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Abstract
Innovative technologies powered by Artificial Intelligence have the big potential to support new models of care delivery,
disease prevention and quality of life promotion. The ultimate goal is a paradigm shift towards more personalized, accessible,
effective, and sustainable care and health systems. Nevertheless, despite the advances in the field over the last years,
the adoption and deployment of AI technologies remains limited in clinical practice and real-world settings. This paper
summarizes the activities that a multidisciplinary research group within the Signals and Images Lab of the Institute of
Information Science and Technologies of the National Research Council of Italy is carrying out for exploring both the potential
of AI in health and well- being as well as the challenges to their uptake in real-world settings.
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1. Introduction
The health and care landscape is changing significantly,
thanks to the continuous advances of scientific discover-
ies and diagnostic and therapeutic procedures. Though
undeniably advantageous for the health outcome of indi-
viduals, this progress may increase clinicians’ and physi-
cians’ workload and thus affect the quality of their pro-
fessional life.

Computerised technologies powered by Artificial In-
telligence (AI) have the potential to relieve this issue,
thanks to their ability to integrate multi-modal data and
provide quantitative insights, particularly when consid-
ering those topics whose medical knowledge is not yet
well-consolidated as remote monitoring of individuals.

Nevertheless, the adoption and deployment of AI tech-
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nologies remains still limited in clinical practice. A recent
survey carried out in Australia and New Zealand high-
lights that a large share of clinicians was convinced that
AI solutions could improve their specialty, but the vast
majority of them (more than 80%) had never used any
AI-powered applications in their daily practice and only
5% viewed themselves as having excellent knowledge of
AI [1]. Adoption barriers include perceived challenges
to human autonomy, accountability and liability issues,
potential biases and risks [1, 2], as well as excessive re-
quirements in terms of effort and cognitive load and dis-
satisfaction with user interfaces [3]. Overall, a general
lack of trust is reported and it seems to be also related
to the lack of knowledge about the assumptions, limi-
tations and capabilities of the AI-powered tools [4]. It
should be noted that the same types of concerns and chal-
lenges have been identified along the years in the field
of Computer-Aided Diagnosis (CAD) systems [5].

Similarly, several factors seem to hinder the uptake
in real-life settings of AI-powered technologies for
life-logging and remote assistance to individuals [6].
The classical usability analyses have demonstrated to
fall short when considering the eventual acceptance
and adoption of assistive technologies by their end
beneficiaries (i.e., assisted subjects/patients and their
caregivers). The need to take into account other
individual concerns, such as trust in technology, data
security and privacy, has lately become evident [7].

This paper summarizes the activities that a multidis-
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ciplinary research group within the Signals and Images
Lab of the Institute of Information Science and Technolo-
gies of National Research Council of Italy is carrying
out for exploring both the potential of AI in health and
well-being as well as the challenges to their uptake in
real-world settings.

2. Visual AI for clinical
diagnostics

In the following sections, we briefly overview the works
done in the field of AI supporting clinical diagnostics. In
most cases, the focus is on medical imaging, as radiology
is expected to be the discipline that will most benefit
from the late progresses of AI in visual perception. A
discussion of the challenges in this domain and the works
done to address them concludes this chapter.

2.1. Visual AI for the prediction of
prostate cancer aggressiveness in
Magnetic Resonance Imaging

Prostate cancer (PCa) is the most frequent male neoplasm
in European men. Assessing PCa aggressiveness, is key
to steer patient management. Currently, the gold stan-
dard for determining tumour aggressiveness of is biopsy,
which is unfortunately an invasive and uncomfortable
procedure. Before the biopsy, physicians recommend an
investigation by multi-parametric Magnetic Resonance
Imaging (mpMRI), which may serve the radiologist to
gather an initial assessment of the tumour, based on the
visual inspection and evaluation based on the PI-RADS
standard.

