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Abstract
This paper discusses the challenges of applying reinforcement techniques to real-world environmental monitoring problems
and proposes innovative solutions to overcome them. In particular, we focus on safety, a fundamental problem in RL that
arises when it is applied to domains involving humans or hazardous uncertain situations. We propose to use deep neural
networks, formal verification, and online refinement of domain knowledge to improve the transparency and efficiency of
the learning process, as well as the quality of the final policies. We present two case studies, specifically (i) autonomous
water monitoring and (ii) smart control of air quality indoors. In particular, we discuss the challenges and solutions to these
problems, addressing crucial issues such as anomaly detection and prevention, real-time control, and online learning. We
believe that the proposed techniques can be used to overcome some limitations of RL, providing safe and efficient solutions to
complex and urgent problems.
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1. Introduction
In recent years, Reinforcement Learning (RL) has
emerged as a powerful technique to solve complex prob-
lems in a variety of applications, reaching and often out-
performing classical algorithms and humans. Successful
stories include chess and Go [1], video games [2], and
more [3, 4]. One fundamental trend of research in RL
addresses the problem of safety, i.e., the application of
RL solutions to problems and domains involving interac-
tion with humans, hazardous situations and expensive
hardware. This is the case, for instance, of robotics and
autonomous driving [5]. In fact, standard model-free RL
approaches just aim at maximizing a given reward sig-
nal, computing an optimal strategy or policy for the task.
It is then important to provide safety, and correctness
guarantees [6].
Moreover, a crucial limitation of RL lies in the over-

whelming requirements in terms of data availability, stor-
age, and power, ultimately affecting environmental sus-
tainability and large-scale adoption of such techniques,
especially in systems with limited hardware resources.
In this paper, we propose techniques to address the

problem of safe RL with limited resources, leveraging
symbolic artificial intelligence, formal verification tools,
and online refinement of domain knowledge to improve
the transparency and efficiency of the learning process,
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as well as the quality of the final policy.
We apply our solutions in the context of environmental

monitoring and preservation, specifically for exploration
and analysis of water catchments with autonomous surface
vehicles and smart control of air quality indoors. Both sce-
narios require safe and prompt decision-making in highly
dynamic conditions based on uncertain information from
many heterogeneous sensors and in the presence of hu-
mans or other living beings.

In the following, we introduce our benchmark domains
and discuss how to effectively apply RL to them, address-
ing crucial issues such as anomaly detection and preven-
tion, real-time control, and online learning.

2. Water Monitoring
In this section, we introduce one of the two problems
we address in this paper, the autonomous water monitor-
ing. This task presents different challenges that range
from hardware to software [7]. Fig. 1 shows the drone
we used for our experiments, a differential drive plat-
form equipped with sensors and actuators that allows
the boat to navigate autonomously in the environment
and collect data on the water’s quality. In more detail, the
platform is based on a hull equipped with two in-water
propellers that allow navigation in shallow water with a
max velocity of 3𝑚/𝑠. The set of sensors for localization
includes a GPS, compass, accelerometer, and gyroscope,
with the addition of a sonar and a stereo camera for col-
lision avoidance. Regarding water quality, the base set
includes PH, dissolved oxygen, conductivity, and temper-
ature; however, our drone is modular and different types
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(a) Training simulator (b) Real aquatic drone

Figure 1: The water monitoring drone and the Unity3D sim-
ulator.

of sensors can be integrated, e.g., for heavy metals, as
well as a system for collecting water samples.

Our drone is designed to be easy to deploy for non-
expert users; therefore, a high level of autonomy is re-
quired. The main objective is to provide a platform to
be released into a reservoir, able to navigate and moni-
tor water parameters and potential sources of pollution
with very limited human intervention [7]. However, au-
tonomous navigation in the aquatic scenario is challeng-
ing due to the non-stationarity of the environmental
conditions such as waves, wind, light reflections, moving
obstacles (both above and below the surface), and more
[8]. Hence, safety is of utmost importance to avoid catas-
trophic failures, e.g., collisions causing water to seep into
the hull and severely damaging electrical components
[9].

In the following sections, we will propose techniques
from safe RL and particularly safe DRL, i.e., RL based on
Deep Neural Networks (DNNs), in order to solve critical
issues related to real-time control of water drones under
dynamic uncertainty [10].

