
Semantic Querying of Integrated Raster and
Relational Data: A Virtual Knowledge Graph
Approach
Arka Ghosh1,*, Mantas Šimkus1 and Diego Calvanese1,2

1Department of Computing Science, Umeå Universitet, Umeå, Sweden
2Research Centre for Knowledge and Data, Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy

Abstract
Ontology-based data access (OBDA) facilitates access to heterogeneous data sources through the media-
tion of an ontology (e.g. OWL), which captures the domain of interest and is connected to data sources
through a declarative mapping. In our study, large, heterogeneous earth observational (EO) data, known
as raster data, and geometrical data, known as vector data, are considered as (heterogeneous) data sources.
Raster data represent, e.g., Earth’s natural phenomena, such as surface temperature, elevation, or air
pollution, as multidimensional arrays. In contrast, vector data depict, e.g., locations, networks, or regions
on Earth, using geometries. Domain experts, such as earth scientists and GIS practitioners, still struggle
to undertake advanced studies by querying large raster and vector data in an integrated way because,
unlike relational data, they come in diverse formats and different data structures. In our approach to
integration, we use a geospatial extension of an RDBMS to represent vector data as relational data, and
a domain-agnostic array DBMS to handle raster data. Our aim is to extend the OBDA paradigm to
effectively deal with relational, vector, and raster data in a combined way, while leveraging the built-in
capabilities of data management tools relevant to each type of data. We also plan to develop techniques
to calculate on the fly for each user query posed over the ontology an optimal query plan that exploits,
at best, the query processing capabilities of each tool, while limiting costly data transfer operations
between tools.

Keywords
Ontology-Based Data Access (OBDA), Knowledge Representation, Spatial-temporal reasoning, Relational
Data, Vector Data, Raster Data, Multi-Dimensional Arrays, Artificial Intelligence (AI), Virtual Knowledge
Graph (VKG)

1. Introduction

In the age of Big Data, different types of data are being generated at a rate that is beyond human
comprehension, and this makes effective data management challenging. In particular, data
heterogeneity is becoming an issue that needs to be addressed via suitable data integration
techniques. In the study, we are proposing, we rely on the paradigm of Virtual Knowledge
Graphs (VKGs), which allows for flexible and efficient management of large amounts of richly

RuleML+RR’23: 17th International Rule Challenge and 7th Doctoral Consortium, September 18–20, 2023, Oslo, Norway
*Corresponding author.
$ arka.ghosh@umu.se (A. Ghosh); mantas.simkus@umu.se (M. Šimkus); diego.calvanese@unibz.it (D. Calvanese)
� https://www.umu.se/en/staff/arka-ghosh/ (A. Ghosh)
� 0000-0003-3789-0900 (A. Ghosh); 0000-0003-0632-0294 (M. Šimkus); 0000-0001-5174-9693 (D. Calvanese)

© 2023 Copyright for this paper by its authors.Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:arka.ghosh@umu.se
mailto:mantas.simkus@umu.se
mailto:diego.calvanese@unibz.it
https://www.umu.se/en/staff/arka-ghosh/
https://orcid.org/0000-0003-3789-0900
https://orcid.org/0000-0003-0632-0294
https://orcid.org/0000-0001-5174-9693
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


structured data. The VKG paradigm, also known as Ontology-Based Data Access (OBDA) [1, 2, 3],
has emerged as a proposal to simplify access to relational data for end-users by letting them
formulate high-level queries over a conceptual representation of the domain of interest, provided
in terms of an ontology [2, 1].

In traditional OBDA, domain knowledge is represented at the conceptual level as an ontol-
ogy 𝒪, e.g., expressed in the lightweight ontology language OWL 2 QL [4], while actual data
are maintained in a relational data source 𝒟, but are not materialised at the conceptual level
(which justifies the term “virtual”). To establish the relationship between the ontology 𝒪 and
the data 𝒟 at the source, OBDA relies on a declarative specification, provided in terms of a set
ℳ of mapping assertions. Each such mapping assertion 𝑄(�⃗�) ⇝ 𝐸(�⃗�(�⃗�)) specifies how the
data retrieved from 𝒟 by means of a SQL query 𝑄 should be used to populate a class or property
𝐸 of the ontology. The atom 𝐸(�⃗�(�⃗�)) in the right-hand-side of the mapping assertion refers
to the answer variables �⃗� of the query 𝑄, and might make use of so-called iri-templates �⃗� . An
iri-template 𝑓 is a function that constructs, from the values instantiating �⃗� in answer to 𝑄, an
ontology literal or an IRI identifying an ontology object. Thus, by applying the mapping ℳ to
the source database 𝒟, one obtains a knowledge graph ℳ(𝒟), and user queries formulated in
the standard Semantic Web query language SPARQL [5] over the ontology, are answered over
this knowledge graph (KG). Concretely, in an OBDA system, the KG stays virtual and, exploiting
both the ontology 𝒪 and the mapping ℳ, the OBDA system translates the SPARQL query into a
SQL query expressed over 𝒟, which is then directly evaluated by the underlying (open-source or
commercial) relational database management system (RDBMS), such as PostgreSQL, storing 𝒟.

1.1. Geospatial data: vector and raster data

The starting point of our study has been the OBDA/VKG framework, as described above, where
data is stored in a plain relational database. However, different data types often have specific,
predefined semantics that must be considered explicitly. The data might come in specific formats,
comply with specific models, and be equipped with specific types of operations affected by
the special semantics. Such operations must also be supported by the underlying system that
manages the data storage. A notable example is geospatial data, which we are considering in
our work. Many real-world applications such as climate change [6], wildfire risk assessment [7],
crop yield mapping [8], etc., require to combine such data with different heterogeneous data
sources to facilitate complex analysis. Thus it is essential to be able to reason about these
geospatial entities and eventually answer queries posed by end users to guide decision-making
processes [9]. Geospatial data are represented as (multi-dimensional) raster data and as vector
data, depending on the particular characteristics of the type of information [10].