Quantitative assessment of mpMRI might provide
the radiologist with a repeatable and non-invasive tool
decreasing intra- and inter-reader variability. In this
view, in collaboration with a team from CNR Institute
of Physics “Nello Carrara” and the University Hospital
of Careggi in Florence, we have initially investigated
the potential of high dimensional radiomics analyses to
identify the phenotypic differences of tumour traits [8].
We extracted radiomic features of different orders from
T2w and ADC map images (see “figure” 1), and applied a
wrapper, feed-forward feature selection method to select
the most relevant ones for distinguishing non aggressive
(i.e., low grade according to the biopsy Gleason score)
from aggressive (i.e., high grade according to the biopsy
Gleason score) PCa. A non-linear SVM classifier, trained
in cross-validation on the 57 cases, was able to achieve
an accuracy of 93% (sens 90.2%, spec 100%, F-score 94.9%)
and an AUC of 99%.

After increasing the sample size to 104 patients, we
designed and trained Deep Learning (DL) models without

Figure 1: mpMRI of a 76-years old patient: top axial T2-
weighted image, bottom ADC map. Both contain the seg-
mented target lesion, pointed by the arrow.

and with an attention mechanism to predict PCa aggres-
siveness from different pre-processed data, namely on
lesion-centred cropped T2w and ADC images, and on
lesion- selected T2w and ADC images. Imaging data were
acquired in diverse time frame, in accordance with two
PI-RADS protocols (i.e., 2.0 and 2.1). We adopted a robust
framework to train and test the models, based on nested,
stratified, multiple split and bootstrap cross-validation,
leaving aside a test set of 14 cases. The DL model with
attention trained on lesion-centred cropped T2w images
achieved the overall best performance. Nevertheless, the
performance consistently dropped when applying the
model to data acquired with a different PI-RADS proto-
col, thus showing limited generalization capacity of the
model [9].

For further investigating the potential of the attention
mechanism, we designed and trained a 3D Vision Trans-
former (ViT) able to process volumetric scans, and we
optimized it, via a grid search, on the freely available
ProstateX-2 challenge dataset by training it from scratch
[10]. As a term of comparison, we also designed a 3D
Convolutional Neural Network (CNN), and we optimized
it in a similar fashion. The results obtained by our prelim-
inary investigations showed that Vision Transformers,
even without extensive optimization and customization,
can ensure an improved performance with respect to
CNN and might be comparable with other more fine-
tuned solutions. Trained on 5-fold cross-validation, the
ViT reached an average AUC of 77.5% (sens 75%, spec
56.7%, F2-score 52.3%) on the test set.



2.2. Radiomics analyses for
discriminating parotid gland
tumours

In collaboration with a team from Pisa University Hos-
pital, we investigated the potential of radiomics anal-
yses also for predicting the malignancy of parotic ma-
lignant tumours from MRI data [11]. Salivary gland tu-
mours are fortunately rare, with an annual worldwide
incidence ranging from 0.05 to 2 cases per 100,000 in-
dividuals. Almost 80% of tumours affect parotid glands
and most of them are benign (80%), being the pleomor-
phic adenoma the most frequent neoplasm, then followed
by the Warthin tumour. In our study, we evaluated 75
T2-weighted images of parotid gland lesions, of which
61 were benign tumours (32 pleomorphic adenomas, 23
Warthin tumours and 6 oncocytomas) and 14 were malig-
nant tumours. A receiver operating characteristics (ROC)
curve analysis was performed to find the threshold val-
ues for the most discriminative features and determine
their sensitivity, specificity and area under the ROC curve
(AUROC). The most discriminative features were used
to train an SVM classifier, which was able to distinguish
a pleomorphic adenoma from a Warthin tumour (with
sensitivity, specificity and a diagnostic accuracy as high
as 0.8695, 0.9062 and 0.8909, respectively) and from a ma-
lignant tumours (sensitivity, specificity and a diagnostic
accuracy of 0.6666, 0.8709 and 0.8043, respectively). Our
work, though preliminary, showed that radiomics analy-
ses on lesions extracted from conventional T2-weighted
MR images may be a viable instrument to discriminate
pleomorphic adenomas from Warthin tumours and ma-
lignant tumours with a high sensitivity, specificity and
diagnostic accuracy.

