
Towards Techniques for Updating Virtual Knowledge
Graphs
Romuald Esdras Wandji1,*, Mantas Šimkus1 and Diego Calvanese1,2

1Department of Computing Science, Umeå Universitet, Umeå, Sweden
2Research Centre for Knowledge and Data, Faculty of Engineering, Free University of Bozen-Bolzano, Bolzano, Italy

Abstract
The field of Virtual Knowledge Graphs (VKGs) continues to grow in both academic and applied contexts.
Yet, the issue of updates in VKG systems has not yet received adequate attention, although it is crucial
to manage data modifications at the data source level through the lens of an ontology. In this paper,
we focus on VKGs whose ontology is specified in the lightweight ontology language DL-Lite𝐴, and
we propose diverse settings and research directions we intend to explore to address the challenge of
translating ontology-based updates into updates at the level of data sources. We also pay attention to
the important problem of automated analysis of mappings, which plays a major role when it comes to
reformulating ontology-based update requests into update requests over the data sources.

Keywords
Knowledge Representation, Virtual Knowledge Graph (VKG), Ontology-based Data Access, View Updates

1. Introduction

Virtual Knowledge Graphs (VKGs) is a rapidly growing field that aims to bridge the gap between
the Semantic Web technologies and database systems providing a robust methodology for
integrating heterogeneous data sources with the assistance of ontologies. An ontology layer in
a VKG provides a unified abstract view of the application domain, allows for more expressive
data querying, and improves data integration and interoperability [1, 2, 3, 4]. This paradigm
features several characteristics that proved to be effective in managing complex information
systems. The content of a (virtual) knowledge graph is generated from data sources through the
use of declarative mappings. It is typically represented using a formal language such as OWL 2
(Web Ontology Language) or one of its profiles (i.e., sub-languages) [5], and in our framework,
we are particularly interested in DL-Lite𝐴 ontologies [1]. As a member of the DL-Lite family
of Description Logics (DLs) [6], DL-Lite𝐴 is characterized by its ability to capture conceptual
modeling formalisms and by the fact that it enjoys efficient reasoning [7, 2]. Most importantly,
DL-Lite𝐴 enjoys first-order rewritability, i.e., every (union of) conjunctive queries posed over

RuleML+RR’23: 17th International Rule Challenge and 7th Doctoral Consortium, September 18–20, 2023, Oslo, Norway
*Corresponding author.
$ romuald.esdras.wandji@umu.se (R. E. Wandji); mantas.simkus@umu.se (M. Šimkus); diego.calvanese@unibz.it
(D. Calvanese)
� https://www.umu.se/en/staff/romuald-esdras-wandji (R. E. Wandji)
� 0009-0008-5036-2452 (R. E. Wandji); 0000-0003-0632-0294 (M. Šimkus); 0000-0001-5174-9693 (D. Calvanese)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:romuald.esdras.wandji@umu.se
mailto:mantas.simkus@umu.se
mailto:diego.calvanese@unibz.it
https://www.umu.se/en/staff/romuald-esdras-wandji
https://orcid.org/0009-0008-5036-2452
https://orcid.org/0000-0003-0632-0294
https://orcid.org/0000-0001-5174-9693
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


the ontology layer can be translated into an equivalent first-order query that can be executed
over the data source layer [2].

The focus of research in VKGs has been on query answering, i.e., on using the ontology layer
and the corresponding knowledge graph to extract data specified through a query from the
underlying data sources. However, ontology-based updates in VKGs remains a challenging
task, which refers to modifying its extensional content with new knowledge that may or may
not be consistent w.r.t. the original one. This task comes with some important challenges.
The first is due to the complex logic-based inferences in ontologies that lead to the need for a
non-deterministic approach to updating knowledge bases [8, 9]. Another important challenge
comes from the presence of mappings that are essentially considered views that define ontology
elements in terms of queries over the data source. Thus, each update over an ontology element
can be translated into an update over the view that combines all queries that correspond to
mappings for that ontology element and thus faces the view-update problem [10, 11, 12]. Several
methodologies have emerged within the realm of ontology-based updates, chiefly addressing
two primary classes of updates as delineated in [9]. The first category is the instance-level
(or ABox) updates, where an update consists of changing assertions about individual entities
in the ontology. This is the most common form of updates studied in the literature [13, 14,
15, 16], originating from the work in [17]. Concurrently, an alternative update methodology
is characterized by a formula-based approach [18, 19], which encapsulates updates as logical
formulas, representing a semantic change that needs to be reflected in the ontology and is an
example of the Set-Of-Theories approach [20]. However these two update approaches are limited
to the ontology layer, i.e., they allow users to modify the extensional content of the ontology,
but mappings and thus updates of actual data sources are not covered by these previous works.

The main focus of this PhD work is to address the fact that little attention has been paid so
far to the problem of updating VKGs through operations that are performed at the ontology
level, where changes applied over the ontology are translated into minimally suitable updates
over the underlying database through the mappings. A solution to this problem would be of
great practical relevance since it would allow the management of the key operations that are of
interest in an information system (i.e., queries and updates) through the lens of ontology.