Vector data comprises geometries such as points, lines, and polygons, and collections of these
elements with their positional parameters (e.g., longitudes and latitudes) that characterise them
on the earth’s surface. Examples of vector data are static locations (points), roads and river
networks (lines), and boundaries of countries, provinces, municipalities, lakes, and islands
(polygons). So, vector data (consisting of geometry and attribute data) can be connected through
specific extensions such as PostGIS, Oracle Spatial, etc., to relational database management
systems like PostgreSQL, OracleDB, etc. Then, one can execute queries on these vector data
using the relational query language SQL, suitably extended with specific geospatial functions.



In contrast, geospatial raster data are defined as multi-dimensional arrays (also known as
gridded data, or datacubes) [11], where each cell of the arrays represents a value associated with
a natural phenomenon (like surface temperature, soil moisture, elevation, vegetation indices, or
air pollutants), combined with location information (e.g., longitude and latitude). The cells cover
a portion of the Earth’s surface, and the raster’s spatial resolution determines each cell’s size. A
higher spatial resolution necessitates a larger number of cells per unit of area, hence larger-sized
raster data. The temporal resolution of raster data is related to the time necessary to capture
one single raster image, e.g., by a satellite’s sensors. When working with geospatial raster data,
one must also consider coordinate reference systems, map projections, transformations, raster
extent, etc., since these aspects influence the raster data semantics.

1.2. Integrating relational, vector, and raster data

Generally, traditional relational databases support raster data arrays using the spatial extension,
but not every format is supported. Additionally, the large arrays that represent raster data need
to undergo a conversion from their native format (such as NetCDF1, GeoTIFF2, GeoPackage3,
or HDF4) to a suitable relational form that can be queried using SQL. This conversion leads
to a significant increase in the size of the data. Moreover, raster data sets are often growing
fast in size and quantity, producing terabytes of data daily, due to improvements in remote
sensing and instrumentation (both air-borne and space-borne) [12]. It has been estimated that
the archived amount of raster data will soon reach the zettabyte scale [13]. Storing massive
amounts of ever-growing raster data together with relational data in a RDBMS and executing
queries over them will not be efficient and scalable.

For the above reasons, we have decided to use rasdaman5 [14, 15](for “raster data manager”), a
domain-independent array-based DBMS, as the container for raster data in this study. Rasdaman
provides flexible, scalable storage management and extensive array algebra to manipulate
enormous multi-dimensional raster arrays, along with a query language known as rasql6 to
query over the stored raster data. Rasdaman is domain-independent, hence suitable for all
applications where raster data management is a concern. For this reason, however, it does not
comply natively with the coordinate reference system (CRS) of stored geospatial raster data.
It has a Petascope component that adds geo semantics, such as support for the OGC standard
interfaces WCS7, WCPS8, WCS-T9, and WMS10. Currently, Petascope supports grid topologies
whose axes align with the stored raster’s CRS axes. But it does not support vector data, which
we consider essential in our setting.

1https://www.unidata.ucar.edu/software/netcdf/
2https://www.ogc.org/standard/geotiff/
3https://www.geopackage.org/
4https://www.hdfgroup.org/solutions/hdf5/
5http://www.rasdaman.org/
6https://doc.rasdaman.org/04_ql-guide.html
7https://www.ogc.org/standard/wcs/
8https://www.ogc.org/standard/wcps/
9http://www.opengis.net/doc/IS/wcs-t/2.0
10https://www.ogc.org/standard/wms/

https://www.unidata.ucar.edu/software/netcdf/
https://www.ogc.org/standard/geotiff/
https://www.geopackage.org/
https://www.hdfgroup.org/solutions/hdf5/
http://www.rasdaman.org/
https://doc.rasdaman.org/04_ql-guide.html
https://www.ogc.org/standard/wcs/
https://www.ogc.org/standard/wcps/
http://www.opengis.net/doc/IS/wcs-t/2.0
https://www.ogc.org/standard/wms/


2. Research challenges

The OBDA/VKG approach can facilitate the integration of these diverse geospatial datasets
provided by relational and array-based DBMSs by making use of mapping assertions that
populate the defined geo-ontologies using both relational and raster data. In addition, it is of
interest to include in the integration architecture also open SPARQL endpoints of public KGs
(e.g., DBPedia, LinkedGeoData, and Wikidata). Overall, this will enable the creation of a cohesive
KG that can be queried and analysed holistically. However, the challenge of virtually integrating
raster data stored in an array-based DBMS with vector and relational data, possibly including
also public KGs, has not been addressed before. This leads to our first research question:

RQ1: Which is an effective architecture for the integration of different data formats
relevant to geospatial data, in particular, raster data, geometric vector data, general
relational data, and open KGs, using the VKG paradigm?

The proposed architecture will be evaluated by considering different concrete industrial
standards (e.g., CityGML11 for 3D city data), by developing ontologies for them and by linking
those ontologies to established relational storage formats for the relevant data.

Next, we want to process spatial-temporal queries over these integrated raster-vector data
efficiently. To efficiently execute a user query (or, more precisely, the query obtained through the
initial ontology-rewriting step performed by a VKG system), we have to exploit the capabilities
of both relational and array-based DBMSs and devise methods to compute for a given user
query an efficient query plan in such a heterogeneous setting. This requires understanding how
the query can be broken down into sub-queries that get executed by the individual systems
and how the obtained intermediate results can be combined to form the final result that the
user asked for. The challenge lies in doing so while maximising the computation that can be
delegated to each DBMS while simultaneously minimising costly data transfer operations and
the data that have to be materialised at the level of the integration system. This leads to the
second research question, which is actually tightly connected to the first one:

RQ2: How can we devise effective query plans that guide the structuring and efficient
processing of spatial queries over integrated data?

