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Abstract
Health services personalization and early risk prediction represent the main research challenges in m-health systems, which
can be achieved through the use of AI algorithms and tools applied to physiological and behavioural data collected by
wearables and IoT devices in real-world settings. In this paper we present a summary of the results we obtained in our
research activities in this area and future works, with particular attention to AI-empowered m-health systems as support for
personalised rehabilitation services and malnutrition risk assessment, mobile sensing data analysis for disease detection and
the identification of new health and behavioural markers that can support remote patient monitoring and the clinical practice.
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1. Introduction
The collection and analysis of mobile sensing data de-
rived from personal and wearable devices open the way
to the identification of predictive relationships between
human habits, behaviour and health [1]. In addition, the
same data, collected in-the-wild and for a medium or
long period in a semi-continuous way, contribute to the
generation of a Digital Phenotype [2] of the individual
that can be used to predict risks and early identify digital
markers of important diseases. This type of data includes
daily routines, sleep patterns, physical mobility, nutri-
tion, cognitive functioning, speech production, social
interactions, and many others, which can be selectively
collected based on the individual health profile. m-health
applications, integrated with IoT and AAL systems, rep-
resent the main infrastructure of the monitoring systems,
but today they must be enriched with AI algorithms to
automatically detect specific health conditions, risky and
adverse situations, and to implement personalized inter-
ventions. In addition, if the personal mobile device of the
user is able to preliminary process this data directly on-
board, it can avoid the transmission of a huge amount of
sensitive data to the cloud, preserving the user’s privacy
and improving the system’s trustworthiness.

In our research activity we focus on different aspects in
this field: from the definition of customised clinical stud-
ies aimed at automatically defining personalised reha-
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bilitation therapies based on physiological data analysis,
to the collection and analysis of mobile sensing data for
the fast screening of some diseases, and the integration
of heterogeneous sensing data (both physiological and
behavioural) aimed at identifying new digital markers for
individual health and well-being conditions. These sys-
tems can be customised both for healthy ageing people,
aimed at maintaining a good autonomy and quality of
life, and for patients, in order to provide patient-centred
and integrated care pathways.

The multidisciplinary characterisation of this research
provides multiple impacts: (i) a technological impact with
the definition of new AI-empowered decision support
systems aimed to provide personalised feedback and ther-
apies; (ii) a medical impact, through the identification of
new digital physiological and behavioural markers that
can support the clinical diagnosis and the remote patient
monitoring; (iii) a social impact by supporting people
with daily and unobtrusive monitoring instruments and
personalised feedback, reducing the impact on the na-
tional health systems and allowing caregivers to predict
health trajectories over time.

In addition to the predictive performance analysis of
these systems, it is also essential to investigate how their
results can be interpretable and explainable in order to
improve their acceptance and validation in the clinical
practice and the users’ trust. To this aim we started also
investigating the latest Explainable AI (XAI) methodolo-
gies with particular attention to those used for time series
and tabular data [3].

In this works we present the main results of our re-
search activity divided in 3 main areas:

• AI-empowered m-health systems for personalised
rehabilitation and nutrition support in older
adults
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• Smartphone-embedded sensing for the early de-
tection of specific diseases

• Definition of behavioural and physiological mark-
ers from wearables and environmental sensors
aimed at identifying the health status and early
predicting risk conditions for active and healthy
ageing.

2. Stress Detection and
Malnutrition Risk Assessment

Chronic and acute stress conditions and risk of malnutri-
tion represent two important factors in frail older adults.
We decided to focus part of the research activity on these
two specific health domains since they represent daily
conditions that can characterise both healthy and frail
older adults and they can be also integrated with other
behavioural parameters for the definition of a general
health and well-being index.

As far as the automatic stress detection is concerned,
we focused on the analysis of Heart Rate (HR), Heart Rate
Variability (HRV) and Electrodermal Activity (EDA) as
reference physiological stress sensing data that can be
easily collected from wearable sensors, according to [4].
Recently, other studies have introduced also EEG, Blink
Reflex through surface EMG, and eye tracking data anal-
ysis [5], but the related instruments are invasive and they
are not easily accepted, even in clinical environments.

The identification of acute stress events are important
in older adults, considering that they are commonly af-
fected by chronic stress conditions in the management
of their health status. Cognitive and motor rehabilitation
activities, proposed to prevent physical and cognitive de-
cline, can thus represent an additional stressful condition
that could mitigate the positive effects of the therapy.
Therefore, the analysis of physiological signals during
the rehabilitation therapy execution can allow the defini-
tion of personalised protocols defined according to the
automatic identification of the induced stress level.