This article initially presents our motivation behind exploring the concept of ontology-based
updates within the context of VKGs. To this end, we recall the notion of knowledge base
updates as it is investigated in the literature, which provides us key definitions that will be
useful for further investigation in our specific research context. Subsequently, we introduce the
concept of updates in VKGs, where the goal is to manipulate data source instances by means
of operations performed over the ontology layer. We outline the current research challenges
for the study of VKG updates, which include defining an inconsistency-tolerant semantics for
updates in VKGs, investigating computational properties of update and query operations under
such semantics, and finding conditions under which VKG updates can bypass ontology axioms
(via query rewriting). Furthermore, we want to study how to enrich a given VKG system with
additional information to ensure a unique translation of updates at the ontological level to
updates of the data sources.



2. Preliminaries

Here we briefly introduce standard DL Knowledge Bases (KBs). Subsequently, we provide the
definition of DL-Lite𝐴, the specific DL variant that forms the focus of this research study. Our
exposition concludes with an explanation of the concept of VKGs and its principal components.
In the following, we assume to have three distinct, countably infinite alphabets: 𝑁𝑂 for ontology
predicates,𝑁𝑆 for source predicates, and𝑁𝐼 for constants. These alphabets are pairwise disjoint.

2.1. Description Logic knowledge bases

Description Logics (DLs) [6] serve as the foundation of contemporary knowledge representation
systems, designed to depict the universe of discourse in a logically consistent and compu-
tationally tractable manner. Acting as the building blocks of this domain, DLs employ two
fundamental entities: concepts and roles. Concepts denote unary relations, whereas roles denote
binary relations, and both are constructed by applying specific constructs starting from atomic
concepts and roles.

DLs allow for modeling a domain of interest by employing concepts and roles within a
knowledge base (KB). Specifically, a KB 𝒦 = ⟨𝒯 ,𝒜⟩ in a DL consists of two components: the
TBox 𝒯 and the ABox 𝒜. A TBox is the intensional level of the KB, capturing the terminological
knowledge (or schema) of the domain. An ABox comprises information at the instance level,
providing concrete instances of the concepts and roles defined in the TBox.

In this paper, we center our attention on a specific family of DLs known as DL-Lite [7, 1],
which aligns with the tractable OWL 2 QL profile [5] of the Web Ontology Language OWL 2,
and, specifically, we consider DL-Lite𝐴, which is one of the most expressive variants in the
DL-Lite family for which a query-rewriting based approach to query answering can be adopted.
In DL-Lite𝐴, a TBox is defined as a finite set of intensional assertions of the form, 𝐵1 ⊑ 𝐵2

(concept inclusion), 𝐵1 ⊑ ¬𝐵2 (concept disjointness), 𝑅1 ⊑ 𝑅2 (role inclusion), 𝑅1 ⊑ ¬𝑅2 (role
disjointness),and (funct 𝑅) (functionality). Here, 𝑅 (possibly sub-scripted) denotes an atomic
role 𝑃 or its inverse 𝑃−. Instead, 𝐵 (possibly sub-scripted) denotes a basic concept, which is
either an atomic concept 𝐴, or a concept defined as ∃𝑅, representing the set of objects that
appear as the first argument of 𝑅. Finally, (funct 𝑅) asserts the functionality of 𝑅, i.e., that
its first argument operates as a key of the relation denoted by 𝑅. An ABox in DL-Lite𝐴 is
represented as a finite set of assertions of the form 𝐴(𝑎) or 𝑃 (𝑎, 𝑏), with 𝑎 and 𝑏 belonging to
𝑁𝐼 .

The semantics of a DL KB is given in terms of First-Order interpretations, referring to the
interpretation structures of First-Order Logic [6]. An interpretation ℐ = ⟨∆ℐ , ·ℐ⟩ consists of an
interpretation domain ∆ℐ and an interpretation function ·ℐ , which maps each atomic concept
𝐴 to a set 𝐴ℐ ⊆ ∆ℐ , each atomic role 𝑃 to a set 𝑃 ℐ ⊆ ∆ℐ ×∆ℐ , and each individual 𝑎 to an
element 𝑎ℐ ∈ ∆ℐ . The role 𝑃− is interpreted as the inverse of the relation 𝑃 ℐ , while (∃𝑅)ℐ =
{𝑜 | there exists 𝑜′ s.t. (𝑜, 𝑜′) ∈ 𝑅ℐ}. Finally, (¬𝐵)ℐ = ∆ℐ ∖𝐵ℐ , and (¬𝑅)ℐ = ∆ℐ ×∆ℐ ∖𝑅ℐ .
An interpretation ℐ is said to be a model of (or satisfies) an ABox assertion 𝐴(𝑎) (resp., 𝑃 (𝑎, 𝑏))
if 𝑎ℐ ∈ 𝐴ℐ (resp., (𝑎ℐ , 𝑏ℐ) ∈ 𝑃 ℐ ), and it is a model of a TBox assertion 𝐸1 ⊑ 𝐸2 (where 𝐸1 and
𝐸2 are either concepts or roles) if 𝐸ℐ

1 ⊆ 𝐸ℐ
2 . An interpretation ℐ is a model of a KB 𝒦 = ⟨𝒯 ,𝒜⟩

if it is a model of all assertions in 𝒯 and 𝒜. We denote with Mod(𝒦) the set of all models of 𝒦.



