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Abstract
As the use of AI and ML models continues to grow, concerns about potential unfairness have become more prominent. Many
researchers have focused on developing new definitions of fairness or identifying biased predictions, but these approaches
have limited scope and fail to analyze the minimum changes in user characteristics required for positive outcomes (i.e.
counterfactuals). In response, this proposed methodology aims to use counterfactual reasoning to identify unfair behaviours
in the case of fairness under unawareness. Furthermore, counterfactual reasoning can serve as a comprehensive methodology
for evaluating all the essential conditions for a reliable, responsible, and trustworthy model.
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1. Introduction
As stated by the World Economic Forum’s Global Future
Council on Artificial Intelligence for Humanity“Artifi-
cial Intelligence (AI) is the engine of the Fourth Industrial
Revolution. It holds the promise of solving some of soci-
ety’s most pressing issues, including repowering economies
reeling from lockdowns, but requires thoughtful design,
development, and deployment to mitigate potential risks”1.

These risks are related to the fact that AI applications
are becoming more and more pervasive, and, most of
the time, users often interact with such systems with-
out even knowing that life-changing decisions like mort-
gage grants, job offers, patients screenings are in the
hand of AI-based systems. Moreover, such AI decisions
may sometimes result arbitrary, inconsistent, or discrim-
inatory, which cannot be allowed in highly regulated
environments such as Financial Services. As these ap-
plications have became key enablers and more deeply
embedded in processes, financial services organizations
need to cope with AI applications’ inherent risks. This
is true both from a compliance point of view (regulatory
and ethical norms), and because the lack of trust is the
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most significant barrier to AI adoption and acceptance by
users. In fact, AI systems often amplify social and ethical
issues such as gender and demographic discrimination,
and they lack interpretability and explainability.

As an example, in the financial domain, the decision
to approve or deny credit has been regulated with pre-
cise and detailed regulatory compliance requirements
(i.e., Equal Credit Opportunity Act , Federal Fair Lending
Act , and Consumer Credit Directive for EU Commu-
nity).These rules aim to prevent discrimination in hu-
man decision-making processes. However, they do not
fit scenarios involving Machine Learning (ML) or, more
broadly, Artificial Intelligence (AI) systems. However,
when AI replaces human decisions, like in the case of
instant lending, there is a risk of revealing a loophole
in existing liability identification laws. Several national
and international organizations have released guidelines,
norms, and principles to prevent the irresponsible usage
of AI, e.g., the EU Commission with “The Proposal for
Harmonized Rule on AI” and the expert group on “AI in
Society” of the Organisation for Economic Co-operation
and Development (OECD).

Although scientists train their models without explicit
discriminating intent, deploying AI systems without tak-
ing ethical concerns into account may lead to discrimi-
nation [1]. Even more problematic is figuring out which
type of discrimination is being implemented.

1.1. Counterfactual Reasoning as a
Responsible AI practice

Counterfactual Reasoning is an active and flourishing
field in artificial intelligence research [2, 3]. This research
was initially born to investigate causal links [4], and
today it can count on several contributions [5]. Most
of them define and employ counterfactuals as a helpful
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tools to explain the decisions taken by modern decision
support systems. The underlying rationale is that some
aspects of past events could predict future events. In
detail, some studies focus on identifying causality-related
aspects to discover the link between the counterfactuals
and the analyzed phenomenon.

Counterfactual Reasoning finds application in various
fields. To summarize what we have briefly detailed before,
machine learning research has positively valued these
contributions ranging from Explainable AI [6] to themost
recent counterfactual fairness measures [7, 8].

Beyond the theoretical aspects, Counterfactual Rea-
soning is extensively applied to interactive systems [9,
10, 11, 12]. Unfortunately, this important application
showed some limitations. These systems employ ma-
chine learning models that reflect the data they use for
learning. Consequently, the same information influences
the reasoning, and the contribution of Counterfactual
Reasoning could be limited or somehow biased. The ex-
plaining policy, coming from Counterfactual Reasoning,
exhibits a bias toward the implemented learning model.
Researchers devoted considerable effort to tackle this
issue and proposed new models such as doubly robust es-
timators [13]. Overall, even though limitations that need
a solution, Counterfactual Reasoning is taking over Ex-
plainable AI, and it is becoming the de facto standard for
explaining decisions taken by autonomous systems [14].
In this respect, the European Union’s “right to explana-
tion” played a crucial role in arousing a further interest in
this methodologies [15]. Indeed, they are compliant with
the regulation and easily interpreted by either a domain
expert or a layperson [16].

