CEUR-WS.org/Vol-3486/120.pdf

An adaptable method for developing an Open-domain
Question Answering system

Sara Piscitelli’®, Sara Cardarelli’ and Alessandro Nicolosi’

"Lab of Applied Artificial Intelligence, Leonardo Labs, Leonardo S.p.A., Via Tiburtina km 12400, 00131 Rome, Italy

Abstract

Open-domain QA has arisen as a natural language processing research subject to answer users’ inquiries in natural language
from vast unstructured text collections. Among the most important business areas, using a corpus of unstructured documents
as a source of information to answer a question is just one of the many benefits of working in an open-domain setting,
which also allows for access to external knowledge even if the information related to the question is not uniquely identified
in the sources. Thus, any procedures involving extracting information and data from available online sources and text
documents may be enhanced with the help of open-domain question-answering systems. In this paper, we propose a method
for developing an open-domain question-answering system by retrieving documents from a knowledge corpus comprising
external and internal documents in response to input query and then extracting the answer using an instruction fine-tuned
language model, following a “zero-shot” approach. While conceptually simple, this approach can be used as a flexible

framework to develop an open-domain question-answering system efficiently.

Keywords

nlp, open domain question answering, language models, information retrieval

1. Introduction

Open-domain question answering (OpenQA) has
emerged as a natural language processing (NLP) research
field aimed at answering questions in natural language
from retrieved extensive unstructured text collections
in response to users’ questions. In leading business
domains, an open-domain setting allows using a corpus
of unstructured texts to answer a query and access
external knowledge, even if the information related to
the query is not univocally identified in the sources.
Hence, open-domain question-answering systems may
enhance data extraction from open web sources and text
documents (e.g., internal documents, emails, online re-
views, and other sources). Most of the existing OpenQA
systems [1], [2], [3], [4], [5], [6] follow two-stage
Retriever-Reader approaches. In the first stage, relevant
information in response to an input query is retrieved.
Then in the second stage, a language model answers
the question from the retrieved corpus of documents.
In this paper, we propose a method to develop an
OpenQA by retrieving relevant documents based on
a knowledge corpus drawn from both open sources
and internal documents to answer input questions, and
then, extracting the answer using a modern instruction
fine-tuned language model. Developing an OpenQA
system involves several challenges. When you have

Ital-IA 2023: 3rd National Conference on Artificial Intelligence, orga-

nized by CINI, May 29-31, 2023, Pisa, Italy

@] sara.piscitelli.ext@leonardo.com (S. Piscitelli);

sara.cardarelli.ext@leonardo.com (S. Cardarelli);

alessandro.nicolosi@leonardo.com (A. Nicolosi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
m Attribution 4.0 International (CC BY 4.0).

[==== CEUR Workshop Proceedings (CEUR-WS.org)

access to a vast external knowledge source, the first
challenge is finding a way to retrieve documents that
contain useful information to answer the question. It is
necessary to develop a strategy for filtering information.
Several papers introduce a reranking component as
part of a multi-step retrieval strategy to enhance more
confidentiality about the retrieved results [7], [8], [9].
Given an initially retrieved passage list, the reranker
component scores them, enabling the selection of
the most suitable answer aggregating evidence from
multiple passages. When developing our system, we
employed a fine-tuned instruction language model as
an alternative, delegating both the question answering
and aggregation-answering tasks to it. It has been
proven that modern language models, particularly large
ones with billions of parameters, are competitive in
many NLP tasks [10], mainly due to their in-context
learning behavior [11] that allows them to perform
several tasks by conditioning on input-output examples,
without optimizing any parameters or performing any
gradient updates. Since the employment of models with
billions of parameters are both time-consuming and
costly to train and query, we opted for a pre-trained
instruction-finetuned language models (flan-t5-large
[12]) used with a “zero-shot” strategy, meaning no
demonstrations are provided at inference time.

Our approach proposes an OpenQA pipeline consisting
of three steps. In the first step, the retriever component
uses transformer models to retrieve documents relevant
to a specific input question. In the second step, the reader
component is realized with an instruction fine-tuned lan-
guage model. Due to its instruction-finetuning process,
several prompts can be used to perform multiple natural

mailto:sara.piscitelli.ext@leonardo.com
mailto:sara.cardarelli.ext@leonardo.com
mailto:alessandro.nicolosi@leonardo.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

language processing tasks including question-answering.
In the last step, the language model is again used for
aggregate multiple answers into one, but with different
instructions to allow it to combine the previous answers.
Overall, our contributions are as follows:

+ 1) We propose an OpenQA framework that uti-
lizes a “zero-shot” approach by using transformer
models in both the retriever and reader

+ 2) The approach is not domain-specific, but can be
easily adapted to different use cases and models
can be trained on a specific dataset to achieve
better performance.

