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Abstract
Intrusion Detection System are systems aiming to detect intrusions within individual computers or networks. These systems
are of fundamental importance nowadays, as the number of attacks on networks is ever increasing. In this paper, a prototype
of a new Intrusion Detection System is presented. The key novelty is the architecture of this system, pairing an Autoencoder
and a Soft-Forgetting Self-Organizing Incremental Neural Network. A fusing scheme is applied to exploit the classification
capabilities of the two approaches. The proposed system, tested in different conditions using the NSL-KDD dataset, has
achieved excellent performance in detecting attacks, demonstrating its ability to evolve its knowledge and to recognize attacks
never seen before.
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1. Introduction
The exponential growth of use of Internet and increas-
ingly complex computer systems has led to an increase
in computer crime. Given the presence of information
systems now extended to every area, the fight against
this phenomenon becomes very important, both for the
security and protection of data, and for the safety and
health of people who work in contact with industrial
machinery controlled by IT systems. To do this, we need
to have cyber security systems that can support humans.
Intrusion Detection Systems are the right tools for this
purpose [1].

There are two ways to classify the various types of
IDSs: the first way analyzes the source from which the in-
formation comes, classifying the IDS into host-based and
network-based; the second way analyzes the intrusion
detection technique, classifying the IDS into signature-
based and anomaly-based [1]. This paper presents a hy-
brid anomaly-based IDS (ASFSOINN) that aims to solve
the problem of recognizing attacks never seen before.

Nowadays, many IDSs have been created, using vari-
ous machine learning techniques.

Nirupama and Niranjanamurthy, in [2], achieve an
Accuracy higher than 97%, using Decision Tree and Ran-
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dom Forest. This proposed model makes it possible to
exploit the advantages of both techniques, also avoiding
situations of overfitting.

Serkani, in [3], proposes a model, called DT-LSSVM,
which uses Decision Trees to perform a feature selection
and a Least-Squares Support-vector machine for anomaly
detection. This model, tested on the KDD Cup 99 dataset,
reaches an accuracy higher than 98%, on all four classes
of attacks (DoS, Probe, R2L, U2R).

Naseer, in [4], proposes a Deep Convolutional Neural
Network which obtains excellent results by testing it on
the NSL-KDD dataset, demonstrating that these types of
neural networks are also suitable for detecting anomalies
in computer networks.

In [5], Jianliang shows, by testing the model on the
KDDCUP99 dataset, how the k-Means algorithm reaches
a detection rate higher than 96% for all four classes of
attacks (DoS, Probe, R2L, U2R). The advantage of this
model is its unsupervised learning mode. However, this
algorithm requires knowing in advance the number of
classes k. This makes it inefficient in a real-world scenario
where new attacks emerge daily.

In [6], Huang uses the Extending Isolation Forest in
combination with the k-Means, obtaining excellent per-
formances on various datasets, including the KDDCUP99.
The advantage of this model is the ability to detect anoma-
lies quickly, thanks to the use of binary trees.

Xu, in [7], presents an autoencoder which, tested on
the NSL-KDD, achieve an accuracy of 90.61% and an F1-
score of 92.26%.

All the models just listed lack the ability to continu-
ously evolve their knowledge. In order to address these
issues, in this paper we present a novel system, aiming
to integrate continuous learning with anomaly detection.
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Figure 1: Logical architecture of the proposed ASFSOINN

More precisely, we integrate SF-SOINN with Autoen-
coder. The SF-SOINN is a neural network, previously
presented in [8] capable to implement continuous learn-
ing in an efficient way. The Autoencoder is a neural
network with excellent ability to detect anomalies. The
combination of these two approaches make the system
optimal for use in a real, modern scenario.

The rest of the paper is structured as follows. In Sec-
tion 2 we present ASFSOINN, our solution composed
by an Autoencoder and SF-SOINN. In Section 3 we de-
scribe some experimental results of the application of
ASFSOINN on NSL-KDD dataset. Finally, some conclu-
sions and directions for further work are in Section 4.