A KB 𝒦 is consistent if it has at least one model, i.e., Mod(𝒦) ̸= ∅. We say that 𝒜 is consistent
with 𝒯 , or 𝒯 -consistent, if ⟨𝒯 ,𝒜⟩ is consistent, and 𝒯 -inconsistent otherwise. Given an ABox 𝒜
and a TBox 𝒯 , we denote by cl𝒯 (𝒜) the closure of 𝒜 w.r.t. 𝒯 that is, the set of ABox assertions
over individuals in 𝒜 that are logically implied by ⟨𝒯 ,𝒜⟩. Similarly, the deductive closure of a
TBox 𝒯 , denoted cl(𝒯 ) is the set of inclusions and functionality assertions that follow from
𝒯 . Finally, given two ABoxes 𝒜 and 𝒜′, we say that 𝒜 is logically equivalent to 𝒜′ w.r.t. 𝒯 ,
denoted 𝒜 ≡𝒯 𝒜′ if cl𝒯 (𝒜) = cl𝒯 (𝒜′).

2.2. Virtual Knowledge Graphs

We recall here the main elements of the VKG framework, which is also known as Ontology-based
Data Access (OBDA) [3]. A VKG specification is a tuple 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩, where (i) 𝒯 is a TBox
(expressed in OWL 2 QL), (ii) 𝒮 is a (possibly federated) data source schema, and (iii) ℳ is a set
of global-as-view (GAV) mapping assertions [21], each of which specifies how to populate a
concept or a role of the ontology in terms of a query over the data source. Specifically, each
mapping assertion has the form 𝜙(�⃗�) ⇝ 𝜓(�⃗�) where 𝜙(�⃗�) is a first-order query (typically
written in SQL syntax) over the predicates in𝑁𝑆 of the data source 𝒮 , and 𝜓(�⃗�) is a conjunction
of atoms over 𝒯 .

A VKG instance is a pair 𝒥 = ⟨𝒫,𝒟⟩ where 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩ is a VKG specification, and
𝒟 is a relational database instance compliant with 𝒮 . Its semantics is defined in terms of FO
interpretations over 𝒯 . An interpretation ℐ is a model of ⟨𝒫,𝒟⟩ if (i) ℐ |= 𝒯 and (ii) ℐ satisfies
the set ℳ(𝒟) of facts retrieved through ℳ from 𝒟, where ℳ(𝒟) is formally defined as follows:

ℳ(𝒟) = {𝜓(�⃗�) | �⃗� ∈ eval(𝜙(�⃗�),𝒟) and 𝜙(�⃗�)⇝ 𝜓(�⃗�) ∈ ℳ},

where eval(𝜙(�⃗�),𝒟) is the evaluation of 𝜙(�⃗�) over 𝒟. In other words, an interpretation ℐ is
a model of ⟨𝒫,𝒟⟩ if it is a model of ⟨𝒯 ,ℳ(𝒟)⟩. It is worth noting that the retrieved ABox
ℳ(𝒟) is kept virtual, which means that for tasks such as query answering, we do not need to
compute it.

3. Motivation

Let us consider a VKG instance 𝒥 = ⟨𝒫,𝒟⟩ with the specification 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩. We are
interested in ABox updates that consist of basic operations of two types, namely insertions and
deletions of ABox facts. Formally, an ABox update is a pair 𝒰𝐴 = ⟨𝒰+

𝐴 ,𝒰
−
𝐴 ⟩, where 𝒰+

𝐴 denotes
a finite set of ABox insertions and 𝒰−

𝐴 denotes a finite set of ABox deletions, where each insertion
and deletion is represented as an ABox assertion. We would like to understand how these ABox
updates should be reflected in updates at the level of the data sources (DSs). Similarly to ABox
updates, we also represent a data source update as a pair 𝑈𝐷 = ⟨𝒰+

𝐷 ,𝒰
−
𝐷⟩, where 𝑈+

𝐷 denotes a
finite set of data source insertions and 𝑈−

𝐷 denotes a finite set of data source deletions, each of
them represented by a data source fact.

Let us consider for now the setting of a plain KB 𝒦 = ⟨𝒯 ,𝒜⟩, for instance, a university’s
KB, which contains comprehensive information about students and their ongoing programs.
Suppose that several students have changed their academic majors, and the update 𝒰𝐴, is a list



of these students with their new majors. This new data may conflict with some assertions in
the ABox 𝒜. For example, if in 𝒯 no student can be registered in two different majors at the
same time, and 𝒜 asserts that John is a Computer Science (CS) major, but should be registered
in Physics due to 𝒰𝐴, then John can no longer be a CS major. To reconcile the conflict between
the existing information in the KB and the new data in 𝒰𝐴, we can update 𝒜 to reflect that John
actually has switched majors, which involves removing the outdated major in CS assignment.
In most scenarios, to resolve inconsistencies that originate from changes at the instance level, it
seems to be more intuitive to update the instance level rather than the intensional level. This
means we would want the updated KB 𝒦′ to be of the form 𝒦′ = ⟨𝒯 ,𝒜′⟩, where computing an
ABox update results in a new ABox 𝒜′, that along with the original TBox 𝒯 , represents the
outcome of the update process.