Decision support systems particularly benefited from
these models. However, the more the application do-
main is vital, the more the fairness problem emerges. For
instance, the issue cannot be overlooked in sensitive do-
mains such as justice, risk assessment, or clinical risk
prediction. This need promoted the most promising re-
search in the Counterfactual Reasoning field to analyze
and mitigate this issue. A further important issue under
the lens of European regulators is the discrimination of
AI models. On this point, the EU Commission proposes
a conformity assessment before AI systems are put into
service or placed on the market 2. In fact, their tools
are subject to fair and trustworthy audit assessments to
check their conformity. However, is a shallow check of
the input characteristics sufficient to determine that a
predictor will not suggest unfair treatment? Even though
the user does not provide protected characteristics, the
system could predict sensitive features from variables,
i.e., proxy variables, that still represent protected charac-
teristics[17, 18, 19]. In this regard, our investigation aims

2https://digital-strategy.ec.europa.eu/en/policies/
regulatory-framework-ai

to leverage a counterfactual generation tool to reveal the
presence of implicit biases in a decision support system.
The approach aims to answer the question: “How would
the system have decided if we had replaced some user
characteristics? These characteristics identify a protected
or a non-protected group?”.

2. Preliminaries
This section introduces the notation adopted hereinafter.
Data points: We assume the dataset 𝒟 is an 𝑚-
dimensional space containing 𝑛 non-sensitive features, 𝑙
sensitive features, and a target attribute. In other words,
we have𝒟 ⊆ ℝ𝑚, with𝑚 = 𝑛+𝑙+1. A data point 𝑑 ∈ 𝒟 is
then represented as 𝑑 = ⟨x, s, 𝑦⟩, with x = ⟨𝑥1, 𝑥2, ..., 𝑥𝑛⟩
representing the sub-vector of non-sensitive features,
s = ⟨𝑠1, 𝑠2, ..., 𝑠𝑙⟩ the sub-vector of sensitive features and 𝑦
being a binary target feature. Given a vector of sensitive
features, ∀𝑠𝑖 ∈ s, 𝑠𝑖 = 0 refers to the unprivileged group
and 𝑠𝑖 = 1 to the privileged group of the 𝑖-th sensitive
feature.
Target Labels: Given a target feature 𝑦 ∈ {0, 1}, 𝑦 = 1 is
the positive outcome and 𝑦 = 0 is the negative one.
Outcome Prediction: ̂𝑦 ∈ {0, 1} represents the predic-
tion for x ⊂ 𝑑 estimated by 𝑓 (⋅), a function such that
𝑓 (x) = ̂𝑦.
Sensitive Feature Prediction: ̂𝑠𝑖 ∈ {0, 1} represents the
prediction of the 𝑖-th sensitive feature for a given data
point estimated by 𝑓𝑠𝑖(⋅), a function s.t. 𝑓𝑠𝑖(x) = ̂𝑠𝑖.
Counterfactual samples: Given a vector x and a per-
turbation 𝜖 = ⟨𝜖1, 𝜖2, ..., 𝜖𝑛⟩, we say that a vector cx =
⟨𝑐𝑥1 , 𝑐𝑥2 , ..., 𝑐𝑥𝑛⟩ = x + 𝜖 is a counterfactual (CF) of x if
𝑓 (cx) = 1 − 𝑓 (x) = 1 − ̂𝑦. We use the set 𝒞x, with
|𝒞x| = 𝑘, to denote the set of possible counterfactual
samples for x. A function 𝑔(x) compute 𝑘 counterfactu-
als for x.
For simplicity, we denote 𝑓 (⋅), 𝑓𝑠𝑖(⋅), and 𝑔(⋅) as the Deci-
sionMaker, the Sensitive-Feature Classifier, and the
Counterfactual Generator respectively.