To address this question, techniques for efficient query-answering over integrated geodata
sources and open SPARQL endpoints of public KGs will be developed. This calls for studying
how to federate both relational databases and SPARQL endpoints. Good performance will be the
critical factor, and to achieve it, special attention must also be paid to the partial materialisation
of results of frequent but expensive operations.

The aforementioned research questions give an overview of our ongoing research. In Section 3,
we have covered some well-known literature that is related to our field of study. We will show
how our virtual approach under the VKG paradigm is different and unique compared to the
existing approaches. In Section 4, we discuss the proposed research methodology, integration
pipeline of relational and raster data, and the issues arising in this context. Section 5 points out
the future steps of our research.

11https://www.ogc.org/standard/citygml/

https://www.ogc.org/standard/citygml/


3. Related work

The rapid expansion in geospatial data’s diversity, richness, and quantity has created new
information demands. In this section we discuss some previous studies on geospatial data from
the data and semantic technologies perspectives. Many real-world applications now require
geospatial data from multiple sources and formats for complicated analyses and decision-
making [16]. Thus, merging these diverse data becomes more challenging when they are very
large [17]. Although there is a lot of study on the size, processing, analysis, and heterogeneity of
geospatial data, most of it focuses on the vector or raster models independently [17]. These two
data models are rarely handled together. Even international standards such as OGC® WFS [18]
or OGC® WCS 2.0 Interface Standard - Earth Observation Application Profile [19] separate both
models and do not provide languages, data structures, or algorithms to execute queries using
information from both models simultaneously. For instance, one well-known solution for queries
that involve both raster and vector datasets is to transform the vector dataset into a raster dataset
and then use a raster algorithm to answer the query. This solution applies, e.g., to the zonal
statistics operation of Map Algebra over raster and vector data in geographical information
system (GIS) software such as ArcGIS [20] and GRASS [21]. Brown et al. [22] describe a data
model representing vector and raster data with a data abstraction based on multidimensional
arrays in SciDB. This work describes data types, storage structures, and operators for querying
vector and raster data, although no implementation details are provided (neither of the data
structures nor of the algorithms needed to support the model and the queries).

Brisaboa et al. [23] present a framework to store and manage vector and compressed raster
data and an algorithm for query answering. This algorithm returns the elements of the vector
dataset overlapping regions of the raster dataset that fulfil a range constraint. However, their
solution does not return the exact cells of the raster, fulfilling the range constraint provided
by the vector region. In this study, the vector dataset is indexed with an R-tree and the raster
dataset is represented and indexed with a compact data structure called 𝑘2-acc [24], which
needs a separate tree-based data structure for each distinct value in the raster. This way of
representing a raster is inefficient as the 𝑘2-acc data structure compresses well when the dataset
has few distinct values. However, when the number of distinct values gets large, the represented
raster dataset requires substantially more space than its uncompressed representation [25], and
most queries scale poorly. To overcome the limitation of the 𝑘2-acc raster indexing, Silva-Coira
et al. [17] and Ladra et al. [25] have proposed the 𝑘2-raster data structure to represent the raster
dataset by compressing and indexing simultaneously. This makes the query evaluation on the
raster data faster, provided the algorithm operating on the 𝑘2-raster is well designed.

The most popular way to integrate raster and vector data is by converting one data set into
another so that both datasets transform into the same representation. Many existing raster-
based systems rasterize (i.e., translate into pixels) the vector data to the exact resolution of the
raster data and then process them using a raster-raster join. Similarly, vector-based systems
vectorize (i.e., translate into polygons) the raster data by converting each pixel to a point and
then joining both data sets using a vector-vector join. These two approaches work well for
small and medium-resolution data since the conversion process does not dramatically increase
the data size [26]. However, these methods are no longer viable due to the recent accessibility
of high-resolution satellite data. In fact, Singla et al. [27] mention that the size of the converted



data increases quadratically with the raster image resolution. Singla et al. [26] proposed a
Raptor Join operator that utilises a novel index structure called ‘Flash Index‘ that joins raster
and vector data in their native formats. Raptor join takes vector data and metadata of raster files
as input and outputs pixel ranges that match the resolution of the raster and vector data. This
technique is designed as a relational join operator and employs an in-situ approach, making
it suitable for ad-hoc queries. The work [26] is a possible approach to our research question
RQ1, but we didn’t find any source of implementation so that we can reproduce the results. The
second issue is that, given our approach, no sufficient background is given on how well other
geospatial functions of geospatial database tools can process the output in subsequent steps.

From the Semantic Web technology perspective, the work [28] describes an OBDA approach
that enables queries expressed in the OGC standard language GeoSPARQL [29] to be executed
over geospatial relational databases storing vector or raster data, by performing on-the-fly
GeoSPARQL-to-SQL translation utilising ontologies and R2RML mappings [30]. Another recent
study [31] proposed the GeoLD query engine powered by GeoSPARQL [29] for scientific raster
array data using the Coverage to RDF Mapping Language (C2RML), an extension of the R2RML
language. Rasdaman is used to store the raster data, and its WCPS implementation Petascope to
access them through the web interface. Andrejev et al. [32] suggests that users should combine
array and metadata within single queries to get answers to complex problems with just a
single round trip, rather than through iterative communication with several servers employing
different models and retrieval paradigms. Our current research aims to integrate metadata and
geo-semantics with respective raster arrays during integration with relational data (including
vector data) on the fly, to answer user queries, hence relying on virtualisation.