2.3. Visual AI for Hepatic Steatosis
Estimation from Ultrasound Imaging

Hepatic steatosis is the major histologic feature of
Metabolic Disfunction-Associated Fatty Liver Disease
(MAFLD), and is due to the accumulation of fat within
the liver. When associated with inflammation, steatosis
may cause the progression of fibrosis to cirrhosis and hep-
atocellular carcinoma. An early detection and accurate
quantification of steatosis is an essential tasks for pre-
venting disease progression and monitoring its evolution
over time.

Ultrasound examinations are the most used technique
to non-invasively identify liver steatosis in a screening
settings. However, the diagnosis is operator dependent,
since quantitative and repeatable image processing tech-
niques have not yet entered clinical practice. In this
frame, in collaboration with a team from the IFC-CNR
and Pisa University Hospital, we designed and trained
a simple CNN model able to predict, from ultrasound

Figure 2: A clip (i.e., frame) taken from an ultrasound exami-
nation of an healthy subject.

images (see an example in “figure” 2), a fat-liver score
aligned with the Hepatic fat fraction currently estimated
from the Magnetic Resonance Spectroscopy (i.e., H-MRS
index). More than 22,000 ultrasound images obtained
from a multi-centre dataset of 150 subjects were used
to train three regression networks, which were able to
predict the fat fraction with a root mean square error
of 1.11 in the best case, thus showing to be an effective
instrument that might replace the much more expensive
MRS [12].

2.4. Visual AI supporting the
management of Idiopathic
Pulmonary Fibrosis

A key step of the diagnosis of Idiopathic Pulmonary Fibro-
sis (IPF) is the examination of high-resolution computed
tomography images (HRCT). IPF exhibits a typical radi-
ological pattern, named Usual Interstitial Pneumoniae
(UIP) pattern, which can be detected in non-invasive
HRCT investigations, thus avoiding surgical lung biopsy.
Unfortunately, the visual recognition and quantification
of UIP pattern can be challenging even for experienced
radiologists due to the poor inter and intra-reader agree-
ment.

In collaboration with the radiology unit of Cisanello
Hospital in Pisa, we designed and developed a tool for the
semantic segmentation and the quantification of UIP pat-
tern in patients with IPF using a deep-learning method
based on a Convolutional Neural Network (CNN), called
UIP-net [13]. o train and evaluate the CNN, a dataset
of 5000 images, derived by 20 CT scans of different pa-
tients, was used. The network performance yielded 96.7%
BF-score and 85.9% sensitivity. Once trained and tested,
the UIP-net was used to obtain the segmentations of
other 60 CT scans of different patients to estimate the
volume of lungs affected by the UIP pattern. The mea-
surements were compared with those obtained using the
reference software for the automatic detection of UIP
pattern, named Computer Aided Lungs Informatics for



Figure 3: Segmentation results of UIP-net. Top: the ground-
truth highlighted in yellow; bottom: UIP-net results in red.

Pathology Evaluation and Rating (CALIPER), through
the Bland-Altman plot. The network performance as-
sessed in terms of both BF-score and sensitivity on the
test-set and resulting from the comparisonwith CALIPER
demonstrated to reliably detect and quantify UIP pattern,
thus having the potential to become a supportive tool
for radiologists. See “figure” 3 for an example of the
segmentation results.

Thanks to its promising performance, the UIP-net is
being applied also in the detection of COVID-19 radio-
logical manifestations, which are very similar to the UIP
pattern.