+ 3) Using an instruction fine-tuned language
model as a reader component is effective for ex-
tracting a unique answer from multiple docu-
ments

2. Related Works

Modern OpenQA systems use a “Retriever-Reader” ap-
proach: a retrieval component finds relevant passages
from a large corpus and a reader extracts the answer
using machine reading comprehension. As far as we
know, one of the earliest systems using this approach
was suggested by Chen et al. in 2017 [13] with a docu-
ment retrieval Question Answering (DrQA) system using
a tf-idf retriever and recurrent neural network reader to
match similar documents related to a query and deliver
the final answer. The positive outcomes of this approach
have resulted in an emphasis on the connection between
OpenQA performance and the retriever’s capacity to lo-
cate pertinent text excerpts for a given query. As a result,
Wang et al. [7] added a “ranker” to improve retrieved
outcomes by ranking passages. In 2019, several works
proposed improvements to this architecture. Wei Yang
et al. [6] suggested a system consisting of an Anserini
retriever, a bag-of-words retriever that directly identifies
text segments from Wikipedia, and a BERT reader to per-
form extractive QA by selecting the text span where the
answer can be found. Seo et al. proposed a Dense-Sparse
Phrase Index [2] as a retriever based on a transformer
BERT embedding of each sentence to encode syntactic
or semantic information of the phrase with respect to its
context. This leads to an improvement in efficiency and
performance compared to the previous system DrQa[13],
suggesting that using the most recent transformer model
[14] is better for a retriever system. In this scenario, in
the 2020 Guu et al. introduced REALM [15], a novel
pre-trained BERT language model enhanced with exter-
nal knowledge from a retriever. The paper shows how
this improvement is mainly attributed to a pre-training
task on a large text corpus, indicating that large lan-
guage models could perform well on OpenQA. Language

Internal
Documents Corpus

wra e
8
\

‘OPEN DOMAIN QA'

QUESTION

RETRIEVER jouesTon

N
[Ny Y P—
RETRIEVAL | [> Sentence
svsTem Transformers

Language
Models

E:> Answer

Similarity Search
(Faiss)

2

(FLANTS)

Question

)

Figure 1: An overall schema of the proposed system. On the
left side is shown the information retrieval system respon-
sible for collecting information from different sources, both
internal and external, to create a complete corpus of input
documents. On the right side is depicted the OpenQA system,
with the “retriever-reader” architecture where the retriever
component gathers relevant documents related to an input
question, and the reader component generates a response
based on the retrieved contexts.

models have also demonstrated good performance in
open-domain question answering by using stored infor-
mation from pre-trained phase, without accessing any
external knowledge or context [16]. However, they re-
veal that such language models can only perform as well
as recent OpenQA systems if they are sufficiently large
(over 11 billion parameters), making it difficult to con-
stantly update them with new knowledge. Taking this
into account, Izicard et al. in 2021 put forth a retrieval-
reader approach [4] that utilizes a retriever similar to the
previous DrQA[13], followed by a reader made up of a
generative model T5 that is instruction-tuned on several
tasks, including question answering. Recently, in 2022,
an other OpenQA system has been proposed using a re-
triever based approach, followed by powerful generative
language models such as BART [5], reaching the current
state-of-the-art on OpenQA benchmarks !.

3. Method

Our proposed OpenQA system involves a multi-stage
retriever that uses an information retrieval system to
collect a large corpus from open-source and internal doc-
uments. Then, in the second stage, an index is created
to enable the efficient search of pertinent documents di-
viding each document into multiple text chunks, and
then converting them into semantic vectors using mod-
ern Sentence Transformers models [17]. Each retrieved
text is ultimately sent to a multi-stage reader that uses
a fine-tuned Flan-T5 [12] instruction model to first get
multiple articulated answers and, then, aggregating them

'https://paperswithcode.com/sota/
open-domain-question-answering-on-kilt-2

https://paperswithcode.com/sota/open-domain-question-answering-on-kilt-2
https://paperswithcode.com/sota/open-domain-question-answering-on-kilt-2

document_1

RETRIEVER

text_1 ~_

text 2 — 3
-

=

text_n

ats v .
Top_k Retrieval text

Text Splitting _‘z
Similarity Search e

(Faiss)

T

document_2

Embedding

Sentence
Transformers

document_n

Figure 2: A full overview of the retriever system. The input
document from the corpus is divided into several text chunks,
which are subsequently transformed into vectors preserving
their semantic meaning. When a question is presented, it
is initially converted into a vector, followed by conducting a
semantic search to identify the most similar text chunks.

together creating the final answer. The Figure 1 outlines
our system break it down into two main components:
the information retrieval system and the OpenQA system
itself.

