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Abstract
Artificial Intelligence (AI) embraces techniques and algorithms that, over the years, have been applied to different fields
and domains. The complexity and rise of data in healthcare have prompted research into exploring the application of AI
techniques in the medical field, resulting in viable and promising approaches to sustain innovation, early diagnosis and
support cures. In this work, we briefly report some of the projects we carried out in this domain at the University of Naples
Federico II node of the CINI-AIIS Lab, focusing on the main aims and contributions.
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1. Introduction
Artificial intelligence (AI) is the simulation of human in-
telligence in machines to perform tasks like abstraction
and problem-solving. Healthcare is one of the domains
that has been impacted by AI, and it is considered one
of the most promising applications of AI. Indeed, AI in
healthcare can be used to support patients and physicians,
as well as to transform patient care and administrative
processes. Also, AI-powered systems can analyze patient
data to identify potential health risks and help physicians
make more accurate diagnoses, which is useful in situ-
ations where patients have complex medical conditions
or multiple medical conditions.

AI applications are not limited to a specific technology,
but rather a collection of them. Machine Learning (ML)
is a subset of AI that includes the set of algorithms that
provides the systems with the ability to automatically
learn and improve from experience. In healthcare, the
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most common application of traditional ML is precision
medicine- predicting what treatment protocols are likely
to succeed on a patient considering his/her attributes
and the treatment context. The great majority of ML
and precision medicine applications require a training
dataset for which the outcome variable (i.e. onset of dis-
ease) is known (this is called supervised learning.). Deep
Learning (DL) is a family of ML algorithms that use Arti-
ficial Neural Networks (ANNs) to simulate the structure
of the human brain. DL approaches have gained popu-
larity in pattern recognition tasks, particularly in image
processing, thanks to Convolutional Neural Networks
(CNNs), a type of DL architecture that can learn the best
set of features for a given task. As a consequence, DL
is increasingly being used in healthcare, particularly in
medical image analysis and radiomics to extract clinically
relevant features from images beyond what can be per-
ceived by the human eye. However, medical imaging is
not the only domain in which DL is being proven useful.
Making sense of human language has indeed been one of
the main goals of AI researchers. Natural Language Pro-
cessing (NLP), strongly based on ML and DL techniques,
includes applications such as speech recognition and text
analysis. In healthcare, the dominant applications of
NLP involve the creation, understanding and classifica-
tion of clinical documentation and published research.
Moreover, NLP systems can analyse unstructured clini-
cal notes on patients, prepare reports, transcribe patient
interactions and conduct conversational AI.

It should be clear that thanks to its multitude of appli-
cations, AI plays a key role in healthcare. In this paper,
we will illustrate some of the projects exploiting AI tech-
niques in the medical field carried out at the University of
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Naples Federico II node of the CINI-AIIS Lab, highlighting
their innovative aspects and contributions.

2. Multi-task BioNER
Biomedical Named Entity Recognition (BioNER) involves
identifying mentions of biomedical entities (e.g. disor-
ders, drugs, genetic information) from unstructured text
data and is a fundamental step in many downstream
tasks, such as the development of chatbots, Q/A systems
or knowledge graphs. BioNER systems have evolved
over time through deep learning techniques based on
Bidirectional Long-Short Term Memory networks [1]
and character-level features of words [2, 3]. Large-scale
language models pre-trained on biomedical corpora [4, 5]
have recently shown potential in enhancing the state-of-
the-art. However, developing a BioNER system is still
difficult due to the high frequency of synonyms, alternate
spellings and polysemous words. Furthermore, due to
the privacy concerns related to the healthcare domain,
there is a lack of annotated data, and inference time
and memory constraints arise when embedding mod-
els in clinical workflows. When building BioNER models,
researchers are often forced to integrate datasets from
different sources that include annotations for different
entity types.