However, in a VKG setting, a vital additional component is present – the underlying data
source, 𝒟, which is mapped to the ABox through a set ℳ of declarative mappings. When
ABox updates are triggered by real-world changes (like John changing his major), it is not
only critical to maintain consistency in the ABox, but it is also crucial to ensure that these
updates propagate to 𝒟, preserving a harmonized state across the VKG system. In an ideal VKG
framework featuring update propagation, when an update is performed at the ABox level, the
changes should be automatically reflected in the underlying data source via the mappings. This
notion implies a change to the structure of the VKG system from 𝒥 = ⟨𝒫,𝒟⟩ to 𝒥 ′ = ⟨𝒫,𝒟′⟩,
highlighting the necessity of an update mechanism capable of propagating changes from ABox
updates to the actual database. This kind of mechanism would considerably improve data
consistency, reliability, and the practical utility of VKG systems in dynamic environments.

In this respect, we discuss in the next section three main goals to be achieved: First, we intend
to formalize the framework of updates in the context of VKGs. Second, we delve into the task
of computing updates at the ABox level of a VKG by propagating them to the underlying data
source. And last, we propose an analysis of how schema mappings and ontology axioms affect
updates in VKGs.

4. Updates in VKG systems

4.1. Updates in DL-Lite𝐴 KBs

The problem of instance-level updates in DL KBs has been studied extensively in the past
[13, 14, 16, 15, 22], and since we are in a setting of incomplete information, insertion operations
and their combination may generate an inconsistency in the ABox with respect to the axioms
specified in the TBox1.

Hence, the work on KB update is closely related to the work on inconsistency management
under incomplete information. Three main strategies have been identified as ways to deal with
inconsistency in such a context: (i) the first one consists of adjusting the constraints in the
TBox 𝒯 so that the updated ABox remains consistent; (ii) the second one, called consistent query
answering [23], is concerned with answering queries while keeping the inconsistency in the KB;

1Note that, under the open world assumption typically holding in DL KBs, deletion operations instead do per se not
generate inconsistencies.



(iii) the third one, which is more appropriate in our context (and in which we are interested),
consists of removing facts from the original ABox to restore consistency [16, 17]. As shown
in the literature [9, 24], whenever an update is applied over a KB, it is convenient to comply
with the minimal change principle, which states that the resulting KB 𝒦′ = ⟨𝒯 ,𝒜′⟩ should be
as close as possible to the original one. In order to characterize the semantics of such a system,
it becomes therefore necessary to rely on a suitably-defined consistency-tolerant semantics,
e.g., based on the notion of repair.

In order to properly formalize the notion of KB updates, we need to define what it means for
an update 𝒰𝐴 to be coherent w.r.t. to a TBox 𝒯 . These notions are inspired by [14].

Definition 1 (Update coherence with 𝒯 ). Given a KB 𝒦 = ⟨𝒯 ,𝒜⟩, an update 𝒰𝐴 = ⟨𝒰+
𝐴 ,𝒰

−
𝐴 ⟩

over 𝒦 is coherent with the TBox 𝒯 if (i) Mod(⟨𝒯 ,𝒰+
𝐴 ⟩) ̸= ∅ and (ii) cl𝒯 (𝒰+

𝐴 ) ∩ 𝒰−
𝐴 = ∅.

The above definition exhibits the conditions required to be satisfied in order to validate the
coherence of an update w.r.t the ontology. The first condition states that all the facts to be added
should be consistent with the TBox 𝒯 and the second condition is added to ensure that there
is no insertion and deletion of the same fact. This definition leads us to the characterization
of accomplishment of updates over a KB which is based on the notion of the minimal change
principle

Definition 2 (Accomplishing an update). Let 𝒦 = ⟨𝒯 ,𝒜⟩ be a KB, 𝒰𝐴 = ⟨𝒰+
𝐴 ,𝒰

−
𝐴 ⟩ an update

coherent with 𝒯 , and 𝒜′ an ABox. Then 𝒜′ accomplishes the update of 𝒦 with 𝒰𝐴 if (i) 𝒜′ is
𝒯 -consistent, (ii) ⟨𝒯 ,𝒜′⟩ ̸|= 𝛽, for each 𝛽 ∈ 𝒰−

𝐴 , and (iii) 𝒜′ = 𝒜′′ ∪ 𝒰+
𝐴 for some 𝒜′′ ⊆ 𝒜.

As we want to ensure that the resulting KB remains as close as possible to the original one,
a semantic for the closeness measure has to be taken into account when comparing different
resulting 𝒜′ accomplishing 𝒰𝐴 [25, 19, 26]. That’s why the term close does not have a general
definition that will fit with all circumstances when it comes to KB evolution. However, the
notion of maximal accomplishment of an update has to be formalized, regardless of the chosen
closeness measure.

Definition 3 (Maximally accomplishing an update). Let 𝒦 = ⟨𝒯 ,𝒜⟩ be a KB, 𝒰𝐴 = ⟨𝒰+
𝐴 ,𝒰

−
𝐴 ⟩

an update that is coherent with the TBox 𝒯 , and 𝒜′ an ABox that accomplishes the update of 𝒦
with 𝒰𝐴. Then 𝒜′ maximally accomplishes the update of 𝒦 with 𝒰𝐴 if there is no 𝒜′

1 ⊋ 𝒜′ that
accomplishes the update of 𝒦 with 𝒰𝐴.