2.5. Imaging bio-banking in the quest of
FAIR AI research

The availability of large volumes of high-quality data is
essential in today’s AI data-driven research. Bio-banks
play a central role in this scenario, as they serve the man-
agement and more effective usage of large volumes of
data. Besides the more common collections of body fluids
and tissues, bio-banks are nowadays advancing to inte-
grate also collections of medical imaging data. Imaging
bio-banks are organized repositories of medical images,
usually associated with imaging bio-markers. Most of the
existing imaging bio-banks focus on cancer-related data
and oncology imaging bio-markers collections. Their
goal is to exploit the wealth of information hold in imag-
ing data to discover novel diagnostic and prognostic bio-
markers, especially when considering cancer phenotypes.

The NAVIGATOR Project, funded by the Tuscany Re-
gion, aims to establish the first regional imaging bio-bank,
with the goal of boosting precision medicine in oncol-

ogy. To do this, the Project plans to employ quantitative
imaging and multi-omics analyses towards a better un-
derstanding of cancer biology, cancer care, and cancer
risks [14].

The building block of the bio-bank design is the defi-
nition of the data model, which name and organize the
relationship between the data elements and real-world
entities’ properties. For NAVIGATOR, we designed and
implemented three separate data models utilized for the
storage of imaging and clinical data about colorectal,
prostate and gastric cancer [15].

2.6. Challenges to the uptake of AI in
clinical practice

Realizing the full potential and benefit of AI solutions
in high-stake domains, such as clinical diagnostics, man-
dates high-quality scientific foundations, technical ro-
bustness, and responsible development. This vision is
at the core of the European strategy for AI, promoting
excellence and trust as the main drivers of a beneficial
impact of AI. Undeniably, only those applications that
guarantee reliability, stakeholders’ trust and acceptance,
and total patients’ safety can be expected to have a real
impact and uptake in clinical practices. Transparency is
a key pillar of trustworthiness. Transparency entails to
document the entire life-cycle of an AI system as well as
the underlying principles of its functioning [16].

Making an AI system transparent by design is key to
avoid any grey area in its functioning and use by decision
makers in clinical practice. Therefore, it is an overarch-
ing principle of the FUTURE-AI guidelines [17], notably
touching upon the Traceability, Explainability and Us-
ability principles. Transparency also ensures that the
AI system is reproducible and auditable by design, thus
laying the bases for accountability and liability.

Our group was actively involved in the definition of
the FUTURE-AI guiding principles and is currently work-
ing in cooperation with FORTH, within the EU H2020
ProCAncer-I project (GA 952159) on the definition of
an AI Model Passport, which is going to include all the
relevant of information to document the development
lifecycle of AI models.

In cooperation with IMATI-CNR and the Poznań Uni-
versity of Technology, within the EU NoE TAILOR (GA
952215), we contributed to a recent survey of the termi-
nology, recommendations and open issues of the repro-
ducibility of Machine Learning [18].

Moreover, we worked on effective approaches to in-
crease the transparency of AI and ML models’ decisions,
especially in the Explainable AI for visual AI models. In
this regard, the ProtoPNet model, which breaks down
an image into prototypes and uses evidence gathered
from the prototypes to classify an image, represents an
appealing approach. We explored the applicability of
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Figure 4: Results of ProtoPNet on a sample malignant mass.
Each row represents the activation process of a certain proto-
type with the corresponding similarity score.

prototypical part learning in medical imaging by experi-
menting with ProtoPNet on a breast masses classification
task (i.e., identification of malignant masses [19]. The
two aspects we considered to evaluate the applicability
of this approach were the classification capabilities and
the validity of explanations. In this respect, an experi-
enced radiologist provided a clinical viewpoint on the
quality of the learned prototypes, the patch activations,
and the global explanations. We achieved a Recall of
0.769 and area under the receiver operating characteris-
tic curve of 0.719 in our experiments. Even though our
findings are non-optimal for entering the clinical prac-
tice yet, the radiologist found ProtoPNet’s explanations
very intuitive, reporting a high level of satisfaction. See
“figure” 4 for a sample result of ProtoPNet of a malignant
mass. Therefore, we believe that prototypical part learn-
ing offers a reasonable and promising trade-off between
classification performance and the quality of the related
explanation.