To handle these issues without having to design, train
and deploy a single Transformer-based BioNER model for
each available dataset — which is extremely impractical
due to their constraining memory requirements and to
the problems which would arise due to overlapping pre-
dictions, e.g. two models assigning two different entity
types to the same mention —, we propose TaughtNet [6],
a multi-task framework based on knowledge distillation
that fine-tunes a single transformer architecture to recog-
nize multiple entity types. TaughtNet produces a single,
independent Student Transformer model that is capable
of recognizing a variety of entity types. The proposed
method is compared to other state-of-the-art approaches,
and the results show that TaughtNet achieves higher
performance across multiple benchmark datasets.

We show an overview of our framework in Figure 1.
The methodological workflow assumes that a set of
single-task Teachers represented by their parameters
𝜃1𝑇 , 𝜃

2
𝑇 , . . . , 𝜃

𝑛
𝑇 (𝑛 being the number of teachers) has al-

ready been trained, and can be summarized with the steps
listed below:

1. Datasets aggregation. The available single-entity
datasets are merged together to build an aggre-
gated multi-entity dataset 𝒟𝑆 .

2. Retrieval of Teacher predictions. Each sample in
𝒟𝑆 is provided to each teacher as input and the
resulting output distributions are stored.

. . .
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Figure 1: Overview of the training framework for TaughtNet.
I) multiple datasets are combined to create a larger one called
𝒟𝑆 , to serve as a reference during the Student’s training; II),
the Teacher models make predictions for each sample in 𝒟𝑆 ,
and their output distributions are combined to create a new
corpus; III), the Student is trained using two loss components,
one based on the Teachers and the other based on the ground
truth data from 𝒟𝑆 .

3. Distributions aggregation. A single output dis-
tribution is generated by integrating the output
distributions from each teacher.

4. Student Training. A Student model with parame-
ters 𝜃𝑆 is trained by taking both the ground truth
and the knowledge of Teachers into considera-
tion. Specifically, we define the loss function as
follows:

ℒ(𝒟𝑆 ; 𝜃𝑆 , 𝜃
1
𝑇 , . . . , 𝜃

𝑛
𝑇 ) =

𝜆 · ℒ𝐾𝐷(𝒟𝑆 ; 𝜃𝑆 , 𝜃
1
𝑇 , . . . , 𝜃

𝑛
𝑇 )+

+ (1− 𝜆) · ℒ𝐺𝑇 (𝒟𝑆 ; 𝜃𝑆), (1)

where ℒ𝐾𝐷 and ℒ𝐺𝑇 are the knowledge distilla-
tion and ground-truth loss, respectively, while 𝜆
is a hyperparameter controlling their weight on
the overall loss ℒ.

In our experiments, we show that not only does Taugh-
tNet allow to recognize multiple biomedical entity types
while ensuring state-of-the-art performance, but it also
can be applied to smaller and lighter students which can
be more easily deployed on hardware with limited re-
sources w.r.t. heavy transformer models.

3. The KFM
The scanning process of parasite eggs contained in faecal
samples of farm animals is a common task in the veteri-
nary medicine domain which can be automated thanks
to Convolutional Neural Networks (CNNs) for Object
Detection. The Kubic FLOTAC Microscope (KFM) is a com-
pact, low-cost, versatile, and portable digital microscope



designed to autonomously analyze faecal specimens pre-
pared with FLOTAC or Mini-FLOTAC, in both field and
laboratory settings, for different parasites and hosts [7].
Having been proven to acquire images comparable to
the view provided by traditional optical microscopes, the
KFM can autonomously scan and acquire images in a few
minutes, allowing the operator to focus on a different task.
The KFM is composed of electro-mechanical components
which enable both manual and automatic FLOTAC/Mini-
FLOTAC reading discs 3D scans, a firmware that allows
3D movements of the camera, remote interactions, and
scans retrieval, and external agents which enable users to
connect with the KFM hardware (KFM web interface and
KFM app) and to process scans for parasite eggs detection
(KFM AI server). The device can be remotely controlled
(the optical part with LED and digital camera and tray) by
any user with external devices, like smartphones, tablets
or PCs, through a dedicated web interface and app, mak-
ing it possible to easily manage multiple KFMs with a
single device, start several scans in parallel and switch
from one KFM to another effortlessly. Images collected
with the KFM can be stored in the KFM AI server and/or
transmitted to diagnostic hubs in order to have a quick
diagnosis or a parasitological consultation. The whole
system flow is described in Figure 2.