Combining Reinforcement Learning and
Control
Against the background introduced in the previous sec-
tions, we propose to exploit DRL to generate a DNN-
based real-time controller for the water monitoring drone.
DRL is a unique paradigm for the training of DNN. Its
fundamental characteristic is that it does not require a
set of labeled data; in contrast, an agent (the drone in our
case) interacts with the environment, with a trial-and-
error process, learning from its mistakes and improving
the policy (i.e., the strategy to solve the task), driven only
by a reward function that it aims to maximize [11]. Using
model-free DRL to learn low-level control commands for
robots is known to be a challenging problem, also due
to electrical and mechanical hardware limitations posing
safety constraints [12]. Hence, we integrate DRL with a
low-level controller for 𝑣 , 𝜓, respectively the linear veloc-
ity and the heading (yaw) angle of the drone. Specifically,

we first consider the following dynamic model of the
agent:

̇𝑥 = 𝑣 cos(𝜓 ) ̇𝑦 = 𝑣 sin(𝜓 )

̇𝑣 = 𝑇 − 𝐷
𝑚

̇𝜓 = 𝑤
(1)

where 𝑥, 𝑦 are the boat position in earth frame, 𝑇 is the
motors thrust,𝑚 is the boatmass, 𝑤 is the angular velocity
in body frame and 𝐷 is the water drag coefficient.
Let now 𝑥 = [𝑥, 𝑦 , 𝑣 , 𝜓 ] the state vector of the system.

During DRL training phase, the DRL agent explores dif-
ferent actions ⟨𝑣𝜓 ⟩, which are the input to a feedback
inverse dynamic control loop incorporating the drone
model. In this way, the low-level commands at the drive
of the drone are ultimately sent by a model-based con-
troller, guaranteeing their feasibility. The DRL agent then
obtains a new dynamically correct state vector with the
associated reward value for the specific action. For the
reward signal, we adapted a well-known function in the
context of mapless navigation, formally:

𝑅𝑡 = {
1 reaches the end
−1 collision with an obstacle
(𝑑𝑡−1 − 𝑑𝑡) ⋅ 𝛼 − 𝛽 otherwise

(2)

where 𝑑𝑡 is the distance from the target position at time 𝑡,
𝛼 is a normalization factor used to guarantee the stability
of the gradient, and 𝛽 is a fixed value, decreased at each
time-step, resulting in a total penalty proportional to the
length of the path.

Deep reinforcement learning (DRL) requires thousands
of interactions between an agent and its environment.
Training the agent directly on the actual platform is of-
ten unfeasible, particularly in a robotic scenario where a
failure during the early stages of training cannot be tol-
erated. To overcome this challenge, we have developed a
realistic simulator using the Unity3D engine. Leveraging
the built-in physics engine, our simulator can accurately
simulate water, waves, and other weather phenomena
(Fig. 1 shows a screenshot of our simulator).

DRL training is performed using twp extensions of
the Proximal Policy Optimization algorithm (PPO) [13]

Figure 2: Training results of our reinforcement learning ap-
proaches.



(a state-of-the-art approach), called GPPO and PEPPO,
that exploit methodologies based genetic approaches to
enhance the training phase, showing promising results on
our navigation tasks [7]. Fig. 2 shows a plot of the results
obtained with our approach; even though reward-wise
the performance is good, one limitation of the standard
DRL approaches is that they are oriented only on the
performance, often failing to provide guarantees on high-
level safety criteria, which are crucial for water drones. A
possible solution is to exploit constrained reinforcement
learning approaches, such as Lagrangian-PPO and CPO
[14]. In the following section, we propose an approach
for ex-post verification of safety after training.

Formal Verification of DNNs
DNNs have shown impressive performance in various
tasks. However, the vulnerability of these models to
adversarial inputs is a well-documented phenomenon
observed across various applications [15]. Formal Ver-
ification (FV) of DNNs uses mathematical methods to
rigorously prove that a neural network meets certain
safety and reliability requirements expressed as input-
output relationships [16]. In more detail, the goal of
the FV is to provide guarantees that a DNN will behave
correctly and predictably under all possible inputs and
conditions. This is especially important in safety-critical
applications such as autonomous driving or medical pro-
cedures, where any error or unexpected behavior of these
models could have catastrophic consequences. The FV
of DNNs is still a challenging and active area of research.
One of the main challenges is the computational com-
plexity of verifying very large networks [17]. Hence,
researchers are actively developing new techniques and
tools to make formal verification more practical for real-
world applications [16, 18, 19]. In particular, we devel-
oped an interval propagation-based method called 𝑃𝑟𝑜𝑉 𝑒
[20]. Our algorithm is more computationally efficient
since it performs parallel verification on sub-intervals of
the input space. Based on the results obtained with 𝑃𝑟𝑜𝑉 𝑒,
we extended the classic DNN-Verification problem to a
new type of verification called #DNN-Verification or quan-
titative verification [21], which aims not only to discover
a potentially single unsafe configuration but to count (or
enumerate) all the unsafe areas in a particular region of
the input space expressed by the safety property. This
type of verification allows estimating the probability that
the agent violates specific safety properties and selecting
fully safe models before final deployment.