In the case of DL-Lite𝐴, it was shown in [26] that for any KB update 𝒰𝐴 there is a unique
ABox 𝒜′ that maximally accomplishes it. For what follows, we denote by 𝒦 ∙𝒰𝐴 the KB ⟨𝒯 ,𝒜′⟩,
where 𝒜′ is the ABox that maximally accomplishes the update of 𝒦 with 𝒰𝐴.

The definitions introduced so far in this section are useful to formally define a KB update
within the context of VKG systems 𝒥 = ⟨𝒫,𝒟⟩, where 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩, as an update over
⟨𝒯 ,ℳ(𝒟)⟩. Computing such update essentially consists in computing the set of insertions
and deletions of facts over ℳ(𝒟). In [14], a Datalog-based non-recursive algorithm has been
proposed to derive the set of insertions (and deletions) of facts over ℳ(𝒟) from an update 𝒰𝐴.



4.2. Updates over mapped data source

In order to maintain consistency between the knowledge graph and the data source, whenever
a change is applied over the knowledge base we need to accurately propagate it down to the
data source. This ensures that the source mirrors the requested change through the mappings.
In this context, we have to extend the notion of KB updates to the VKG setting: we consider
that the ABox facts in 𝒜 are provided through the mapping ℳ from a data source 𝒟.

Since the knowledge graph is kept virtual, the only way to realize a KB update 𝒰𝐴 is to
find an appropriate database state 𝒟′ from which it is possible to reach the updated ABox 𝒜′.
The translation of KB updates into suitable database (DB) updates is one of the key problems
we are interested in this research, and to formalize it we first need to introduce the notion of
realizability for KB updates.

Definition 4 (Realizability). Let 𝒥 = ⟨⟨𝒯 ,ℳ,𝒮⟩,𝒟⟩ be a VKG instance forming a KB 𝒦 =
⟨𝒯 ,𝒜⟩ with 𝒜 = ℳ(𝒟), and let 𝒰𝐴 be a KB update coherent with 𝒯 . Then, 𝒰𝐴 is realizable over
𝒥 through ℳ if there exists a DB instance 𝒟′ such that ℳ(𝒟′) = 𝒦 ∙𝒰𝒜.

In the context of VKGs, since mappings are seen as view functions over the underlying data
source, the existence of a DB instance as specified in the above definition, is related to the
notion of translatability of view updates described in [10].

However, due to the ambiguities provided by the presence mappings, there might exist
multiple DB instances that realize a given KB update. Such ambiguity, which reflects the
non-injectivity of the mappings, is defined in the following:

Definition 5 (Ambiguous Mapping). A mapping ℳ is said to be ambiguous if there exist two
DB instances 𝒟1 and 𝒟2 s.t. (i) 𝒟1 ̸= 𝒟2 and (ii) ℳ(𝒟1) = ℳ(𝒟2).

The above definition shows how the injectivity of the mapping is tightly connected to
updates in VKG instances. Specifically, this tells us that there might exist multiple DB instances
that accomplish a given KB update when the mapping component is not injective. However,
whenever a mapping ℳ is injective, every KB updates are uniquely translatable and is illustrated
in the following proposition:

Definition 6 (Unique realizability). Let 𝒥 = ⟨⟨𝒯 ,ℳ,𝒮⟩,𝒟⟩ be a VKG instance forming a KB
𝒦 = ⟨𝒯 ,𝒜⟩ with 𝒜 = ℳ(𝒟), and let 𝒰𝐴 be a KB update coherent with 𝒯 . Then, 𝒰𝐴 is uniquely
realizable over 𝒥 through ℳ if there exists a unique DB instance 𝒟′ such that ℳ(𝒟′) = 𝒦 ∙𝒰𝒜.

Proposition 1. Let ℳ be a non-ambiguous mapping of VKG instance 𝒥 = ⟨⟨𝒯 ,ℳ,𝒮⟩,𝒟⟩, and
let 𝒰𝐴 be an update coherent with 𝒯 . If 𝒰𝐴 is realizable, then 𝒰𝐴 is also uniquely realizable.

Proof. It is clear that if two DB instances 𝒟1 and 𝒟2 realize a KB update 𝒰𝐴, then we get
ℳ(𝒟1) = ℳ(𝒟2), which, by non-ambiguity of ℳ, entails 𝒟1 = 𝒟2.

As stated in [27], the converse does not hold, i.e., even if ℳ is ambiguous, a KB update
𝒰𝐴 that is realizable might still be uniquely realizable. Therefore, in order to deal with the
ambiguity provided by the presence of mappings in practical VKG systems (which represents a
major concern in our research), we pose in the following sections the main research challenges
we are facing, and any answer to them would benefit us in continuing our research.