3. Methodology
Our study proposes a novel fairness definition, two novel
metrics for detecting bias in a scenario where sensitive
features are omitted (i.e., fairness under unawareness) in
the training process, and an explanation methodology.

3.1. Fairness through the counterfactual
lens

Excluding sensitive features makes verifying that all
users are treated equally incredibly challenging. In the
instant lending case, imagine that a customer applies for
a loan, and his/her request is rejected. Understanding
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(a) male on Classic ML model (b) female on Classic ML model (c) male on Debiasing model (d) female on Debiasing model

Figure 1: Adult t-SNE visualizations of a random male (a-c) and female (b-d) sample with a negative outcome and their CF
samples with a positive outcome, respectively, for a Classic MLmodel (i.e. XGB) and a Debiasing one (i.e. Adversarial Debiasing).

if the customer has been discriminated is hard to ver-
ify when sensitive information is not used. Our process
pipeline is as follows: the Decision Maker makes deci-
sions without exploiting sensitive features, then if the
outcome is negative (e.g. loan rejected), theCounterfac-
tual Generator is exploited to propose modifications to
user characteristics and request for reaching a positive
outcome (e.g. loan approved). For each data point 𝑑 with
a negative prediction 𝑓 (x) = 0, we generate a set of coun-
terfactual samples 𝒞x that reach a positive outcome (i.e.,
∀cx ∈ 𝒞x s.t. 𝑓 (cx) = 1). Afterward, each counterfac-
tual (CF) sample is evaluated by the Sensitive-Feature
Classifier that predicts the value of the (omitted) sensi-
tive feature for the given CF sample. If the CF sample
is classified as e.g. male (privileged group), while the
original sample was e.g. female (unprivileged group), the
decision model could be biased and its unfairness can be
quantified (Eq. 3 and 4).

Indeed, each CF sample derives from the original sam-
ple x plus a perturbation 𝜖, where 𝜖 is the distance from
the original sample for getting a positive outcome, and
it should be independent from the user-sensitive charac-
teristics. Figure 1 depicts a scenario in which male (blu
color) is the privileged category, and female (red color) is
the unprivileged one. For each subfigure, a sample with
an unfavorable decision and its corresponding CFs are de-
picted. A classic ML model (i.e., XGB) is compared with a
debiasing ML model (i.e., AdvDeb). We can observe that
for the male sample and classic ML model (Figure 1(a)),
the CF samples belong to the same sensitive category
(i.e., male). For the female sample (Figure 1 (b)), this is
not true, revealing a bias of the model. Conversely, the
debiasing model (Figure 1 (c) and (d)) shows no predomi-
nance in the generated counterfactuals of one value of
the sensitive class. However, a change of the outcome,
e.g. from negative to positive, should not be determined
by a flip of the value(s) of the sensitive feature(s). Now,
we introduce our fairness criteria and metrics.

Definition 3.1 (Counterfactual Fair Opportunity). A de-
cision model is fair if the counterfactual samples of individ-
uals with unfavorable decisionsmaintain the same sensitive
value to reach a positive outcome. This behavior must be

guaranteed both for the privileged and the unprivileged
group [20].

P(𝑓𝑠(𝒞𝒳|−𝑠=0) ≠ 𝑠 ∣ 𝑓 (𝒞𝒳|−𝑠=0) = 1,𝒳 |−𝑠=0) = P(𝑓𝑠(𝒞𝒳|−𝑠=1) ≠ 𝑠 ∣ 𝑓 (𝒞𝒳|−𝑠=1) = 1,𝒳 |−𝑠=1)
(1)

To define a sort of discrimination score of a given
decision model, we propose a metric that we call Coun-
terfactual Flips. The metric quantifies the discriminatory
behavior the model might put in place.

Definition 3.2 (Counterfactual Flips). Given a sample x
belonging to a demographic group 𝑠 whose model output
is denoted as 𝑓 (x), a generated set 𝒞x of 𝑘 counterfactuals
with desired 𝑦∗ outcome. ∀c𝑖x ∈ 𝒞x s.t. 𝑓 (c𝑖x) = 𝑦∗, the
Counterfactual Flips indicate the percentage of counterfac-
tual samples belonging to another demographic group (i.e.,
𝑓𝑠(c𝑖x) ≠ 𝑓𝑠(x), with 𝑓𝑠(x) = 𝑠).