Anomaly Detection and Recovery
Water drones may face unpredictable challenges, e.g., bat-
tery drainage, unexpected obstacles, and adverse weather
conditions. Thus, it is crucial to analyze the real-time

stream from onboard sensors and find relevant patterns
useful for decision-making and anomaly recovery or pre-
vention. However, interpreting a large amount of hetero-
geneous data and handcrafting effective reward specifi-
cations for RL accordingly is often very challenging [22],
especially in complex, uncertain, and dynamic environ-
ments or when the reward is sparse [23].

We have addressed the problem of online anomaly de-
tection for water drones using hidden Markov models
combined with normalized Hellinger distance [24], re-
sulting in robust anomaly recognition when conducting
exploration campaigns over multiple days. The anomaly
signal can be used to provide an early reward in RL and
prevent possible faults.
One limitation of purely data-driven methods for

anomaly detection is the lack of interpretability. To ad-
dress this problem, we have started to investigate the use
of Satisfiability Modulo Theory (SMT) [25] and Inductive
Logic Programming (ILP) [26] to automatically identify
high-level logical patterns in data. ILP allows to easily
incorporate domain knowledge, increasing data and com-
putational efficiency. Moreover, it can provide situational
and policy explanations [27], which can be useful to more
effectively communicate with on-coast crew in case of
emergency. We have preliminarily explored the use of
ILP to detect behavioral patterns in paradigmatic simu-
lation tasks involving an autonomous agent operating
in an uncertain environment with sparse rewards [28].
Starting from the definition of high-level commonsense
concepts about the domain of interest, we have collected
traces of normal executions (i.e., state-action pairs) of
the agent and identified logical rules matching actions
and environmental concepts. Rules have proven useful to
guide the exploration process in unexperienced settings,
achieving an improvement in computational time and
the final reward. Our approach can be extended to RL, us-
ing rules learned from normal drone executions to guide
optimal policy search and early identifying anomalous re-
gions of the state-action space. Moreover, ILP can be used
offline to generate explanations for registered anomalous
behaviors and provide useful contrastive explanations
[29], as well as to discover high-level safety specifications
implicitly embedded in the nominal behavior.

3. Air Quality Management
The second problem we address in this paper concerns
managing air salubrity to ensure comfort and safety in
closed environments. Air quality and thermal comfort
control are important features of modern Heating, Venti-
lation and Air Conditioning (HVAC) systems. The spread-
ing of the SARS-Cov-2 pandemic highlighted the impor-
tance of air quality conditions in indoor environments
since it has a positive impact in reducing virus spread.



Figure 3: Overview of the air quality monitoring system.

We consider the example of a company meeting room
that must be booked in advance for a given number of
people. The room is equipped with sensors for measuring
concentrations of CO2 and Volatile Organic Compounds
(VOCs), the indoor temperature and the outdoor temper-
ature (from weather forecast). Moreover, actuators to
open/close windows and turn on/off vents and sanitiz-
ers are available. We assume to have a daily occupation
schedule of the room (i.e. number of persons present in
the room at each hour of the day).
In the following, we first assume to have an approx-

imate model of the scenario (e.g., provided by experts),
expressed as a Markov Decision Process (MDP), and use
Monte Carlo Tree Search (MCTS) [30] to compute the
policy. Then, we propose a methodology for data-driven
Safe Policy Improvement (SPI) online, exploiting large
amounts of data available from environmental sensors
[31, 32], with the potential to deal with model inaccura-
cies. An overview of our approach to air quality manage-
ment is depicted in Figure 3.

Monte Carlo planning
MCTS is a popular algorithm for optimal decision making
in large state / observation spaces. It performs forward
simulations from the current state of the environment, in
order to compute the best action at each step maximizing
the expected reward. Our research deals with probabilis-
tic planning and reinforcement learning methods based
on MCTS in both completely observable and partially ob-
servable [33, 34] environments, and related applications
to real-world problems.