4.2.1. Preference-based selection of DB instances

In a typical VKG instance, where the mapping component ℳ is ambiguous, some KB updates
will result in different DB instance candidates realizing them. As an example, if a mapping
maps both the Student and Professor relations from the DB schema to the Person atom in the
VKG, a KB update that adds a new person will result in two possible DB instances, one with an
update to the Student relation and the other with an update to the Professor relation. To achieve
automated propagation of updates to the data sources, one approach is to develop methods to
automatically select the most suitable DB instance that realizes the desired VKG update based
on some preferences initially provided by the users. We should note that all DB instances that
realize a KB update are equivalent w.r.t. the mapping and the TBox, i.e., they create ABoxes
that are equivalent with respect to the TBox. This notion of equivalence is defined as follows:

Definition 7 (ℳ-equivalence of DB instances). Given a VKG specification 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩ and
two DB instances 𝒟1, 𝒟2 for 𝒮 , we say that 𝒟1 and 𝒟2 are ℳ-equivalent w.r.t. 𝒯 if ℳ(𝒟1) ≡𝒯
ℳ(𝒟2).

In order to reduce the space of possible DB instances that realize a given KB update, we take
advantage of the notion of repair by complying with the minimal change principle w.r.t. the
original instance. Moreover, we want to base our selection of repair on a set of preferences
provided by the user, as explained in [28]. This brings us to the following research questions:

Q1: How can we formalize a preference-based selection of DB instances that realize updates over
VKGs?
Q2: Given a VKG instance 𝒥 = ⟨⟨𝒯 ,ℳ,𝒮⟩,𝒟⟩, how can we formalize a suitable notion of
interference of predicates over 𝒟 that may occur when propagating any given KB update, and
how can we actually compute such interferences?
For instance, in our previous example, the relations Student and Professor are interfering since
they map to the same atom in the KB.

The above research question is helpful to check whether a priority operator based on prefer-
ences given by the user is total, in the sense that it resolves all interferences. This is because a
preference that cannot be further extended should specify how to resolve every interference
[28]. This leads to a further research question:

Q3: What language is suitable to express user preferences in the context of updates in VKGs?
Finally, we also want to consider the case where KB updates are not realizable, i.e., given a

KB 𝒦 updated with 𝒰𝐴, there is no DB instance 𝒟 such that ℳ(𝒟) = 𝒦 ∙𝒰𝐴. The absence of
realizability entails the presence of DB instances that are not ℳ-equivalent and that create
different approximations of 𝒦 ∙𝒰𝐴. This adds a further challenge, which consists of choosing
the DB instance 𝒟′ such that the KB 𝒦′ = ⟨𝒯 ,ℳ(𝒟′)⟩ is minimally distant from 𝒦 ∙𝒰𝐴,
for a suitably defined notion of distance. Therefore, we need to provide a relaxed version of
realizability, which consists of finding a DB instance that realizes at best a given KB update 𝒰𝐴.
This brings us to the following research question:

Q4: Given a non-realizable KB update 𝒰𝐴 over a KB 𝒦, how can we select the DB instance that
through ℳ approximates at best 𝒦 ∙𝒰𝐴?



4.2.2. KB update rewriting in VKGs

In this section, we are interested in statically analyzing updates in the context of VKGs, i.e.,
given a VKG specification 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩ and a KB update 𝒰𝐴, we want to compute a suitable
DB update 𝒰𝐷 that is its translation and that updates any data source in such a way that via the
mapping it generates the updated KB. Following [10], which deals with view-updates, such a
translation can be formalized as follows.

Definition 8 (Translation). Given a VKG specification 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩ and a KB update 𝒰𝐴, a
DB update 𝒰𝐷 is a translation of 𝒰𝐴 if for every DB instance 𝒟 satisfying 𝒮 from which we have
𝒦 = ⟨𝒯 ,ℳ(𝒟)⟩, we have that: (1) 𝒦 ∙𝒰𝐴 = ⟨𝒯 ,ℳ(𝒟 ∙𝒰𝐷)⟩ and (2) 𝒟 ∙𝒰𝐷 = 𝒟 whenever
𝒦 ∙𝒰𝐴 = 𝒦.

Based on the above definition, we want to be able to statically compute the translation (or set
of translations) of a given KB update, which is composed of a set of insertions and deletions of
relations over the data source.

Unlike the method proposed in [14], which is based on a Datalog Program that considers
a DB instance, we want to propose a static method that supports the query rewriting algo-
rithm PerfectRef [7] in order to entail the set of insertions/deletions over the KB. Finally, we
want to unfold each KB insertion/deletion w.r.t. to a given mapping in order to compute the
corresponding update over the data source.

In this setting, we want to formalize the notion of static realizability, which is defined as
follows:

Definition 9 (Static realizability). Let 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩ be a VKG specification and 𝒰𝐴 a KB
update. Then, we say that 𝒰𝐴 is statically realizable if there exists a DB update 𝒰𝐷 over the
signature 𝒮 such that ⟨𝒯 ,ℳ(𝒟 ∙𝒰𝐷)⟩ = ⟨𝒯 ,ℳ(𝒟)⟩ ∙ 𝒰𝐴, for every DB instance 𝒟 compliant
with 𝒮 .

Given this notion of static realizability, we can now formulate a further research question:

Q5: How can KB updates be statically and effectively realized in state-of-the-art VKGs that support
query rewriting?

