning Web. Semantic Tech-
nologies for the Web of Data: 7th International Summer School 2011, Galway, Ireland,
August 23-27, 2011, Tutorial Lectures 7 (2011) 326–381.

[15] Http - FHIR v5.0.0, 2023. URL: https://hl7.org/fhir/http.html, accessed 2023-06-16.
[16] A. Kozlenkov, A. Paschke, Prova rule language version 3.0 user’s guide, Internet:

http://prova. ws/index. html (2010).
[17] e. a. Sander, Prof. Michael, S3-Leitlinie zur intensivmedizinischen Versorgung herzchirur-

gischer Patienten. Hämodynamisches Monitoring und Herz-Kreislauf, Technical Report
AWMF Register 001/016, Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin
e.V. (DGAI), 2017. Accessed 2023-06-18.

[18] G. Kober, L. Robaldo, A. Paschke, Modeling medical guidelines by prova and shacl accessing
fhir/rdf. use case: The medical abcde approach., 2022.

https://blogs.mulesoft.com/api-integration/event-driven-apis-healthcare/
https://blogs.mulesoft.com/api-integration/event-driven-apis-healthcare/
https://www.espertech.com/esper/
http://dx.doi.org/10.4018/IJMDEM.2016100101
https://hl7.org/fhir/http.html

	1 Introduction
	2 Related work
	3 Methods
	3.1 Addressing real-time event processing
	3.2 Using ex-post-queries
	3.3 A medical example

	4 Results and evaluation
	5 Discussion and conclusion