The information retrieval system gathers data from
internal and external sources. We simply discuss how
the system was developed since our work concentrates
on the Al core. The information retriever is an external
system containerized with Docker, accessible by FastAPI
2 and able to scrape various document kinds (pdf, html,
word, etc.) and recover a full corpus of documents from
the web. Specifically, we implemented different scrapers
considering different sources (e.g., google.com) and using
the Scrapy * framework. Using the information retriever
for evaluation would have been problematic due to the
constantly changing document corpus. To ensure a better
evaluation of the question answering task, we kept the
document corpus fixed, as explained in the Evaluation
section.

The OpenQA system can handle natural language
queries and provide answers based on a given corpus of
text documents from the previous information retrieval
system. In this paper, we will focus solely on this sys-
tem, as it uses artificial intelligence models and can be
compared to the “retriever-reader” architecture used by
modern OpenQA systems. The specific retriever and
reader implementations are detailed below.

3.1. Retriever

The retriever identifies relevant documents from a large
corpus based on an input question. It’s main objective
is to filters out irrelevant texts, as applying question-
answering models directly to each input document would

*https://fastapi.tiangolo.com/
Shttps://scrapy.org/

require excessive computation and ultimately decrease
performance. Figure 2 illustrates the retriever compo-
nent as divided into three main parts further detailed:
text splitting, which divides long documents into smaller
parts using a sentence-based approach; embedding, which
uses an Al model to convert each text into a semantic vec-
tor; and top_k retrieval, which retrieves the top_k texts
most similar to the input question based on the calcu-
lated similarity between the question and each document
vector.

3.1.1. Text splitting

To create numerical vectors that represent text seman-
tics, we used transformer models [14] based on Seo et al’s
approach [2]. Because these models have a maximum
input length, longer texts must be divided into smaller
parts, which can disrupt meaning and make analyzing
long-term dependencies difficult. While the authors of
the Dense Phrase Index divided each text into phrases [2],
we grouped sentences until the maximum input length
was exceeded. To split text into smaller parts for deep
learning models, we use Python’s sentence-splitter li-
brary %. Sentences are grouped together until the tok-
enized maximum input length is reached, creating one
chunk. The second chunk keeps 50% of the sentences
from the first chunk and adds more until the maximum
input length is reached. This process is repeated for the
whole document. Although it generates more chunks
and redundancy, it helps preserve context.

3.1.2. Embedding

We use a pre-trained Sentence Transformer model [17]
to encode text into a fixed-length vector. These models
are based on a BERT Transformer [18] and fine-tuned
for asymmetric semantic search. The msmarco-distilbert-
base-v4 model by Hugging Face ° has shown the best
generalization ability, as it was trained on the msmarco
corpus ° that includes Bing questions and answers. We
did not re-train a new model for a specific dataset in this
first phase, as we aimed to obtain a generic system that
performs well for different types of documents. There-
fore, we used the sentence embedding model with frozen
weights to encode each document and the input question.

3.1.3. Top_k retrieval

In order to find the most similar documents to a given
query, a numerical vector from the query is created and
then the cosine similarity metric is applied to identify the
most similar documents from the corpus. To speed up

*https://github.com/mediacloud/sentence-splitter

Shttps://huggingface.co/sentence-transformers/
msmarco-distilbert-base-v4

®https://microsoft.github.io/msmarco/

https://fastapi.tiangolo.com/
https://scrapy.org/
https://github.com/mediacloud/sentence-splitter
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v4
https://microsoft.github.io/msmarco/

the search, the Faiss library 7 from Meta is used, which
is efficiently implemented in C and allows for faster re-
trieval of the top_k most similar documents based on
a cosine similarity metric. Once this step is completed,
the semantic search is concluded, and the top_k texts
relevant to the specified question are returned.