4.2.3. Mapping analysis in VKGs

Finally, we want to study mapping analysis in the scope of VKGs, especially its inherent
properties that are intrinsically connected to VKG updates. The task of mapping specification
within the context of VKGs can be complex, necessitating a deep understanding of both the
ontology and the associated data source. This nuanced "cognitive distance" between the data
sources and the ontology often prompts the formulation of a complex mapping, expressed via
assertions that correlate queries over the ontology with those over the data sources. A particular
interest to us is the concept of injectivity of schema mapping—a facet that bears significant
implications for the translation of KB updates into DB updates within the framework of VKG.

The injectivity property of the mapping is particularly crucial for updates, as it ensures that
each change in the ontology corresponds to a unique change in the DB. If a mapping is not
injective, a single update at the ontology level could potentially correspond to multiple updates



at the DB level, creating ambiguity in the translation process. This ambiguity could lead to
inconsistent states between the ontology and the DB, undermining the overall integrity of the
system. However, the absence of injectivity in the schema mapping does not entirely prevent the
translation of updates. There may be situations where updates can be uniquely translated even
if the schema mapping is not injective. Still, such scenarios are more challenging to manage
and typically require additional mechanisms or constraints to ensure the correct translation of
updates.

As a first step towards analyzing mapping in VKG, we want to determine whether a given
mapping specification is injective (or ambiguous) and in order to achieve it we are planning to
use an automated model prover.
Q6: Given a VKG specification𝒫 = ⟨𝒯 ,ℳ,𝒮⟩, how can we check whether the mapping component
ℳ is injective?

To address this research question, our planned approach is to harness the capabilities of
automated tools, such as the Z3 model prover-a highly proficient theorem prover developed
under the auspices of Microsoft Research [29]. The ultimate aim is to integrate this tool into
the Ontop system infrastructure for mapping analysis.

Also, we express interest in non-injective mappings, particularly in deriving the necessary
information from the system to facilitate a deterministic translation of KB updates. This is
tightly connected to work on unique solutions in data exchange, as studied in [30] where we
want to ensure that for any subjective mapping, there is always a unique data source state from
which it’s possible to compute a given KB. This is formulated in the following research question:
Q7: Given a VKG specification 𝒫 = ⟨𝒯 ,ℳ,𝒮⟩ where ℳ is not injective, what additional
information is necessary in order to maintain consistency between the knowledge base and the DB
via the mapping?

5. Conclusions

This paper aims to address foundational and applied issues in the realm of Virtual Knowledge
Graphs (VKGs), focusing on the introduction and exploration of Ontology-based updates and
evolution within the context. We explored the multifaceted issue of translating knowledge base
updates into database updates in the setting of VKGs. The crux of our research challenges stems
from the dual nature of the problem: maintaining consistency in an incomplete information
context and the inherent ambiguity introduced by mappings between ontology and data sources.

Regarding the research questions mentioned in this paper, we have already obtained some
preliminary results. However, these methods require extensive discussion and need to be further
analyzed to ascertain their validity and the potential for being extended.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems, and Software
Program (WASP), funded by the Knut and Alice Wallenberg Foundation, and by the Province
of Bolzano and DFG through project D2G2 (DFG grant no. 500249124). Šimkus was partially
supported by the Austrian Science Fund (FWF) project P30873.



References

[1] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to
ontologies, J. on Data Semantics 10 (2008) 133–173. doi:10.1007/978-3-540-77688-8_
5.

[2] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, Ontologies and databases: The DL-Lite approach, in: S. Tessaris, E. Franconi
(Eds.), Reasoning Web: Semantic Technologies for Informations Systems – 5th Int. Summer
School Tutorial Lectures (RW), volume 5689 of Lecture Notes in Computer Science, Springer,
2009, pp. 255–356.

[3] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev,
Ontology-based data access: A survey, in: Proc. of the 27th Int. Joint Conf. on Artificial
Intelligence (IJCAI), IJCAI Org., 2018, pp. 5511–5519. doi:10.24963/ijcai.2018/777.

[4] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual Knowledge Graphs: An overview of
systems and use cases, Data Intelligence 1 (2019) 201–223. doi:10.1162/dint_a_00011.

[5] M. Krötzsch, OWL 2 profiles: An introduction to lightweight ontology languages, in:
Reasoning Web: Semantic Technologies for Advanced Query Answering – 8th Int. Summer
School Tutorial Lectures (RW), volume 7487 of Lecture Notes in Computer Science, Springer,
2012, pp. 112–183. doi:10.1007/978-3-642-33158-9_4.

[6] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The Descrip-
tion Logic Handbook: Theory, Implementation and Applications, Cambridge University
Press, 2003.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning
and efficient query answering in description logics: The DL-Lite family, J. of Automated
Reasoning 39 (2007) 385–429. doi:10.1007/s10817-007-9078-x.

[8] H. Katsuno, A. Mendelzon, On the difference between updating a knowledge base and
revising it, in: Proc. of the 2nd Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR), 1991, pp. 387–394.

[9] T. Eiter, G. Gottlob, On the complexity of propositional knowledge base revision, updates
and counterfactuals, Artificial Intelligence 57 (1992) 227–270.

[10] F. Bancilhon, N. Spyratos, Update semantics of relational views, ACM Trans. on Database
Systems 6 (1981) 557–575.