Figure 2: A schematic picture of the working flow of the
KFM system, composed of the hardware, the AI server and
the client app interface.

4. MGMT Promoter Methylation
Identification

One of the most aggressive malignant tumours is the
Glioblastoma Multiforme (GBM), which is known for
its extremely low survival rate. Even if alkylating
chemotherapy is typically adopted to fight this tu-
mour, sometimes it may result inefficient since the
O(6)-methylguanine-DNA methyltransferase (MGMT)
enzyme repair abilities counter the cytotoxic effects of
alkylating agents, preventing the tumours cells destruc-
tion. However, MGMT promoter regions may be subject
to a phenomenon called methylation, a biological process
preventing MGMT enzymes from destroying the alkyl

agents [8]. Consequently, the presence of the methylation
process in GBM patients’ brains can be associated with a
predictive biomarker of response to therapy and a prog-
nosis factor [9]. Unfortunately, identifying methylation
signs is not trivial, and often requires time-consuming,
expensive and invasive procedures. In a recent work
[10], we propose to face MGMT promoter methylation
identification by analyzing Magnetic Resonance Imaging
data with a Deep Learning based approach, consisting
of a CNN operating on suspicious regions on the FLAIR
series, which are pre-selected through an unsupervised
Knowledge-Based filter leveraging both FLAIR and T1-
weighted series.

Given the absence of segmentation masks, determin-
ing somehow the ROI representing the tumour region
is a crucial and critical step. We proposed to select the
area of interest in an unsupervised manner, leveraging
past medical experience [11] for tumour recognition. In
particular, we took advantage of simple characteristics
of lesioned tissues for each considered series: in T1-W
slices, tumour areas have pixels whose intensity is higher
than cerebrospinal fluids (CSF) but lower than any other
kind of tissue, while in FLAIR slices, pixels with the high-
est intensity belong to the tumour region. Leveraging
these characteristics, it is possible to pre-select poten-
tially lesioned tissues from volumes of these series by
applying a threshold on the histogram of the signal inten-
sities occurrences. The output of this process is a mask
consisting of huge clusters, in case of tumour presence,
corresponding to the ROIs, representing the potentially
lesioned areas, with little outliers, or of sparse outliers
in the opposite case, as shown in Figure 3. The resulting
ROI is used to select from the FLAIR slices the portion
of the image to be considered by the actual methylation
detection module. We chose the FLAIR sequence for the
good performance shown in the literature for related
tasks [12]. The proposed module aims to compensate for
the lack of segmentation masks with an early fusion tech-
nique, where information coming from multiple sources
is merged to highlight different characteristics [13].

We adopted a CNN to face the task of MGMT promoter
methylation identification. In particular, we built a se-
quential network from the ground called MGMTClassifier,
which is composed of seven Convolutional Blocks and
two fully connected layers separated by Rectified Linear
Unit (ReLU) as an activation function. These Convolu-
tional Blocks consist of a convolutional layer, followed
by batch normalization and ReLU function. To reduce
the number of training parameters and avoid overfitting
at the same time, we adopt depth-wise separable convo-
lution [14]. This simple but effective DL-based approach
is able to outperform state-of-the-art solutions while con-
sisting of less than 0.29% of their parameters (about 10
million of typical CNNs versus 40561 of the proposed
approach).