CFlips(x, 𝒞x, 𝑓𝑠(⋅)) ≜
∑𝑘

𝑖=1(1(c𝑖x))
𝑘

where 1(c𝑖x) = {
1 if 𝑓𝑠(c𝑖x) ≠ 𝑓𝑠(x) ≠ 𝑠
0 if 𝑓𝑠(c𝑖x) = 𝑓𝑠(x) = 𝑠

(2)

The bigger the CFlips value is, the stronger the bias
the model suffers from. In our work, we only take into
account samples negatively predicted by the decision
maker (i.e., 𝑓 (x) = 0) as we are interested in quantifying
the discrimination in achieving a positive counterfactual
result (i.e., 𝑓 (cx) = 1 ∧ 𝑓𝑠(cx) ≠ 𝑠). Given a set of samples
𝒳− ⊆ 𝒟 predicted by the decision maker as negative (un-
favorable decision), the metric in Eq. 2 can be generalized
to the unprivileged and privileged group (in Eq. 3 𝑠 = 0
for the unprivileged samples negatively predicted, and
𝑠 = 1 for the privileged samples negatively predicted).

CFlips𝑠 ≜
∑𝑛

𝑖=1 CFlips(x𝑖, 𝒞x𝑖 , 𝑓𝑠(⋅))
|𝒳 |−𝑠 |

with x𝑖 ∈ 𝒳|−𝑠
(3)

A limitation of the CFlips metric is that it does not
measure the distance of each CF sample from the original
data point. However, from an individual-fairness wise, a
debated issue is the definition of a metric that considers
that distance [21]. Accordingly, we propose a new metric
that considers CFs ranked based on the Mean Absolute
Deviation from the original sample and other criteria [6].
The insight behind this metric is that the more the CF



is ranked high (in the top positions of the ranking), the
more its impact on the metric value. Thus, the metric
penalizes CFs ranked in the top positions for which the
value of the sensitive feature is flipped. More formally:

Definition 3.3 (Discounted Cumulative Counterfactual
Fairness). Given a set of CounterfactualsCx for a sample
x𝑖, the Discounted Cumulative Counterfactual Fairness
DCCFx𝑖 measures the cumulative gain of the ranking of
counterfactuals w.r.t. the sensitive group of the original
sample:

DCCFx𝑖 ≜ ∑
𝑝𝑗,c

𝑗
x𝑖∈𝒞x𝑖

2(1−1(𝑐
𝑗
x𝑖)) − 1

log2(𝑝𝑗 + 1)
(4)

where 𝑝𝑗 is the rank of c𝑗x𝑖 in 𝒞x𝑖 and 1(𝑐
𝑗
x𝑖) from Eq. 2.

If more CF samples belonging to the same sensitive
group as the original data point are in a higher ranking
position, the result will be a higher DCCF. Thereby, we
can formulate the Ideal Discounted Cumulative Counter-
factual Fairness (IDCCF) as an ideal ranking in which
each CF sample cx belongs to the same sensitive group as
the original sample x (Eq. 5), and the normalized DCCF
(nDCCF) (Eq. 6).

IDCCFx𝑖 ≜ ∑
𝑝𝑗,c

𝑗
x𝑖∈𝒞x𝑖

2(1) − 1
log2(𝑝𝑗 + 1)

(5)

nDCCFx𝑖 ≜
DCCFx𝑖
IDCCFx𝑖

(6)

In the same way as CFlips, given a set of samples
𝒳− ⊆ 𝒟 predicted by the decision model as negative,
the metric in Eq. 6 can be generalized to the unprivileged
and privileged group (Eq. 7).

nDCCF𝑠 ≜
1

|𝒳 |−𝑠 |
∑
x𝑖

nDCCFx𝑖 with x𝑖 ∈ 𝒳|−𝑠 (7)

For both CFlips and nDCCF, we are interested in the
difference (i.e., Δ), between privileged and unprivileged,
being close to zero.