2. ASFSOINN: a hybrid
anomaly-based IDS

The solution proposed in this paper is a hybrid system,
called ASFSOINN, composed of an Autoencoder and a
Soft-Forgetting Self-Organizing Incremental Neural Net-
work. The two subsystems work together (Fig. 1), both
contributing to the decision of the final label to be as-
signed to the input data.

2.1. Autoencoder
Autoencoders are a particular type of artificial neural
network that aims to reconstruct the input 𝑥, after an
encoding phase. During this process, the input is com-
pressed by a series of layers, called Encoder, and then
decompressed by a series of layers, called Decoder [9].
Fig. 2 shows the logic architecture of the Autoencoder
used in ASFSOINN. The architecture of the Autoencoder
used in ASFSOINN, unlike many others present in lit-
erature, is very simple, to allow the system to work in
real time. This feature allows the network to be fast in
producing output data, making it usable in real scenarios.

Figure 2: Logical architecture of the Autoencoder used by the
ASFSOINN

2.2. Soft-Forgetting Self-Organizing
Incremental Neural Network

SF-SOINN (Fig. 3), proposed by Foresti and Martina
[8], is an evolution of the model called Enhanced Self-
Organizing Incremental Neural Networks [10]. The main
features of this neural networks are the capability to
evolve its knowledge (continuous learning) and the speed
in producing the output, possible as the model forgets
what is no longer relevant [8].

This model takes as input a given x, with the respec-
tive label y, and using a distance function, calculates the
two nodes closest to the one received as input. Next, it
calculates a threshold to decide whether or not to add a
node for the received data. After this phase, the model
goes through an update phase, in which it eliminates any
nodes and edges that are no longer considered useful.

How the SF-SOINN model works is explained in detail
in [8].

2.3. Operating modes
The ASFSOINN proposed, has three operating modes:
training mode, necessary to train the AE and SF-SOINN;
testing mode, which allows the system to classify the
input data; live mode, which allows an external operator
to manual classify a specific data.

The algorithms are shown below.



Figure 3: An example of the SF-SOINN network used by the
ASFSOINN

2.3.1. Training mode

This phase must be performed before all others, as it
allows the system to learn. The training of this system is
particular, as it requires two different training sets:

• AE training set: composed only of good data (no
attacks);

• SF-SOINN training set: composed by both attacks
and good data.

The autoencoder only needs to be trained with good
data as its operation is based on learning the normal
behavior, then labeling anything that is different as a
possibile “attack".

Algorithm 1 Training phase
Require: 𝑠𝑓𝑠𝑜𝑖𝑛𝑛, 𝑑𝑎𝑡𝑎_𝑎𝑒, 𝑑𝑎𝑡𝑎_𝑠𝑓, 𝑦_𝑠𝑓

𝑎𝑒← 𝑏𝑢𝑖𝑙𝑑_𝑚𝑜𝑑𝑒𝑙 ◁ Creation of AE
𝑎𝑒.𝑓𝑖𝑡(𝑑𝑎𝑡𝑎_𝑎𝑒) ◁ AE training
for each 𝑥, 𝑦 ∈ 𝑑𝑎𝑡𝑎_𝑠𝑓, 𝑦_𝑠𝑓 do

𝑠𝑓𝑠𝑜𝑖𝑛𝑛.𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦) ◁ Input of the data x with
label y
end for

2.3.2. Testing mode

The testing mode is used for classifying the data, accord-
ing to the model obtained by training the system.