Figure 3: An illustrative example of the results produced by
the ROI selection process on two patients: if the slice contains
a tumour (top row) a huge cluster is generated in the pre-
selection mask, while in the opposite case (bottom row) the
mask contains sparse outliers.

5. Axillary Lymph Node Status
Assessment in Breast Cancer

Among women, breast cancer (BC) is the most frequent
form of tumour, and the axillary lymph node status
(ALNS) is considered a crucial indicator, representing
one of the most influencing and independent prognostic
factors. Magnetic Resonance Imaging (MRI) is always
performed for BC stage definition and plays a key role in
primary tumour examination. The most important MRI
sequence is the dynamic-contrast enhanced (DCE) that,
thanks to the high contrast resolution, provides informa-
tion about the tumour morphology, size, and perfusional
behaviour allowing the distinction between benign and
malignant lesions, the prediction of biological aggressive-
ness and the prognostic evaluation. The T2-weighted
(T2) imaging is a standard component of breast MRI ex-
ams, most prominently utilized for the identification of
cysts, allowing a better depiction of lesion morphology
and perifocal or prepectoral edema within the breast.
Diffusion-Weighted Imaging (DWI) is another sequence
acquired during the MRI exam. It reflects the mobility
of water molecules diffusing in tissues, revealing tissue
organization at the microscopic level and providing com-
plementary information for lesion assessment in compar-
ison with the DCE scan.

Assessment of ALNS indicates inherent primary tu-
mour properties, whose examination enables the discov-
ery of minimally invasive solutions for the sentinel node
biopsy currently being utilized. In [15], we only focused
on the DCE sequence to analyze different tumour bound-
ing options for the prediction of ALN status. In particular,
the work described in [15] evaluates how the amount of
the included non-tumour tissue impacts the assessment

by exploiting CNNs in the solution. On the basis of the re-
sults reported in [15, 16], we aim to include multiple and
complementary sequences acquired during the MRI exam,
namely DCE, T2 and DWI, proposing an approach based
on multimodal learning, where heterogeneous sources of
data are fused to provide a shared representation. More-
over, we will focus on a methodology based on intermedi-
ate fusion, leveraging the ability of deep neural networks
to provide an effective high-level representation of the in-
put and taking into account both MR images and clinical
information.

6. Assessing Brain Health with the
Brain-Age Paradigm

In the search for objective imaging-derived markers of
brain health and pathology, the brain-age paradigm has
emerged as a promising approach. Briefly, machine learn-
ing methods are used to model chronological age as a
function of structural brain MRI scans in healthy peo-
ple, and the resulting model of ‘normal’ brain ageing is
used for neuroimaging-based age prediction in unseen
subjects [17]. The extent to which each subject devi-
ates from healthy brain-ageing trajectories, expressed
as the difference between predicted and chronological
age (brain-predicted age difference, brain-PAD), has been
proposed as an index of structural brain health, sensitive
to brain pathology in a wide spectrum of neurological
and psychiatric disorders [18]. We applied the brain-
age paradigm to a target clinical population of patients
with Fabry Disease (FD), a rare genetic multisystemic
disorder that also involves the brain but lacks quantita-
tive neuroimaging biomarkers. We selected MRI scans
of FD patients and healthy controls from the same In-
stitution. The Fabry stabilization index (FASTEX) was
recorded as a measure of multi-organ FD severity. We
trained and evaluated a model of healthy brain ageing on
a large dataset (total N = 2160; male/female = 1293/867;
mean age = 33 years, age range = 4-86) comprising 3D
T1-weighted brain scans of healthy subjects from 8 pub-
licly available sources. Our brain-age model was based
on the DenseNet264 architecture [19] adapted from the
implementation available at Project MONAI 1 by adding
a linear regression layer for the prediction of a contin-
uous variable and a 0.2 dropout rate after each dense
layer to reduce the risk of overfitting. Mean absolute
error (MAE) and coefficient of determination (R2) were
used to quantify model performance. The final model
was applied to the internal cohort of FD patients and
healthy controls to generate brain-predicted ages and cor-
responding brain-PAD values (Figure 4). Lastly, within a
linear modelling framework, brain-PAD was tested for
1https://docs.monai.io/en/stable/_modules/monai/networks/nets/
densenet.html
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Figure 4: The model with the lowest validation loss is chosen,
and performance is measured on the previously unseen cases
of the test set (left). The final model is also applied to the
target clinical population (right), composed of the internal
cohort of FD patients and healthy controls, to generate brain-
predicted ages and corresponding brain-PAD values.