3.2. Explainability through the
counterfactual lens

Several methods have been proposed to explain black-
box models. SHAP is inspired by the cooperative game
theory based on the Shapley Values [22]. Each feature
is considered a player that contributes differently to the
outcome (i.e., the algorithm decision). However, the ex-
planation provided by this method probably is not so
clear for a customer who does not have experience with
how an algorithm works. Furthermore, Shapley value
does not give in to which extent changing a feature can
result in a different outcome. For this reason, if we want
to improve the user’s trust and, in general, the user ex-
perience with the system, we need to make the expla-
nation more understandable. Counterfactual Reasoning

can be useful in that direction. Indeed A counterfactual
cx can be seen as a perturbation from a starting sample
x of a quantity 𝜖 (i.e., cx = x + 𝜖). For a numerical or
ordinal feature 𝑖, 𝜖𝑖 can be expressed as the difference
between the counterfactual and the feature of the sample
𝑐𝑥𝑖 − 𝑥𝑖. For a categorical feature 𝑗, 𝜖𝑗 can be expressed
in a one-hot encoding form as -1 to the category that
is removed and 1 to the category that is engaged. Let
be 𝛿 the difference between the posterior conditional
probability of predicting a counterfactual sample and the
original sample as belonging to the privileged group (i.e.,
𝛿 = P(𝑓 (cx) = 1|cx) −P(𝑓 (x) = 1|x)). We can identify
the most influential features for 𝑓 (⋅) evaluating the Pear-
son correlation between 𝜖 and 𝛿: 𝜌(𝜖, 𝛿) . In the same way,
we can identify the proxy feature influencing a discrimi-
nation in the decision maker through the investigation
of 𝑓𝑠(⋅) [17, 23, 24]. The ranked correlation can be used
to generate a Natural Language based explanation for
the knowledge expert and a user-based explanation us-
ing the features of the nearest counterfactual sample (i.e.,
through the investigation of 𝜖 as actionable recommended
step) [12, 25].

4. Experimental Analysis

4.1. Experimental setting
Dataset. The experimental evaluation has been carried
out on state-of-the-art benchmark datasets (i.e., Adult3

with gender as sensitive information). We do not include
any sensitive features for training the model, guarantee-
ing the fairness under unawareness setting.
Decision Maker. To keep the approach as general as
possible, we opted for Logistic Regression4 (LR), Support-
Vector Machines4 (SVM), XGBOOST4 (XGB) , and Light-
GBM4 (LGBM).
Debiased Decision Maker. To investigate the quality
and the reliability of our metrics we used also two de-
biased classifiers, Adversarial Debiasing4 (AdvDeb) pro-
posed by Zhang et al. [26] and Linear Fair Empirical Risk
Minimization4 (lferm) proposed by Donini et al. [27] as
in-processing algorithms.
Counterfactual Generator. For the sake of repro-
ducibility and reliability, the counterfactuals are gen-
erated with an external counterfactual framework,
DiCE [6], with |𝒞x| equal to 1005.
Sensitive-Feature Classifier. We used XGB for imple-
menting this component due to its capability to learn

3https://archive.ics.uci.edu/ml/datasets/adult
4LR, SVM: https://scikit-learn.org/; XGB: https://github.com/dmlc/
xgboost; LGBM: https://github.com/microsoft/LightGBM; AdvDeb:
https://github.com/Trusted-AI/AIF360; lferm: https://github.com/
jmikko/fair_ERM;

5DiCE offers several strategies for generating candidate counterfac-
tual samples, but we choose to only exploit the Genetic one.
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Table 1
Accuracy, DEO, ΔCFlips (%), and ΔnDCCF metrics with XGB
as 𝑓𝑠(⋅) on the Adult, Adult-debiased, Crime, and German test
set. We mark the best-performing method for each metric in
bold font.