4. Ongoing research

4.1. Initial approach

The OBDA/VKG framework is compatible with relational data sources and its functionalities.
So, we planned an experimental scenario with relational vector data for all countries worldwide
(e.g., national boundaries) and with raster data for the entire world, over the past ten years,
but for only two parameters (such as soil temperature and soil moisture). We stored more than
40 GB of such raster data using ‘raster2pgsql’, a raster loader executable that loads raster data
into a table in a SQL-suitable format using the PostGIS extension of PostgreSQL.

Table 1 gives an overview of the data stored in PostgreSQL. Here, we give an idea of the size
of the raster data and of the difficulty in dealing with them. For example, the earth observational
(EO) satellite captures global soil temperature four times a day (temporal resolution: 3 hrs/day)
over ten years (temporal coverage). This means we have four raster images daily over ten years,
for a total of 30,000+ raster images. The first issue that we encountered was related to the
raster data ingestion inside PostgreSQL using the raster loader ‘raster2pgsql’. It took a massive
amount of conversion time (from the native raster format, i.e., GeoTIFF, to the SQL-suitable
PostGIS raster format) and then required indexing the data in a PostgreSQL table. This type
of raster conversion has also increased the size of the actual raster data (the actual size was
20 GB in the native format, which became more than 50 GB after conversion). So, raster data
materialization in a RDBMS is not very practical when raster data are extensive. Additionally,



Table 1
Initially, geospatial datasets are stored only in PostgreSQL

World Countries Global Soil Moisture [33] Global Soil Temp. [33]

Type vector raster raster
Native Format .shp GeoTIFF GeoTIFF
Logical Format relational PostGIS raster PostGIS raster
Spatial Resolution None 0.25° x 0.25° 0.25° x 0.25°
Temporal Resolution None 3 hours per day 3 hours per day
Temporal Coverage None Jan 2011 to July 2021 Jan 2011 to July 2021
CRS EPSG:4326 - WGS 84 EPSG:4326 - WGS 84 EPSG:4326 - WGS 84
No. of files 1 30000+ 30000+
Feature Rows 652 6452039 6281495
Size 130 MB 20 GB 22 GB

the number of raster data parameters depends on the application scenario, and may be much
larger than the two we considered in our experiment. E.g., in [34], the number of parameters is
30, and this would make the ingestion into PostgreSQL even more problematic.

Once both types of data were stored in PostgreSQL, we have executed spatial-temporal
queries of different complexity that return information on how soil temperature and moisture
vary by country, region, and continent. Some examples are the following:

• Spatial query: List the European countries and their respective average soil moisture
where the average temperature equals or exceeds 15°C.

• Spatial-temporal query: List the countries, their respective continents, and average soil
moisture where the average temperature equals or exceeds 15°C over the last five years.

We obtained some results in the form of tables or single numerical values and filtered
arrays. However, problems arose when we conducted a complicated spatial-temporal query
incorporating both vector data and a vast quantity of raster data to get the results. The main
issues are increased memory use and query execution time. We didn’t always get results
due to the poor query plan, which caused out-of-memory situations. This approach may still
work for small raster data but is practically inefficient for ever-growing raster datasets with
multiple parameters. So, in our current approach, we have decided to use PostgreSQL to
represent relational data (vector data) and rasdaman to represent raster data, and leverage their
capabilities to query over the combined geospatial data. This approach will be discussed next.

4.2. Current approach

The main idea is to reformulate a user query into an efficient spatial-temporal query that
integrates both raster data and vector data and produces results as a relational table, without
actually materializing the data required to process the query. But before query reformulation,
we need to combine both relational and raster data efficiently, based on the OBDA framework,
as addressed in research question RQ1. In order to facilitate this, we have devised a pipeline,
illustrated by Figure 1, that can connect both databases using a Python wrapper, and retrieve



Figure 1: Integration pipeline: relational data (vector) + raster data

the final result on the fly based on the user query. This pipeline can use PostgreSQL’s query
language capabilities (i.e., SQL and PostGIS functions) and rasdaman’s array manipulation
functionalities (i.e., array algebras, rasql condensers12) to pre-process the input data and post-
process the output result, if necessary. These pre- and post-processing are necessary to clean
the data originating from the real world, to avoid certain issues, which we will discussed later.

We now discuss the pipeline, which we break down into three main parts as follows:

• Relational data perspective (PostgreSQL): The geometries of the respective regions of
interest are represented as several distinct pairs of longitudes and latitudes. We use the
PostGIS functions ‘ST_AsText’ and ‘ST_Dump’13 to convert the region geometries into a
set of OGC Well-Known Text (WKT) representations [35], which is the first input based
on the user’s query 𝑄𝑢 to the Python wrapper. Petascope, a separate database within
PostgreSQL, provides the necessary geo semantics14 of the respective raster datasets
stored inside rasdaman. This geo semantics contain metadata, such as the raster dataset
name, CRS, raster extent, array size, and spatial and temporal dimensions, which are
required to translate geo coordinates to respective grid indices. Then, these grid indices
are sent to rasdaman via the Python wrapper to clip required raster data according to the
shape of the region of interest mentioned in the user’s query 𝑄𝑢.