3.2. Question answering

The system’s objective is to answer a specific question
using a given list of input text. The answer can be lo-
cated within one or multiple input texts or may not be
present. The system generates an answer considering
all the relevant texts retrieved, and if it is not present,
will return an empty answer. Unfortunately, we can-
not combine all the texts due to the model’s maximum
input length constraint, and we cannot increase the max-
imum input length by opting for a bigger model, as this
would sacrifice the system’s efficiency and require non-
commodity hardware. Therefore, we consider each text
as a separate input because the retriever’s previous split-
ting process ensured that the maximum length of each
text was not exceeded. To perform the task, we chose
a sequence-to-sequence model like Glass et al. in their
work [5]. However, our choice fell on FLAN-T5-large
[12] released on Huggingface ® as it was fine-tuned on
several instructions allowing to handle various natural
language processing tasks and even tasks that it has yet to
be specifically trained for. As shown in figure 3, the flan-
t5 model is utilized twice with two distinct instructions:
one for generative question answering, which extracts a
detailed response from the given text, and the other for
an answer aggregation task, which extracts a single final
answer from the previous responses.

3.2.1. Generative question answering

The model generates and explains an answer for each
input text. In order to simplify the next step of aggre-
gating different answers, it is essential to provide some
reasoning in addition to the answer during this phase.
After experimenting with various instructions, we identi-
fied a good prompt for the generation model: ”Answer to
the following question if it is possible, otherwise
$context:...$question:...Give the
rationale before answering”

At each step, the $context is replaced with text and
the $question with the real question, resulting in a com-
prehensive input prompt for the language model. The
generation was performed using a beam search decoding
with 5 beams, a temperature setted to 0.4 and a fixed
number of new tokes equals to 100 as we are interested
in a meaningful sentence generation.

return None.

"https://github.com/facebookresearch/faiss
8https://huggingface.co/google/flan-t5-large

Cn.pm for each chunk_i 1=1,.., top_k)

[
, PrOMPT
et 2 [g }» LANGUAGE
; . | frveris e lowg et MODEL P
H s possible otherwise return None. 4.1 ﬂﬂﬂﬂﬂﬂﬂ
et 'tw « [scontext $question. Give the .

T ey
mor

& tapmtop kv

Question

PROMPT
LANGUAGE
Answer with as few words as MODEL

. possible precisely to the

question. $context $question

s e 2)

> Post-processing
(FLAN-TS)

Figure 3: The full question-answering pipeline. Firstly, the
input prompt of the language model is utilized to input both
the text chunk and the associated question to generate a well-
articulated response. Secondly, all the generated answers are
aggregated into a single context, and the language model is
then prompted to generate a singular answer that takes into
account all of the generated responses.

3.2.2. Answer aggregation

This step will combine the previous answers into a
single response. To do this, we will concatenate all
the answers together to create a single input text for
the model. Although the procedure is similar to the
previous step, the instructions differ as we require
a precise and singular response. In this case, we
have identified a prompt for the generation model:
“Answer with as few words as possible precisely to
the question.$context:... $question:...answer:... ”

At each step, the $context is replaced with the con-
catenation of all the previous answers and the $question
with the real question. The generation was performed
using a greedy decoding as we are more interested in a
small answer.

3.2.3. Post-processing answer

During the system evaluation phase, a response is con-
sidered correct if it matches exactly one of the plausible
ones. Therefore, this phase performs simple operations
to clean up the response as much as possible: conversion
to lowercase, removal of punctuation and white spaces.

4. Experiments

In this section, we report empirical evaluations of our
open domain QA system. All the experiments reported
concern only the Open domain QA system, and not the
information retrieval system, which aims to generate
a collection of textual documents from diverse sources,
whether open or internal. As the resulting corpus varies
depending on the specific use case (for internal pur-
poses, internal documents supplemented with selected
web news are preferred, whereas for general tasks, a

https://github.com/facebookresearch/faiss
https://huggingface.co/google/flan-t5-large

Reading comprehension QA F1 EM QA pairs
SQUADv2 70.08 64.19 11.873
TriviaQA rc web dev 7595 68.73 68.617
Open-domain generative QA F1 EM QA pairs
TriviaQA unfiltered web dev 66.32 5813 131.993
TriviaQA rc web dev 70.85 63.14 68.617

Table 1

The results of the OpenQA system. The Exact Match (EM) and
micro-F1 scores are provided for each dataset, alongside the
count of question-answer pairs utilized within each dataset.

Wikipedia dump alone may suffice), the input corpus of
documents was fixed to evaluate the OpenQA system.