3. AI for assistive technologies
and health promotion

The ability of AI techniques to mine and correlate large
amount of data plays a key role in delivering solutions
that may support individuals in their daily-life activi-
ties through remote monitoring, assistance and care. The
goals spam for encouraging individuals towards healthier
lifestyles, to assisting them in daily-life activities, to pre-
venting and managing chronic or multi-morbidity health
conditions. In the most advanced settings, these systems
use different approaches to learn about their users and
make automated decisions, for personalizing their ser-
vices and optimise outcomes. In the following sections,
we briefly overview our works in the field, also with re-
spect to the challenges that prevent the acceptance of AI
in real-world environments.

3.1. AI for disease prevention
Cardio-metabolic risk assessment in the general popula-
tion is of paramount importance to reduce diseases bur-
dened by high morbidity and mortality. In collaboration
with IFC-CNR, we defined a strategy for cardio-metabolic
risk assessment, based on data acquired from contact-less
sensors used in real-life settings. We employed Structural
Equation Modelling to identify latent clinical variables
of cardio-metabolic risk, related to anthropometric, gly-
colipidic and vascular function factors. Then, we defined
a set of sensor-based measurements that correlate with
the clinical latent variables.

Our measurements, processed by a Self-Organizing
Map model, identified subjects with one or more risk
factors in a population of 68 healthy volunteers from the
EU-funded SEMEOTICONS project (GA 611516) with ac-
curacy 82.4%, sensitivity 82.5%, and specificity 82.1%. The
preliminary results we obtained strengthen the role of AI-
powered self-monitoring systems for cardio-metabolic
risk prevention.

3.2. AI for Active and Assisted Living
Active and Assisted Living (AAL) technologies usually
address older adults or people in needs with diverse types
of sensorised AI-powered applications. A comprehensive
review of the AAL technologies taking advantage of AI
techniques has been recently published by the team [20]
as part of the activities within the Cost Action Good-
Brother (CA 19121). Within this Action, a collaboration
with a team from the University of Castilla-LaMancha de-
livered a survey about AI-powered solutions for bedtime
monitoring to prevent falls in older adults [21].

In this field, we investigated also the use of thermal
imaging for stress discrimination [22, 23] and the use of



Figure 5: The e-nose device used to monitor severe liver im-
pairment.

an e-nose for monitoring severe liver impairment (see
“figure” 5) [24].

3.3. Challenges to the uptake of AI AAL
in real-world settings

AI-powered AAL technologies provide promising solu-
tions for the health and social care challenges, neverthe-
less they are not exempt from ethical, legal and social
issues [25]. From a technical perspective, they need to
guarantee robust, accurate, reliable and unobtrusive data
acquisition and interpretation in daily-life settings as well
as security, privacy-preservation, safety, and usability
that may ensure long-term engagement [26]. Neverthe-
less, an ethical approach and a thorough understanding
of all issues pertaining to ethics, social equality, legality,
and fairness need to be integrated at their early develop-
ment phases [25].

Within the Cost Action GoodBrother, we surveyed ex-
isting literature for analysing the specific AI models used
in AАL systems, the target domains of the models, the
technology using the models, and the major concerns
from the end-user perspective. Our goal was to consoli-
date research on this topic and inform end users, health
care professionals and providers, researchers, and practi-
tioners in developing, deploying, and evaluating future
intelligent AAL systems. Older adults were the primary
beneficiaries, followed by patients and frail persons of
various ages. Availability was a top beneficiary concern
[6, 27].

4. Conclusions
AI has a big potential to ameliorate care and health sys-
tems. Nevertheless, future research in the field should
involve health care professionals and caregivers as de-
signers and users, complywith health-related regulations,
improve transparency and privacy, integrate with health
care technological infrastructure, explain their decisions
to the users, and establish evaluation metrics and design
guidelines [6].
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