• Python wrapper: We have used the ‘plpyhton3’ procedural language15, which sup-
ports PostgreSQL and PostGIS functions wrapped by Python, to define stored procedures

12https://doc.rasdaman.org/04_ql-guide.html#condensers
13https://postgis.net/workshops/postgis-intro/geometries.html
14https://doc.rasdaman.org/stable/01_introduction.html?highlight=geo%20semantics#features
15https://www.postgresql.org/docs/current/plpython.html

https://doc.rasdaman.org/04_ql-guide.html#condensers
https://postgis.net/workshops/postgis-intro/geometries.html
https://doc.rasdaman.org/stable/01_introduction.html?highlight=geo%20semantics#features
https://www.postgresql.org/docs/current/plpython.html


(e.g., connect_rasdaman, geo_to_grid_translation) inside PostgreSQL, to con-
nect with rasdaman using the ‘rasdapy’ package. rasdapy16 is a client API for rasdaman
that enables building and executing rasql queries with Python. This python wrapper
facilitates the following functionalities:

1. Connect PostgreSQL to Rasdaman using rasdapy.
2. Translate geo coordinates to respective grid indexes.
3. Evaluate rasql queries over raster arrays stored inside rasdaman.
4. Retrieve the result to PostgreSQL as a single value or table, or as arrays.

• Raster data perspective (rasdaman): We have used raster data represented in the
NetCDF17 format inside rasdaman through the ‘wcst_import.sh’ utility18. Rasql only works
with grid coordinates (or indices) of stored arrays; it does not comply with geo-coordinates
(i.e., a sequence of longitude-latitude pairs), so any geometrical shape represented as geo-
coordinates fetched from the relational database must be translated into corresponding
grid coordinates to incorporate vector data inside rasql to work. After getting the grid
indices of the region of interest, we use rasdaman’s arithmetic operators (e.g., +, -, *, >,
and <), to pre-process and apply built-in aggregation functions (e.g., average, maximum,
and minimum), also known as rasql condensers19, to filter out the required raster data.

Finally, using this pipeline, we have integrated relational and raster data, and have retrieved
the result as a single numerical value, a table, or an array, based on the form of the user query
𝑄𝑢. These results can be used as a data source to generate a virtual knowledge graph using
ontologies via mappings, following the OBDA paradigm, as shown in Figure 3 in Section 5. For
the case where an array is returned, we need to address some issues, which are mentioned later
in the paper. We demonstrate the application of our pipeline in the next section.

4.3. Case study: Sweden

We use Sweden and its provinces and municipalities as the regions of interest in our study to
demonstrate the ongoing progress of the current research and related issues. The issues we
mention are not limited to this use case, but apply more in general. We have collected vector data
for Sweden’s provinces and municipalities from the GADM20 database [Version 4.1, updated on
16 July 2022], illustrated in Figure 2. The GADM database contains maps of the administrative
areas of all countries at all subdivision levels, with high spatial resolutions and a comprehensive
set of attributes in different file formats, such as shapefile (.shp), .kmz, and .geojson. Vector data
are represented as relational tables in PostgreSQL using the PostGIS extension, as depicted in
Figure 2.

As for raster data, we are using data from the NASA Earth Data Explorer, specifically snow
data [36] and surface temperature [37], and for the elevation of Sweden, we are using the
European Digital Elevation Model [EU-DEM Version 1.1] provided by EU-Copernicus Land
16https://pypi.org/project/rasdapy3/
17https://www.unidata.ucar.edu/software/netcdf/
18https://doc.rasdaman.org/05_geo-services-guide.html?highlight=wcst_import#data-import
19https://doc.rasdaman.org/04_ql-guide.html#condensers
20https://gadm.org/maps/SWE_1.html

https://pypi.org/project/rasdapy3/
https://www.unidata.ucar.edu/software/netcdf/
https://doc.rasdaman.org/05_geo-services-guide.html?highlight=wcst_import#data-import
https://doc.rasdaman.org/04_ql-guide.html#condensers
https://gadm.org/maps/SWE_1.html


Figure 2: Relational data depicting geometric polygons of 21 provinces and 290 municipalities of Sweden

Monitoring Service 2023, European Environment Agency (EEA)21. We have stored these large
data arrays in rasdaman. Table 2 shows the details of all the datasets that we have used for
Sweden.

With these datasets stored in two databases, PostgreSQL and rasdaman, we wish to combine
them to execute some user-defined spatial-temporal queries concerning Sweden. In the next
subsection, we demonstrate some example queries that we tested using the pipeline we have
devised, along with the related issues that came up. These issues are not specific to our use case,
but apply in general when processing spatial-temporal queries.

4.3.1. First results

Consider the following example query:

Query 𝑄1: What are the average, maximum, and minimum surface temperatures in
°C of the municipalities Dorotea and Linköping of Sweden?

21https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata

Table 2
Datasets used for Sweden

Attributes Provinces Municipalities Snow Cover [36] Surface Temp [37] Elevation

Type vector vector raster raster raster
Native Format .shp .shp NetCDF NetCDF GeoTIFF
Logical Format relational relational arrays arrays arrays
Spatial Resolution None None 500m x 500m 500m x 500m 25m x 25m
Temporal Resolution None None daily daily None
Temporal Coverage None None Apr 22 to Apr 23 Apr 22 to Apr 23 2011
CRS EPSG:4326 EPSG:4326 EPSG:4326 EPSG:4326 EPSG:3035
Size 6 MB 8 MB 338 MB 246 MB 7 GB
Features 21 290 3,992,564,680 1,001,057,824 1,896,048,396

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata


Table 3
Results of 𝑄1

municipalities avgtemp_°C maxtemp_°C mintemp_°C

Dorotea 8.75790963603404 13.050000000000011 0.010000000000047748
Linköping 10.882990371389285 17.53000000000003 2.670000000000016

𝑄1 is a simple spatial query that integrates vector data (such as ‘geom’) and raster data (such as
‘Surface_Temperature_Sweden’) based on the name of the municipality (e.g., Dorotea) retrieved
from the vector data. This query also uses pre-processing (e.g., ‘*0.02’) and post-processing (e.g.,
‘-273.15’ for conversion from degrees Kelvin to degrees Celsius) based on the geo semantics
from petascope. Query 𝑄1 is built using the capabilities of SQL (e.g., ST_AsText) and rasql
condensers (e.g., avg_cells, max_cells, min_cells), wrapped by user-defined Python
functions (e.g., geo_index2grid_index, aggregated_result_numeric). The result of 𝑄1

is retrieved as a relational table, as shown in Table 3. Then, we use this result and define
mappings to populate geo ontologies to create the respective knowledge graph.