4.1. Datasets

We consider the following datasets.

SQUADv2 [19] combines the 1,000,000 questions from
SQUAD1.1with approximately 50,000 unanswerable ques-
tions generated by crowd workers to resemble answer-
able questions. The SQUADv2 dataset, comprising a set
of questions related to a text passage, is better suited for
a reading comprehension task where we need to extract
the answer from the passage.

TriviaQA [20] is a reading comprehension dataset
containing over 650K question-answer-evidence triples
that were originally scraped from the Web. TriviaQA is
more complicated than SQuAD since answers may not be
immediately derived by span prediction and the context
is sometimes extensive (on average, each document con-
tains 6.580 word pieces). The dataset ° includes almost
487K documents, with 413K from the web domain and
74K from Wikipedia.

4.2. Evaluation

In order to evaluate the system, we used the evidence
documents provided by the TriviaQA dataset as our input
corpus. We then measured the performance of the system,
as described by Rajpurkar et al. [19], using two standard
metrics. The exact match metric (EM), which measures
the percentage of predictions that match any one of the
ground truth answers, and the micro F1-Score (F1), which
evaluates the average overlap between the prediction
and ground truth answer. Our system was tested in two
scenarios:

Open-domain generative QA: The system must re-
trieve the correct answers from a corpus of almost 487K
documents from, TriviaQA dataset, in response to each
question.

*https://nlp.cs.washington.edu/triviaqa/

Reading comprehension QA: The system is required to
extract the correct answer from an average of six input
documents, which exclusively consist of evidence docu-
ments provided by TriviaQA for each question. Although
the input corpus is smaller, this task is more challenging
than a standard reading comprehension task, as there are
no designated passages and the answer could potentially
be in any of the input documents.

4.2.1. Reading comprehension QA

To evaluate machine reading comprehension, we used
the SQUADv2 and rc TriviaQA datasets since they are
commonly used for this purpose. We used the passages
from the Squad dataset and the collection of evidence doc-
uments from TriviaQA for each question, so performance
is mostly influenced by the question answering system.
The table 4.1 shows our results for both datasets. Our
system does not achieve state-of-the-art results '° on the
SQUADv2 dataset, but this is not our main objective. We
are not aiming to excel on a specific dataset or machine
reading comprehension task where the passage is already
provided, and the system must retrieve the answer. Con-
sequently, models that are trained on SQUADv2 dataset
for such a specific task tend to perform much better. On
the other hand, the results related to the TriviaQA rc web
dev dataset are comparable to those found in the state
of the art !, excluding those based on large language
models (billions of parameters) as our model has 750M
parameters. Nevertheless, a more careful and specific
evaluation should be carried out for the other existing
systems to assess whether they have been tested in the
same scenario, especially in a zero-shot regime.

4.2.2. Open-domain QA

For this evaluation, we used the entire TriviaQA doc-
ument corpus, consisting of approximately 487K docu-
ments. However, this fixed input corpus is not compara-
ble to open-domain QA systems that typically use larger
corpora, such as Wikipedia dumps [4]. The performance
shown in the table 4.1 on the TriviaQA unfiltered web
dev dataset is inferior to that of more modern open QA
systems '2. This is probably due to the fact that in this
initial evaluation of the system, we considered a fixed
initial corpus, and the unfiltered TriviaQA dataset does
not guarantee that the answer is present in the docu-
ments provided, so in many cases, the system may not be
able to find the answer. Finally, the table 4.1 also reports
the performance on the TriviaQA rc web dev dataset for
this open domain scenario. These performances can be

Ohttps://paperswithcode.com/sota/question-answering-on-squad20

"https://paperswithcode.com/sota/question-answering-on-triviaga

https://paperswithcode.com/sota/
open-domain-question-answering-on-kilt-2?metric=EM

https://nlp.cs.washington.edu/triviaqa/
https://paperswithcode.com/sota/question-answering-on-squad20
https://paperswithcode.com/sota/question-answering-on-triviaqa
https://paperswithcode.com/sota/open-domain-question-answering-on-kilt-2?metric=EM
https://paperswithcode.com/sota/open-domain-question-answering-on-kilt-2?metric=EM

compared with the previous ones in the table 4.1, and as
expected, the F1-score decreases by 5%, as the retriever
is more deceived by the large number of documents in
the corpus.