[11] S. S. Cosmadakis, C. H. Papadimitriou, Updates of relational views, J. of the ACM 31 (1984)
742–760. doi:10.1145/1634.1887.

[12] A. C. Kakas, P. Mancarella, Database updates through abduction, in: Proc. of the 16th Int.
Conf. on Very Large Data Bases (VLDB), volume 90, 1990, pp. 650–661.

[13] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Updating ABoxes in DL-Lite, in:
Proc. of the 4th Alberto Mendelzon Int. Workshop on Foundations of Data Management
(AMW), volume 619 of CEUR Workshop Proceedings, CEUR-WS.org, 2010, pp. 3.1–3.12.

[14] G. De Giacomo, X. Oriol, R. Rosati, D. F. Savo, Instance-level update in DL-Lite ontologies
through first-order rewriting, J. of Artificial Intelligence Research 70 (2021) 1335–1371.
doi:10.1613/jair.1.12414.

[15] H. Liu, C. Lutz, M. Milicic, F. Wolter, Updating description logic ABoxes, in: Proc. of the
10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR), 2006, pp.

http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.1007/978-3-540-77688-8_5
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.1162/dint_a_00011
http://dx.doi.org/10.1007/978-3-642-33158-9_4
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1145/1634.1887
http://dx.doi.org/10.1613/jair.1.12414


46–56.
[16] G. De Giacomo, M. Lenzerini, A. Poggi, R. Rosati, On instance-level update and erasure in

description logic ontologies, J. of Logic and Computation 19 (2009) 745–770.
[17] M. Winslett, A model-based approach to updating databases with incomplete information,

ACM Trans. on Database Systems 13 (1988) 167–196.
[18] M. Lenzerini, D. F. Savo, Updating inconsistent description logic knowledge bases, in:

Proc. of the 20th Eur. Conf. on Artificial Intelligence (ECAI), 2012, pp. 516–521.
[19] M. L. Ginsberg, D. E. Smith, Reasoning about action I: A possible worlds approach, Artificial

Intelligence 35 (1988) 165–195.
[20] R. Fagin, J. D. Ullman, M. Y. Vardi, On the semantics of updates in databases, in: Proc. of

the 2nd ACM Symp. on Principles of Database Systems (PODS), 1983, pp. 352–365.
[21] M. Lenzerini, Data integration: A theoretical perspective., in: Proc. of the 21st ACM Symp.

on Principles of Database Systems (PODS), 2002, pp. 233–246. doi:10.1145/543613.
543644.

[22] D. Zheleznyakov, E. Kharlamov, W. Nutt, D. Calvanese, On expansion and contraction of
DL-Lite knowledge bases, J. of Web Semantics 57 (2019) 1–19. doi:10.1016/j.websem.
2018.12.002.

[23] L. Bertossi, Database Repairs and Consistent Query Answering, Morgan & Claypool
Publishers, 2011.

[24] G. Flouris, D. Plexousakis, Handling Ontology Change: Survey and Proposal for a Future
Research Direction, Technical Report TR-362 FORTH-ICS, Institute of Computer Science,
Forth, Greece, 2005.

[25] M. L. Ginsberg, Counterfactuals, Artificial Intelligence 30 (1986) 35–79.
[26] D. Calvanese, E. Kharlamov, W. Nutt, D. Zheleznyakov, Evolution of DL-Lite knowledge

bases, in: Proc. of the 9th Int. Semantic Web Conf. (ISWC), volume 6496 of Lecture Notes in
Computer Science, Springer, 2010, pp. 112–128. doi:10.1007/978-3-642-17746-0_8.

[27] E. Franconi, P. Guagliardo, On the translatability of view updates, in: Proc. of the 6th
Alberto Mendelzon Int. Workshop on Foundations of Data Management (AMW), volume
866 of CEUR Workshop Proceedings, CEUR-WS.org, 2012, pp. 154–167.

[28] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query
answering in relational databases, Ann. of Mathematics and Artificial Intelligence 64 (2012)
209–246. doi:10.1007/s10472-012-9288-8.

[29] L. De Moura, N. Bjørner, Z3: An efficient SMT solver, in: Proc. of the Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, Springer, 2008, pp. 337–340.

[30] N. Ngo, E. Franconi, Unique solutions in data exchange, in: Proc. of the 25th Int. Conf.
on Database and Expert Systems Applications (DEXA), volume 8645 of Lecture Notes in
Computer Science, Springer, 2014, pp. 281–294.

http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1145/543613.543644
http://dx.doi.org/10.1016/j.websem.2018.12.002
http://dx.doi.org/10.1016/j.websem.2018.12.002
http://dx.doi.org/10.1007/978-3-642-17746-0_8
http://dx.doi.org/10.1007/s10472-012-9288-8

	1 Introduction
	2 Preliminaries
	2.1 Description Logic knowledge bases
	2.2 Virtual Knowledge Graphs

	3 Motivation
	4 Updates in VKG systems
	4.1 Updates in DL-LiteA KBs
	4.2 Updates over mapped data source
	4.2.1 Preference-based selection of DB instances
	4.2.2 KB update rewriting in VKGs
	4.2.3 Mapping analysis in VKGs


	5 Conclusions