We developed a m-health system aimed at collecting
and analysing those data during specific rehabilitation
protocols that has been validated and evaluated through
a pilot study we conducted with a group of frail MCI
older adults living in a long-term care (LTC) facility [6].
Each participant has been monitored through two wear-
able sensors (i.e., Zephyr BioHarness chest strap for HR
and HRV and SHIMMER EDA sensor) during specific
training sessions based on standard clinical cognitive
training alternated by a light physical exercise by using
a cycle-ergometer. The proposed m-health system has
been designed to highlight the short-time improvements
on the cognitive performances generated by the proposed
physical exercise, and the related stress response. The
first step has been to perform binary stress detection us-

ing several machine learning (ML) techniques exploiting
the study protocol as implicit ground truth as stressful
and non-stressful events’ labels. No self-report question-
naires or clinical evaluations have been used to track the
user perceived stress during the study. Then, in order to
improve the stress detection resolution in terms of num-
ber of detected stress levels, we evaluated few prominent
ML and deep learning models for solving time series re-
gression tasks [7]. We performed this analysis also on
two available multimodal physiological dataset for stress
and affect detection: WESAD [8] and SWELL [9]. The
considered models have been trained using stress scores
derived from different clinical questionnaires aimed at
detecting the perceived stress level severity over the time
during multiple conditions. Models have been evaluated
on each subject separately by using Leave-One-Subject-
Out (LOSO) cross validation scheme to test their general-
isation capabilities. The obtained results demonstrated
that the selected predictive models as well as the used
stress ground truth may provide an accurate and detailed
individual stress tracking in most cases. In addition, those
models could be integrated into a DSS module of the
m-health solution for online stress monitoring and they
could be further evaluated on new datasets collected from
rehabilitation sessions of different target users, including
neuro-degenerative patients (e.g., Parkinson).

Malnutrition is a serious and prevalent health problem
in the older population, and especially in hospitalised or
institutionalised subjects and an accurate and early risk
detection is essential for prevention. Also in this case AI-
empowered m-health systems may lead to important im-
provements in terms of a more automatic, objective, and
continuous monitoring and assessment. We addressed
the challenges in this health domain by exploiting a sim-
ple yet efficient m-health application, called DoEatWell
(DEW) [10], designed to collect information about nutri-
tional preferences and intake integrated with body com-
position data collected by a smart bioimpedance scale (i.e.,
body weight, body mass index, basal metabolic rate, bone
mass, body fat, water, and muscle percentage). DEW has
been originally designed to be used by LTC care givers,
but it can be customised also for independent living sce-
narios. It has been deployed in a LTC facility in Italy
from March 2018, and we collected and analysed data
in multiple trial periods (approximately 2 years) from
a total sample of 42 subjects. Feature engineering and
extraction has been performed in collaboration with a
medical specialist in order to define suitable, multimodal
input predictors. We first focused on estimating the daily
intake of the major macro-nutrients, namely cereals, ani-
mal proteins, vegetables, and fruit, which also represent
the main components of the “Healthy Eating Plate” [11]
for the Mediterranean diet. For what concerns body com-
position assessment, we initially computed only the fat
mass index, which is highly correlated with the malnu-



trition risk. Finally, we also included some behavioural
parameters characterizing the completeness and variabil-
ity of the main daily meals. This data analysis is in line
with the information generally requested by the reference
clinical screening tools, yet providing a more objective
and quantitative assessment. In order to validate our
approach as a supervised learning task, we relied on the
availability of a periodical clinical screening made by a
healthcare professional on a monthly basis through the
Mini Nutritional Assessment Short-Form (MNA-SF) tool
[12].
We investigated the performances of 6 benchmark ML al-
gorithms, namely Logistic Regression (LR) with Least Ab-
solute Shrinkage and Selection Operator (LASSO) regular-
isation, Support Vector Machine (SVM), k-Nearest Neigh-
bors (k-NN), Classification And Regression Tree (CART),
Random Forest (RF), and AdaBoost (AB), as well as differ-
ent data imbalance management techniques ranging from
imbalanced training, dataset oversampling (SMOTE), to
cost-sensitive learning. We also included ad-hoc algo-
rithms to directly classify from imbalanced data, such as
Random Undersampling Boosting (RUSBoost) and Bal-
anced Random Forest (BRF). We implemented a repeated,
stratified random hold-out partition (70% training, 30%
test), then we performed hyperparameter tuning through
10-fold CV along with Bayesian optimization algorithm
at each iteration. The resulting best model configuration
has been evaluated on the held back test set, considering
a comprehensive set of evaluation metrics to correctly
account for data imbalance.
Obtained results show that tree ensemble models (i.e.,
RF, AB, and RUSBoost) provide high accuracy and recall
in detecting individual nutritional status by combining
nutritional intake, dietary habits, and body composition
data, with median values of 94% and 92%, respectively.
Results also indicate that cost-sensitive learning is the
most effective method to deal with data imbalance in
our case study, as it also pushes the other models close
to the best performers. Instead, not considering body
composition data, which is available only in a population
subgroup, the classification performances worsen, even
if the sample increases.