As we can see from Algorithm 2, comparisons between
the two predictions are made to take the final decision.
If the two subsystems agree on the label, that prediction

Algorithm 2 Test phase
Require: 𝑎𝑒, 𝑠𝑓𝑠𝑜𝑖𝑛𝑛, 𝑑𝑎𝑡𝑎

for each 𝑥 ∈ 𝑑𝑎𝑡𝑎 do
𝑦_𝑎𝑒← 𝑎𝑒.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥) ◁ AE prediction
𝑦_𝑠𝑓 ← 𝑠𝑓𝑠𝑜𝑖𝑛𝑛.𝑖𝑛𝑝𝑢𝑡(𝑥) ◁ SF-SOINN

prediction
if 𝑦_𝑎𝑒 = “𝑎𝑡𝑡𝑎𝑐𝑘” ∧ 𝑦_𝑠𝑓 ̸= “𝑛𝑜𝑟𝑚𝑎𝑙” then

𝑦 ← 𝑦_𝑠𝑓
else if 𝑦_𝑎𝑒 = “𝑛𝑜𝑟𝑚𝑎𝑙” ∧ 𝑦_𝑠𝑓 ̸= “𝑛𝑜𝑟𝑚𝑎𝑙”

then
𝑦 ← 𝑦_𝑠𝑓

else if 𝑦_𝑎𝑒 = “𝑎𝑡𝑡𝑎𝑐𝑘” ∧ 𝑦_𝑠𝑓 = “𝑛𝑜𝑟𝑚𝑎𝑙”
then

𝑦 ← “𝑎𝑡𝑡𝑎𝑐𝑘”
else

𝑦 ← “𝑛𝑜𝑟𝑚𝑎𝑙”
end if

end for

is assigned to the input. If the two subsystems predict
two different labels, priority is given to the subsystems
that predicts an attack.

For the latter case, we distinguish two subcases: the
first is the one in which the attack is predicted by the
SF-SOINN and the second is the one in which the attack
is predicted by the autoencoder. In the first subcase, the
assigned label is the attack name (eg: “nmap", “smurf",
“guess_passwd", etc..). In the second sub-case instead,
since the predictions made by the AE are “normal" or
“attack", the label “attack" is assigned. This generic label
can later be replaced with a specific attack label by an
expert domain operator, taking advantage of the live
operating mode.

2.3.3. Live mode

This mode is very useful as it allows cybersecurity experts
to transmit their knowledge to the IDS. Live mode allows
an external operator to manually label data and use it to
train the system.

Algorithm 3 Live phase
Require: 𝑠𝑓𝑠𝑜𝑖𝑛𝑛, 𝑑𝑎𝑡𝑎, 𝑦_𝑑𝑎𝑡𝑎

for each 𝑥, 𝑦 ∈ 𝑑𝑎𝑡𝑎, 𝑦_𝑑𝑎𝑡𝑎 do
𝑠𝑓𝑠𝑜𝑖𝑛𝑛.𝑖𝑛𝑝𝑢𝑡(𝑥, 𝑦) ◁ Data 𝑥 with label 𝑦

end for

As we can see from the code, in this mode the AE is
not involved, as the only thing to do is to update the
SF-SOINN.
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Figure 4: Training set distribution (log scale)

Distribution of test set
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Figure 5: Test set distribution (log scale)

3. Experiments and Results
The dataset chosen to conduct the experiments with ASF-
SOINN is the NSL-KDD [11]. It contains five data classes,
one normal and four attacks (DoS, U2R, R2L, Probe).

It is composed of 160367 elements, divided into a train
set of 125973 elements, a test set of 22544 and a second
test set, which we called test_n21, of 11850 elements. In
addition to these two test sets, we created another one,
which we called test_21, which contains only the test set
items that have a difficulty of 21, i.e. 10694.

Fig. 4 shows the distributions of the training set, while
Fig. 5 shows the distribution of the test set.

3.1. Metrics
This subsection lists the metrics used to evaluate the
performance of ASFSOINN system in the various experi-
ments conducted. The metrics used are:

Accuracy: this metric measures how many correct clas-
sifications were made out of the total number of predic-
tions made. The formula is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Test Set Accuracy Detection Rate FP Rate FN Rate
test 90.40 96.67 17.89 3.33

test_n21 84.86 95.60 63.52 4.40
test_21 97.16 100.00 4.02 0

Table 1
ASFSOINN test result on the three test sets

where TP is the number of true positive predictions, TN is
the number of true negative predictions, FP is the number
of false negative predictions, and FP is the number of false
positive predictions.