Figure 4 shows, for instance, a detail of an example of
a control profile generated by MCTS (on the left) and by
an expert (on the right) and their effects on an environ-
mental variable, i.e., VOCs concentration. On the first
row, we can observe the room occupancy profile, that is,
the number of people (blue line) in the room at a given
time of the day. In the second row, we represent the
evolution of VOCs concentration, and finally in the third
row, the actions that are performed. As we can see in the
second row, VOCs concentration is always significantly
below the maximum threshold (orange line) by apply-
ing the policy produced by MCTS (on the left), while it
reaches the maximum threshold value by performing the

Figure 4: Detail on the effect of the actuator control profile
applying the strategy produced by our RL approach and by
an expert on VOC concentration.

actions suggested by the expert (on the right). MCTS
obtains better performance than the expert by leveraging
its simulation-based nature. Moreover, as highlighted
by green boxes, we can see that the activation of high-
intensity ventilation and the sanitization process (third
row) causes a sudden decrease in VOCs concentration
(second row).

Safe Policy Improvement
Another topic of our research is safe policy improvement.
Algorithms for safely improving policies are important to
deploy reinforcement learning approaches in real-world
scenarios (e.g., autonomous cars, drones, or industrial
plants) where safety, robustness, and reliability of con-
trol policies are crucial issues. Safe RL investigates how
these issues can be addressed by learning policies that
maximize expected return while ensuring minimal per-
formance level or respecting safety constraints.
We focus on Safe Policy Improvement (SPI) [35] for

MDPs 𝑀 =< 𝑆, 𝐴, 𝑇 , 𝑅, 𝛾 >, where the agent is pro-
vided with a baseline policy 𝜋0 and dataset of trajec-
tories 𝒟 =< 𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠′𝑗 >𝑗∈[1,𝑁 ] collected running in the
real environment. SPI computes a new policy 𝜋𝐼 that
outperforms the baseline 𝜋0 safely with an admissible
performance loss 𝜁 ∈ ℝ+ and confidence level 1 − 𝛿, with
0 ≤ 𝛿 ≤ 1 and loss 𝜌(𝜋0, 𝑀) − 𝜌(𝜋𝐼, 𝑀).

Safe Policy Improvement with Baseline Bootstrapping
(SPIBB) [36, 37] is a state-of-the-art method that con-
siders the worst-case scenario reformulating the per-
centile criterion [38] to make the search for an efficient
and provably-safe policy tractable. SPIBB splits state-
action pairs into two subsets: the bootstrapped sub-
set ℬ = {(𝑠, 𝑎) ∶ 𝑁𝒟(𝑠, 𝑎) < 𝑁∧} is the set of state-



action pairs that occur less than 𝑁∧ times in 𝒟; the non-
bootstrapped set ℬ = {(𝑠, 𝑎) ∶ 𝑁𝒟(𝑠, 𝑎) ≥ 𝑁∧} is the set
of state-action pairs that occur at least 𝑁∧ times in 𝒟.
The approach guarantees that 𝜋 𝑠𝑝𝑖𝑏𝑏 is a 𝜁-approximate
safe policy improvement of the baseline 𝜋0 with high
probability 1−𝛿, where 𝜁 depends on 𝑁∧ and 𝛿.

Our current research deals with extending state-of-the-
art safe policy improvement algorithms to enable their
applicability to real world problems. This manily requires
the scaling of the algorithms to very large state-spaces.
We are currently evaluating different methodologies for
improving the scaling capabilities of safe policy improve-
ment methods and trying to evaluate the capabilities of
such approaches to work on real-world domains with
several states, domains having partially observable states
and domains with multiple agents.

4. Final Remarks
In this paper, we tackled the pressing issue of exploit-
ing AI, and particularly DRL, to realize advanced solu-
tions for sustainability. Specifically, we examined two
complex scenarios: water monitoring with autonomous
drones and automatic air quality management indoors.
We proposed methodologies prioritizing safety as a cru-
cial requirement for cyber-physical systems operating in
real environments in the presence of humans. We com-
bined model-free DRLwith tools from formal verification,
standard control theory, and model-based planning.
Our current and future research is devoted to opti-

mizing and further testing our algorithms in real-world
contexts, and exploring more trustable and transparent
interaction with humans exploiting techniques from ex-
plainable AI, e.g., ILP and logics. Our ultimate goal is to
deploy advanced and sustainable systems for the safe-
guard of both human beings and the environment.
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