We also extended the previous analysis by integrating
additional heterogeneous information including demo-
graphic, anamnestic, and clinical data (e.g., age, chronic
disease, therapies) stored in the DEW user health profile.
The obtained classification results slightly improved in
case body composition is considered, maintaining RF and
gradient boosting models as the best ones, with accuracy
from 95% to 96% and 𝐹1 from 93% to 94%. In addition,
the new models combining only clinical and nutritional
data highlighted significant performance gains, with ac-
curacy gain ranging from +8.4% to +17.3%, whereas
F1 increases from +16.7% to +22.5%, thus reaching
competitive results also on a larger population.

Figure 1: The experimented COVID-19 detection approaches:
(1) extraction of handcrafted acoustic features from the audio
waveform, which are then classified by a shallow ML model;
(2) usage of a pre-trained deep learning model as features
extractor, in series with a shallow model to classify the deep
audio embeddings; and (3) fine-tuning of the pre-trained deep
model for both features extraction and classification.

Finally, we also investigated the utility of XAI tech-
niques to validate the proposed solution, both in terms
of objective assessment of the agreement between expla-
nations generated by different methods for each model
separately, and a preliminary clinical validation to verify
that the input-target relationships learned for the most
relevant predictors are in line with the current evidence-
based assessment.

Specifically we analysed the following XAI techniques:
SHAP, LIME, Anchors, and feature permutations. The
model-specific explanation consistency assessment high-
lighted that each model privileges very similar input
subsets to drive predictions, with 90% of pairwise com-
parisons among rankings showing a degree of overlap
≥ 3 for the top-5 features. In terms of clinical validation,
we demonstrated that the global reasoning of the best per-
forming models adheres to the well-established domain
knowledge and guidelines, without showing any severe
AI bias. As a result, it can be considered “human-like” to
a large extent, thus enhancing model clinical credibility.

3. Smartphone-embedded sensing
for preliminary disease
detection

Personal mobile devices, like smartphones and smart-
watches, represent pervasive instruments for the col-
lection of user-generated data and signals (e.g., sound,
voices, images) that can be analysed to early detect spe-
cific diseases. In the last few years, during COVID-
19 pandemic, new m-health solutions have been pro-
posed to collect and analyse audio signals generated by
smartphone microphones, focusing mainly on human
respiratory functions like breathing, speech, and cough-
ing [13]. Schuller et al. [14] have been the pioneers



in the investigation of how the automatic analysis of
speech and audio data can contribute to fight the pan-
demic crisis, presenting the potential of Computer Au-
dition techniques (CA, i.e., computer-based speech and
sound analysis) [15]. Subsequently, researchers investi-
gated the effective applicability of those techniques in
real scenarios even though the collection of objective
data from large populations represented a big challenge.
In fact, initial studies focused on small patients’ cohorts
trying to automatically distinguish between COVID-19
cough and cough sounds related to other pathologies [16],
while others developed mobile and web apps to directly
collect crowdsourced datasets from the population [17].
These projects allowed the sharing of important COVID-
19 datasets, which opened the way to other researchers
to validate new AI tools to improve the accuracy of the
proposed systems. Specifically, we identified 3 datasets:
COSWARA [18] and Virufy [19] that are publicly avail-
able, and the Cambridge dataset [20] which we can ac-
cess through a data transfer agreement between CNR
and Cambridge University for research purposes.