In the described pipeline, we have observed the following issues:

1. Multipolygons to polygon: The municipalities Dorotea and Linköping are landlocked
regions of Sweden and thus have only one polygon. But municipalities like Stockholm,
Göteborg, Umeå, etc., are coastal regions and thus have many scattered island features,
e.g., archipelago. These features are represented as a list of several distinct polygons
(called multi-polygons) under the same name (e.g., Umeå has 40 unique regions). Our
pipeline has to consider this during query processing.

2. Pre-processing and post-processing: Sometimes, the vector and raster data must be cleaned
to make them suitable for the pipeline and the desired output.

3. Metadata retrieval on-the-go: Retrieval of geo semantics or metadata from the petascope
table should be automatic, based on the chosen raster dataset mentioned in the user query,
to translate geo-coordinates to grid indices effectively.

4. Process filtered arrays: The result retrieved as filtered arrays based on the user query is in
the string format, and for this, there is limited or no scope for optimization for further
processing, analysis and visualization.

The following are a few of many example queries designed for the use case, which we only
partially resolved utilising the pipeline above, due to the difficulties we have described.

• Query 𝑄2: List those capitals of respective provinces of Sweden whose spatial average
elevation is above 10 meters.

• Query 𝑄3: List those municipalities of Sweden and their respective maximum snow
coverage, where the average surface temperature is less than -15°C.

• Query 𝑄4: What is the average surface temperature of Sweden’s municipalities with
neighbouring municipalities with an average elevation above 10 meters?

In order to automate and expand the proposed pipeline, so that it can be seamlessly applied
to answer queries by combining arbitrary relational data (in PostgreSQL) and raster data (in
rasdaman), we need to address the above mentioned issues.



5. Next steps

Finding suitable solutions to the issues mentioned in the previous section will set the basis for
extending the OBDA/VKG framework so as to deal with combined vector and raster data. We
illustrate below the problems that we have identified in this context, and that we intend to
address in our followup research.

5.1. Defining mappings and ontologies

We are planning to use C2RML, an extension of the original R2RML mapping language for raster
coverage, as described in [31]. As for the ontologies, we can rely on existing ontologies for the
geospatial domain, or, when needed, develop tailored ontologies expressed in OWL 2 QL [4], the
standard profile of the OWL 2 language based on the DL-Lite family of Description Logics [38].

5.2. Query planning and optimisation

To compute query plans that optimise query execution, we plan to make use of techniques
that rely on Magic Set Transformation (MST) [39] and Answer Set Programming (ASP) [40].
MST is a technique used in rule-based query optimisation in deductive databases, i.e., systems
that use rules to derive new information from existing facts. MST transforms a query into
an equivalent form that produces the same result but is more efficient to evaluate. ASP is a
declarative programming paradigm for knowledge representation and reasoning. It allows one
to declare a set of rules and restrictions and then locate all feasible response sets that satisfy
those rules and constraints. ASP can be used in query planning and optimisation by writing
inquiries as logic programs and using an ASP solver to find answer sets. By encoding queries
and optimisation constraints as ASP programs, one can take advantage of ASP’s sophisticated
reasoning capabilities to compute optimal query plans. We will also introduce a suitable cost
function to evaluate the execution cost of spatial-temporal queries in terms of memory usage
and execution time.

5.3. Extending the Ontop system to support spatial-temporal queries

To the best of our knowledge, the work on Ontop-Spatial [28] is the only one that has extended the
OBDA/VKG paradigm to work over geospatial vector and raster data by relying on a relational
database system (namely, PostgreSQL). It builds on the Ontop VKG system [41, 42] and exploits
its query rewriting features. In our approach, we also intend to extend the VKG system Ontop,
to work over geospatial data by transforming vector data in the relational format. However, the
key distinguishing feature of our proposal is that we will keep raster data in its native form (i.e.,
as multi-dimensional array data), and we will rely on an array-based DBMS (like rasdaman)
and its specific query processing capabilities to manage and compute queries over the raster
data. The resulting data consisting of relational tables and (clipped) multidimensional arrays is
then considered as further input data for the VKG system. The extended VKG framework that
we propose with the additional inputs to be considered, is illustrated in Figure 3.

We are collaborating with the Technical University of Munich (TUM), Germany, in the
proposed research.



Figure 3: Extended VKG framework: the established OBDA/VKG framework will be extended to process
the results (including multidimensional arrays) retrieved from the above pipeline.

Acknowledgments

This work was supported by the Wallenberg AI, Autonomous Systems, and Software Program
(WASP), funded by the Knut and Alice Wallenberg Foundation, and by the Province of Bolzano
and DFG through project D2G2 (DFG grant no. 500249124). Šimkus was supported by the
Austrian Science Fund (FWF) project P30873.

References

[1] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to
ontologies, J. on Data Semantics 10 (2008). doi:10.1007/978-3-540-77688-8_5.

[2] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev,
Ontology-based data access: A survey, in: Proc. of the 27th Int. Joint Conf. on Artificial
Intelligence (IJCAI), IJCAI Org., 2018, pp. 5511–5519. doi:10.24963/ijcai.2018/777.