Adult (gender )

ΔCFlips ↓ ΔnDCCF ↓

𝑓 (⋅) ACC↑ DEO↓ Genetic KDtree Genetic KDtree

LR 0.8099 0.0546 67.05 76.03 0.6363 0.7476
DT 0.8161 0.0760 70.23 77.14 0.6303 0.7500
SVM 0.8541 0.0644 73.99 79.35 0.7223 0.7767
LGBM 0.8658 0.0379 70.87 78.40 0.6777 0.7723
XGB 0.8698 0.0635 70.40 78.42 0.6716 0.7717
RF 0.8534 0.0216 73.09 76.68 0.7017 0.7528
MLP 0.8494 0.0529 71.32 77.95 0.6862 0.7663
LFERM 0.8428 0.0194 32.40 68.25 0.2613 0.6434
ADV 0.8512 0.1399 7.96 53.90 0.0725 0.4870
FairC 0.8395 0.2451 38.72 36.27 0.3196 0.2970

non-linear dependencies.
Metrics. We evaluate the models’ performance with the
Accuracy (ACC) and model fairness by measuring Equal
Opportunity6 (DEO).
Split andHyperparameter Tuning. The datasets have
been split with the hold-out method 90/10 train-test set,
with stratified sampling w.r.t. the target and sensitive la-
bels, to respect the original distribution in each split. The
Decision Maker, the Debiased models, and the Sensitive-
Feature Classifier have been tuned on the training set
with a Grid Search k-fold (k=5) cross-validation method-
ology, the first two optimizing AUC metric, and the latter
F1 score to prevent unbalanced predictions on the sensi-
tive feature.

4.2. Fairness Results
Now that the setting is clear enough, we can move on
to analyze how well they perform in terms of fairness.
The performance of the Decision Makers on the metrics
DEO, as well as our suggested metrics CFlips and nDCCF
are reported in Table 1. It is important to point out that
the CFlips metric indicates how often a change of result
for the Decision Maker corresponds to a change in the
classification of the sensitive feature (e.g., from female
to male and vice-versa). Conversely, the nDCCF metric
gives more importance to counterfactuals with highest
positions in the ranking (the most similar to the original
sample) that do not change the sensitive class.

For the three debiased models (i.e., AdvDeb, lferm, and
FairC) the Δ is close to zero for both our metrics, meaning
that there is not a great difference in the CFlips for both
groups (privileged and unprivileged one). The debiased
models perform the same both with standard fairness
metrics and our metrics (i.e., CFlips, nDCCF).

6𝐷𝐸𝑂 =|P(�̂� = 1 ∣ 𝑆 = 1, 𝑌 = 1) −P(�̂� = 1 ∣ 𝑆 = 0, 𝑌 = 1)|

−1 −0.5 0 0.5 1
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𝜌(𝜖, 𝛿)

Figure 2: Top-6 most correlated features with a gender Flip
(i.e., 𝜌(𝜖, 𝛿)) on the Adult-debiased dataset with Genetic strat-
egy as 𝑔(x) and MLP as both 𝑓 (⋅) and 𝑓𝑠(⋅).

4.3. Explainability Results
Following a brief analysis of how our methodology can
be useful not only to investigate unfair model behaviour
but also to explain and quantify proxy discriminative
features.

In Figure 2, we can find the rank of features correlation
with a Flip in 𝑓𝑠(⋅) with MLP as 𝑓 (⋅) decision boundary
for the generation of cx and XGB as 𝑓𝑠(⋅) for the Adult-
debiased dataset. The analysis is restricted to only sam-
ples negatively predicted in order to specifically quantify
the proxy-features that lead to a positive prediction with
also a change in the sensitive information. In detail,
a negatively correlated feature (e.g., Adm-Clerical) is a
feature that has an opposite direction with respect to
E[𝑓𝑠(𝒳−) ∣ 𝒳−] while a positively correlated one (e.g.,
hours per week) has the same direction.

5. Conclusion
In this work, we present a novel methodology for de-
tecting bias in decision-making models that do not use
sensitive features and work in a context of fairness under
unawareness. Furthermore, we propose a new fairness
concept (i.e., Counterfactual Fair Opportunity), two re-
lated fairness metrics (i.e., CFlis and nDCCF), and an
explainability methodology.

In the future, we plan to define a strategy to generate
fair and actionable counterfactual samples with the aim
of developing a debiasing model that could be effectively
fair in the context of fairness under unawareness.
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