demographics-adjusted associations with a diagnostic
group (FD vs healthy controls) and FASTEX score.

We selected 52 FD patients (40.6 ± 12.6 years; 28 fe-
males) and 58 healthy controls (38.4 ± 13.4 years; 28
females). The brain-age model achieved accurate out-
of-sample performance (MAE = 4.01y, R2 = 0.90). FD
patients had significantly higher brain-PAD than healthy
controls (estimated marginal means: 3.1 vs -0.1, p=0.01),
and brain-PAD was also associated with multi-organ clin-
ical severity as assessed with the FASTEX score (B = 0.10,
p = 0.02). In conclusion, using deep learning and the
brain-age paradigm, we found that patients with FD have
older-appearing brains compared to healthy controls.
The gap between brain-predicted and chronological age
correlates with multi-organ disease severity, potentially
representing a novel quantitative imaging biomarker of
brain involvement in FD.

7. Histopathological images Deep
Feature representation for CBIR
in smart PACS

Pathological Anatomy is moving toward computerizing
processes mainly due to the extensive digitization of his-
tology slides that resulted in the availability of many
Whole Slide Images (WSIs). Their use is essential, espe-
cially in cancer diagnosis and research, and raises the
pressing need for increasingly influential information
archiving and retrieval systems. Picture Archiving and
Communication Systems (PACSs) represent an actual
possibility to archive and organize this growing amount
of data. The storage, retrieval, and analysis of biomedical
images are essential tools of Picture Archiving and Com-
munication Systems (PACSs). The same ones are also
useful in related contexts such as computational pathol-
ogy (CPATH), where their diffusion is still limited. A
weakness of traditional PACSs concerns the capability to

perform a query only employing metadata. The design
and implementation of a robust and accurate method-
ology for querying them in the pathology domain us-
ing a novel approach are mandatory. In particular, the
Content-Based Image Retrieval (CBIR) methodology can
be involved in the PACSs using a query-by-example task.
In this context, one of many crucial points of CBIR con-
cerns the representation of images as feature vectors,
and the accuracy of retrieval mainly depends on feature
extraction. In order to allow intelligent multimodality
query posing [20], Content-Based Image Retrieval (CBIR)
techniques can be used [21]. The feature extraction meth-
ods and similarity functions are crucial aspects of a CBIR
[22]. Over the years, different approaches for image re-
trieval have been proposed, also in the computational
pathology field using different techniques such as deep
learning [23]. Thus, our study explored different repre-
sentations of WSI patches by features extracted from pre-
trained Convolution Neural Networks (CNNs). In order
to perform a helpful comparison, we evaluated features
extracted from different layers of state-of-the-art CNNs
using different dimensionality reduction techniques. Fur-
thermore, we provided a qualitative analysis of obtained
results. To accomplish a more precise analysis, we ana-
lyzed in depth all the best CNN configurations using a
confusion matrix. We intend to understand which dataset
category is not correctly retrieved. According to Figure 5,
it is clear that the queries using benign examples are not
correctly retrieved. They are often misunderstood with
in situ images and normal ones. Furthermore, normal
and invasive queries are usually recognized with good
precision value.

P@5 P@10 P@50 P@100
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Figure 5: Precision comparison at 5, 10, 50 and 100 obtained
from retrieval using CNN layers and global average pooling
to reduce dimensionality.
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