[3] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual Knowledge Graphs: An overview of
systems and use cases, Data Intelligence 1 (2019) 201–223. doi:10.1162/dint_a_00011.

[4] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2 Web Ontology
Language Profiles (Second Edition), W3C Recommendation, World Wide Web Consortium,
2012. Available at http://www.w3.org/TR/owl2-profiles/.

[5] S. Harris, A. Seaborne, SPARQL 1.1 Query Language, W3C Recommendation, World Wide
Web Consortium, 2013. Available at http://www.w3.org/TR/sparql11-query.

[6] S. Savi, A. Buter, T. Heckmann, J. Theule, L. Mao, F. Comiti, Multi-temporal analysis of
morphological changes in an alpine proglacial area and their effect on sediment transfer,
Catena 220 (2023). doi:10.1016/j.catena.2022.106701.

[7] M. B. Joseph, M. W. Rossi, N. P. Mietkiewicz, A. L. Mahood, M. E. Cattau, L. A. St. Denis,
R. C. Nagy, V. Iglesias, J. T. Abatzoglou, J. K. Balch, Spatiotemporal prediction of wildfire
size extremes with bayesian finite sample maxima, Ecological Applications 29 (2019).

http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.1162/dint_a_00011
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/sparql11-query
http://dx.doi.org/10.1016/j.catena.2022.106701


[8] B. Maestrini, B. Basso, Predicting spatial patterns of within-field crop yield variability,
Field Crops Research 219 (2018) 106–112.

[9] M. Alirezaie, A. Kiselev, M. Längkvist, F. Klügl, A. Loutfi, An ontology-based reasoning
framework for querying satellite images for disaster monitoring, Sensors 17 (2017) 2545.
doi:10.3390/s17112545.

[10] H. Couclelis, People manipulate objects (but cultivate fields): Beyond the raster-vector
debate in GIS, in: A. U. Frank, I. Campari, U. Formentini (Eds.), Theories and Methods of
Spatio-Temporal Reasoning in Geographic Space, Springer, 1992, pp. 65–77.

[11] P. Baumann, D. Misev, V. Merticariu, B. P. Huu, Array databases: Concepts, standards,
implementations, J. of Big Data 8 (2021) 1–61. doi:10.1186/s40537-020-00399-2.

[12] Y. Li, T. R. Bretschneider, Semantic-sensitive satellite image retrieval, IEEE Trans. on
Geoscience and Remote Sensing 45 (2007) 853–860. doi:10.1109/TGRS.2007.892008.

[13] M. Quartulli, I. G. Olaizola, A review of EO image information mining, ISPRS J. of
Photogrammetry and Remote Sensing (2013).

[14] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, N. Widmann, The multidimensional database
system rasdaman, in: Proc. of the 19th ACM Int. Conf. on Management of Data (SIGMOD),
ACM Press, 1998, pp. 575–577. doi:10.1145/276304.276386.

[15] P. Baumann, Rasdaman - raster data manager, 2018. doi:10.5281/zenodo.1163021.
[16] S. Grumbach, P. Rigaux, L. Segoufin, Manipulating interpolated data is easier than you

thought, in: Proc. of the 26th Int. Conf. on Very Large Data Bases (VLDB), 2000, pp.
156–165. URL: http://www.vldb.org/conf/2000/P156.pdf.

[17] F. Silva-Coira, J. R. Paramá, S. Ladra, J. R. López, G. Gutiérrez, Efficient processing of raster
and vector data, Plos One 15 (2020) e0226943. doi:10.1371/journal.pone.0226943.

[18] Open Geospatial Consortium, OGC® Web Feature Service 2.0 Interface Standard – With
Corrigendum, https://docs.ogc.org/is/09-025r2/09-025r2.html, 2014.

[19] Open Geospatial Consortium, OGC® Web Coverage Service 2.0 Interface Standard - Earth
Observation Application Profile, https://docs.ogc.org/is/10-140r2/10-140r2.html, 2018.

[20] Environmental Systems Research Institute Inc., How zonal statistics works, ar-
cgis 10.8, https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/
how-zonal-statistics-works.htm, 2021. (Accessed on 13 July 2023).

[21] M. Neteler, GRASS GIS manual:v.rast.stats, https://grass.osgeo.org/grass82/manuals/v.rast.
stats.html, 2022. (Accessed on 13 July 2023).

[22] P. G. Brown, Overview of SciDB: Large scale array storage, processing and analysis, in:
Proc. of the 31st ACM Int. Conf. on Management of Data (SIGMOD), 2010, pp. 963–968.

[23] N. R. Brisaboa, G. de Bernardo, G. Gutiérrez, M. R. Luaces, J. R. Paramá, Efficiently querying
vector and raster data, The Computer Journal 60 (2017) 1395–1413.

[24] G. De Bernardo, S. Álvarez-García, N. R. Brisaboa, G. Navarro, O. Pedreira, Compact
querieable representations of raster data, in: Proc. of the 20th Int. Symp. on String
Processing and Information Retrieval (SPIRE), 2013, pp. 96–108.

[25] S. Ladra, J. R. Paramá, F. Silva-Coira, Scalable and queryable compressed storage structure
for raster data, Information Systems 72 (2017). doi:10.1016/j.is.2017.10.007.