Classification methods proposed in the literature can
be distinguished in three categories. Those relying
on hand-crafted acoustic features, like basic frequency-
based and temporal features [21], but also sets of fea-
tures especially designed for voice and paralinguistic
applications (e.g., COMPARE [22])This approach is gen-
erally outperformed in classification by deep learning
models [23]. Therefore, researchers proposed a second
approach converting the audio files into a visual rep-
resentation (e.g., time-frequency spectrogram or Mel-
spectrogram) that can be used as input to a Convolu-
tional Neural Network (CNN) model for both features
extraction and classification, thus relying directly on DL
models [16]. Due to the scarcity of public COVID-19
respiratory sound data, the DL models’ training has been
performed on small-size datasets, typically composed
of a few hundred samples, thus risking overfitting and
providing unreliable results. Therefore, we decided to
investigate a hybrid approach, based on the integration
of hand-crafted features and DL models, focusing on the
performance of the recently proposed Look, Listen and
Learn (L3-Net) [24] embedding model and YAMNET [25],
comparing the obtained results with those obtained by
previous works focused on VGGish [26] as deep features
extraction model [27] We compared the performances
of the aforementioned deep audio embedding models
on the same datasets and with the same tasks, perform-
ing a series of subject-independent experiments, and we
demonstrated that L3-Net overcomes the other models
in terms of standard metrics with different parameters’
configurations.

All those solutions take advantage of the Transfer
Learning concept to deal with the shortage of COVID-
19 audio data. Therefore, to complete our analysis, we

also investigated the benefits and drawbacks of feature
extraction with respect to fine-tuning applied only to
the final fully-connected layers of the neural networks
(see Figure 1). Experimental results showed that the fine-
tuned models perform considerably worse than their use
as feature extractors to input a shallow classifier since
their performances mainly depend on the similarity of the
pretraining and target tasks [28]. Since the considered
respiratory sounds considerably differ from the original
model’s training data, which actually include heteroge-
neous sounds extracted from YouTube videos, they do
not allow an effective fine-tuning of the analyzed models.
A possible solution for this issue could be the fine-tuning
not only of the final classification layers but also part of
the convolutional components dedicated to the feature
extraction. However, this requires a considerable amount
of data that is not currently available in public COVID-
19 audio datasets [29]. Moreover, since we would like
to investigate the performances of the proposed mod-
els as components of a m-health system, we provided
also a preliminary evaluation of the models’ complexity
considering the best trade-off between the classification
performances and the model’s size.

Inspired by recent applications of Deep Learning in
the dermatology field [30], we investigated also the use
of CNNs to propose a novel m-health system aimed at
detecting mpox (formerly known as Monkeypox) from
skin lesion pictures captured by smartphone cameras.
Adopting Transfer Learning to fine-tune different pre-
trained CNNs, we identified MobileNetV3 [31] as the
best performing model for our use-case scenario. We
evaluated it on a combination of available skin lesions’
datasets preprocessed to obtain homogeneous picture as
those provided by a smartphone camera. Experiments re-
sults present an average accuracy of 93%, 87% sensitivity,
and 78% specificity in the binary classification setting,
and 88% accuracy, 88% sensitivity, and 96% specificity in
distinguishing mpox from other diseases that produce
similar skin lesions, including, for example, acne and
chickenpox. Finally, we applied Grad-CAM as an XAI
algorithm to validate the model’s predictions and the
quantization technique to reduce its memory footprint
by 4x with negligible degradation in terms of accuracy.
In this way the proposed solution results to be easily
deployable on commercial mobile devices, performing
the whole data processing on the user’s device and thus
supporting the fast detection of mpox.

4. Digital Phenotyping for Active
and Healthy Ageing

Previous activities mainly focus on single health domains,
but the next step towards a comprehensive analysis and
classification of individual health and well-being status



passes from the integration of heterogeneous data related
to multiple health domains. This allows the identification
of digital biomarkers that can support clinical evaluations
and increase the potentialities of remote and m-health
systems. In this area we focus on healthy older adults
population, which can exploit the proposed solution as
an early predictor of risky conditions and prevention of
ageing diseases. To this aim, we proposed m-health sys-
tems aimed at collecting and analysing daily monitoring
data related to physical activity, sleep patterns, nutrition,
and social interactions. Most of this data can be collected
by the use of commercial wearables, like smartwatches,
and dedicated smart devices installed in the home en-
vironment, with a limited request of user’s interaction.
However, several research challenges are still open in
this area, starting from the scarcity of data labeling in-
the-wild up to the definition of significant features from
each domain and their appropriate fusion for efficient
and affordable risks prediction. In addition, personalised
interventions (mainly based on behavioural suggestions)
can be implemented after a risk prediction in order to ob-
serve potential behavioural changes. This activity needs
a huge quantity of heterogeneous data from a consistent
group of people to provide significant accuracy results.
To this aim, in the framework of a recently funded PNRR
project called Tuscany Health Ecosystem, we are plan-
ning to set up a large scale pilot to validate and evaluate
the proposed solutions.
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