5. Conclusion

In this paper, we investigate a method to develop an
openQA system, which relies on retrieving documents
containing information relevant to the query and extract-
ing the answer using an instruction fine-tuned language
model, following a “zero-shot” approach. Despite its con-
ceptual simplicity, we show that combining a “zero-shot”
and a prompt engineering strategy is a practical and
promising approach to building a flexible open-domain
question-answering system. In future work, we would
like to compare our whole system, including information
retrieval, to the state-of-the-art.

References

[1] D. Chen, A. Fisch, J. Weston, A. Bordes, Reading
Wikipedia to answer open-domain questions, in:
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers), Association for Computational
Linguistics, 2017, pp. 1870-1879.

[2] M.]. Seo, J. Lee, T. Kwiatkowski, A. P. Parikh,
A. Farhadi, H. Hajishirzi, Real-time open-domain
question answering with dense-sparse phrase index,
CoRR abs/1906.05807 (2019).

[3] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu,
S. Edunov, D. Chen, W. tau Yih, Dense passage re-
trieval for open-domain question answering, 2020.

[4] G.Izacard, E. Grave, Leveraging passage retrieval
with generative models for open domain question
answering, in: Proceedings of the 16th Confer-
ence of the European Chapter of the Association
for Computational Linguistics: Main Volume, As-
sociation for Computational Linguistics, 2021, pp.
874-880.

[5] M. Glass, G. Rossiello, M. F. M. Chowdhury, A. R.
Naik, P. Cai, A. Gliozzo, Re2g: Retrieve, rerank,
generate, 2022.

[6] W.Yang, Y. Xie, A.Lin, X. Li, L. Tan, K. Xiong, M. Li,
J. Lin, End-to-end open-domain question answering
with bertserini, CoRR abs/1902.01718 (2019).

[7] S. Wang, M. Yu, X. Guo, Z. Wang, T. Klinger,
W. Zhang, S. Chang, G. Tesauro, B. Zhou, J. Jiang,
R3: Reinforced reader-ranker for open-domain
question answering, CoRR abs/1709.00023 (2017).

[8] P.Qi, H. Lee, O. T. Sido, C. D. Manning, Answering
open-domain questions of varying reasoning steps
from text, 2021.

[9] Y. Mao, P. He, X. Liu, Y. Shen, J. Gao, J. Han,
W. Chen, Rider: Reader-guided passage reranking
for open-domain question answering, 2021.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah,
J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever,
D. Amodei, Language models are few-shot learners,
2020.

S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis,
H. Hajishirzi, L. Zettlemoyer, Rethinking the role of
demonstrations: What makes in-context learning
work?, 2022.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay,
W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma,
A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen,
A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robin-
son, D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao,
Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean,
J. Devlin, A. Roberts, D. Zhou, Q. V. Le, J. Wei, Scal-
ing instruction-finetuned language models, 2022.
D. Chen, A. Fisch, J. Weston, A. Bordes, Reading
wikipedia to answer open-domain questions, CoRR
abs/1704.00051 (2017).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, At-
tention is all you need, 2017.

K. Guu, K. Lee, Z. Tung, P. Pasupat, M.-W. Chang,
Realm: Retrieval-augmented language model pre-
training, 2020.

A. Roberts, C. Raffel, N. Shazeer, How much knowl-
edge can you pack into the parameters of a language
model?, in: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Association for Computational
Linguistics, 2020, pp. 5418-5426.

N. Reimers, I. Gurevych, Sentence-bert: Sentence
embeddings using siamese bert-networks, CoRR
abs/1908.10084 (2019).

J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert:
Pre-training of deep bidirectional transformers for
language understanding, 2019.

P.Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, SQuAD:
100,000+ Questions for Machine Comprehension of
Text (2016).

M. Joshi, E. Choi, D. Weld, L. Zettlemoyer, Trivi-
aQA: A large scale distantly supervised challenge
dataset for reading comprehension, in: Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Association for Computational Linguistics,
2017, pp. 1601-1611.

(10]

(12]

	1 Introduction
	2 Related Works
	3 Method
	3.1 Retriever
	3.1.1 Text splitting
	3.1.2 Embedding
	3.1.3 Top_k retrieval

	3.2 Question answering
	3.2.1 Generative question answering
	3.2.2 Answer aggregation
	3.2.3 Post-processing answer

	4 Experiments
	4.1 Datasets
	4.2 Evaluation
	4.2.1 Reading comprehension QA
	4.2.2 Open-domain QA

	5 Conclusion