[26] S. Singla, A. Eldawy, T. Diao, A. Mukhopadhyay, E. Scudiero, The Raptor join operator
for processing big raster + vector data, in: Proc. of the 29th Int. Conf. on Advances in
Geographic Information Systems (SIGSPATIAL), ACM, 2021, pp. 324–335. doi:10.1145/

http://dx.doi.org/10.3390/s17112545
http://dx.doi.org/10.1186/s40537-020-00399-2
http://dx.doi.org/10.1109/TGRS.2007.892008
http://dx.doi.org/10.1145/276304.276386
http://dx.doi.org/10.5281/zenodo.1163021
http://www.vldb.org/conf/2000/P156.pdf
http://dx.doi.org/10.1371/journal.pone.0226943
https://docs.ogc.org/is/09-025r2/09-025r2.html
https://docs.ogc.org/is/10-140r2/10-140r2.html
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-zonal-statistics-works.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-zonal-statistics-works.htm
https://grass.osgeo.org/grass82/manuals/v.rast.stats.html
https://grass.osgeo.org/grass82/manuals/v.rast.stats.html
http://dx.doi.org/10.1016/j.is.2017.10.007
http://dx.doi.org/10.1145/3474717.3483971
http://dx.doi.org/10.1145/3474717.3483971


3474717.3483971.
[27] S. Singla, A. Eldawy, Raptor zonal statistics: fully distributed zonal statistics of big raster+

vector data, in: IEEE Int. Conf. on Big Data (Big Data), IEEE, 2020, pp. 571–580.
[28] K. Bereta, G. Xiao, M. Koubarakis, Ontop-spatial: Ontop of geospatial databases, J. of Web

Semantics 58 (2019). doi:10.1016/j.websem.2019.100514.
[29] Open Geospatial Consortium, GeoSPARQL - A Geographic Query Language for RDF Data,

https://www.ogc.org/standard/geosparql/, 2012. (Accessed on 15 July 2023).
[30] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Mapping Language, W3C Recommen-

dation, World Wide Web Consortium, 2012. Available at http://www.w3.org/TR/r2rml/.
[31] S. B. Almobydeen, J. R. Viqueira, M. Lama, GeoSPARQL query support for scientific raster

array data, Computers & Geosciences 159 (2022) 105023.
[32] A. Andrejev, D. Misev, P. Baumann, T. Risch, Spatio-temporal gridded data processing on

the Semantic Web, in: IEEE Int. Conf. on Data Science and Data Intensive Systems, 2015,
pp. 38–45. doi:10.1109/DSDIS.2015.109.

[33] H. Beaudoing, M. Rodell, NASA/GSFC/HSL, GLDAS Noah Land Surface Model L4 3 hourly
0.25 x 0.25 degree, Version 2.1, 2020. doi:10.5067/E7TYRXPJKWOQ.

[34] I. Prapas, S. Kondylatos, I. Papoutsis, FireCube: A daily datacube for the modeling and
analysis of wildfires in Greece, 2022. doi:10.5281/zenodo.4943353.

[35] Open Geospatial Consortium, Well-known text (WKT) representation of coordinate refer-
ence systems, https://docs.ogc.org/is/18-010r7/18-010r7.html, 2019.

[36] D. K. Hall, G. A. Riggs., MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 6,
2016. doi:10.5067/MODIS/MOD10A1.006.

[37] Z. Wan, S. Hook, G. Hulley, MODIS/Terra Land Surface Temperature/Emissivity Daily L3
Global 1km SIN Grid V061, 2021. doi:10.5067/MODIS/MOD11A1.061.

[38] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning
and efficient query answering in description logics: The DL-Lite family, J. of Automated
Reasoning 39 (2007) 385–429. doi:10.1007/s10817-007-9078-x.

[39] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, R. Ramakrishnan, Magic is relevant, SIGMOD
Record 19 (1990) 247–258.

[40] W. Faber, An introduction to Answer Set Programming and some of its extensions, in:
Reasoning Web: Declarative Artificial Intelligence – 16th Int. Summer School Tutorial
Lectures (RW), volume 12258 of Lecture Notes in Computer Science, Springer, 2020, pp.
149–185. doi:10.1007/978-3-030-60067-9_6.

[41] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-
Muro, G. Xiao, Ontop: Answering SPARQL queries over relational databases, Semantic
Web J. 8 (2017) 471–487. doi:10.3233/SW-160217.

[42] G. Xiao, D. Lanti, R. Kontchakov, S. Komla-Ebri, E. Güzel-Kalayci, L. Ding, J. Corman,
B. Cogrel, D. Calvanese, E. Botoeva, The virtual knowledge graph system Ontop, in: Proc.
of the 19th Int. Semantic Web Conf. (ISWC), volume 12507 of Lecture Notes in Computer
Science, Springer, 2020, pp. 259–277. doi:10.1007/978-3-030-62466-8_17.

http://dx.doi.org/10.1145/3474717.3483971
http://dx.doi.org/10.1145/3474717.3483971
http://dx.doi.org/10.1016/j.websem.2019.100514
https://www.ogc.org/standard/geosparql/
http://www.w3.org/TR/r2rml/
http://dx.doi.org/10.1109/DSDIS.2015.109
http://dx.doi.org/10.5067/E7TYRXPJKWOQ
http://dx.doi.org/10.5281/zenodo.4943353
https://docs.ogc.org/is/18-010r7/18-010r7.html
http://dx.doi.org/10.5067/MODIS/MOD10A1.006
http://dx.doi.org/10.5067/MODIS/MOD11A1.061
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1007/978-3-030-60067-9_6
http://dx.doi.org/10.3233/SW-160217
http://dx.doi.org/10.1007/978-3-030-62466-8_17

	1 Introduction
	1.1 Geospatial data: vector and raster data
	1.2 Integrating relational, vector, and raster data

	2 Research challenges
	3 Related work
	4 Ongoing research
	4.1 Initial approach
	4.2 Current approach
	4.3 Case study: Sweden
	4.3.1 First results


	5 Next steps
	5.1 Defining mappings and ontologies
	5.2 Query planning and optimisation
	5.3 Extending the Ontop system to support spatial-temporal queries