Detection Rate: this metric measures how many cor-
rect positive classifications were made out of the total
number of positive cases. The formula is:

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

where TP and FN are the same as described above.

False Positive Rate: this metric measures the proba-
bility that a negative case will be classified as a positive.
The formula is:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

where FP and TN are the same as described above.

False Negative Rate: this metric measures the likeli-
hood that a positive case will go undetected. The formula
is:

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

where FN and TP are the same as described above.

3.2. Training with the NSL-KDD
In the first test performed, ASFSOINN is trained using
the training set. Specifically, the AE is trained with the
good data of the training set (67343 elements), while the
SF-SOINN with the whole set (125973 elements). After
training, ASFSOINN is tested using the test set, test_n21
and test_21, i.e. the one containing the items with diffi-
culty equal to 21. Unlike the test set, the test_n21 contains
many attacks that are not in the training set. For this
reason, test_n21 is considered the hardest test set.

Below we show the table of the results obtained by the
IDS in the testing phase (Table 1).

As we can see from the results shown in the Table 1,
the system has an excellent ability to recognize attacks.
Furthermore, it was able to obtain acceptable accuracy
even in those more difficult test cases, as in the case of
test_n21.



Test Set Accuracy Detection Rate FN Rate
Train 1 90.80 98.07 1.93
Train 2 91.22 97.96 2.04
Train 3 91.06 97.94 2.06
Train 4 90.71 97.80 2.02
Train 5 90.95 97.56 2.44
Train 6 91.03 97.76 2.24
Train 7 91.51 98.36 1.64
Train 8 91.10 97.96 2.04
Train 9 91.32 98.02 1.98
Train 10 91.15 97.88 2.12
Train 11 91.47 98.08 1.92
Train 12 90.50 97.96 2.01
Train 13 91.50 97.82 2.18
Media 91.10 97.94 2.05

Table 2
ASFSOINN test result on split training set

3.3. Training set vs Test set
The second test performed is a test proposed by Con-
stantinides [12]. The peculiarity of this test consists in
the fact that the system is trained with the test set and
tested with the train set, dividing it into 12 sets of 10000
elements and a set with the remaining elements.

From the results shown in the Table 2 we can see how
this system, despite the particularity of the experiment,
still obtains excellent results, both in terms of Detection
Rate and in terms of Accuracy.

3.4. Incremental Training
In this experiment, proposed by Li-Ye [13], the system is
trained incrementally. The train set is divided into 5 sets
containing all the data of that category (train_normal,
train_dos, train_r2l, train_u2r, train_probe), which will be
passed to the system one at a time.

After each incremental training phase, the system is
tested on each class, using the test set divided into 5
classes. The original experiment starts by training the
system with train_normal and train_dos, then dividing
the experiment into four phases. In this work instead,
the experiment is divided into five phases, training the
system in the first phase only with the train_normal. This
choice was made to show how the proposed system can
detect attacks even without having seen one before.

After the first training phase, the SF-SOINN configura-
tion is the one shown in Fig. 6. In Fig. 7 instead, we can
observe the state of the model after training on all cate-
gories of attacks. As we can see from these two images,
the configuration of the SF-SOINN model has evolved.
This highlights the continuous learning of this model.

This experiment is the most important as it simulates
the worst scenario that could happen, i.e. the one in

Figure 6: SF-SOINN after training with train_normal

Figure 7: SF-SOINN after training with all train set

which the IDS receives as input attacks it does not know.
This type of test allows us to highlight the capabilities
of this innovative IDS, which is able to recognize attacks
never seen before, thanks to the anomaly detection work
carried out by the AE. The results of this experiment
is shown in Table 3. As we can see from the results,
ASFSOINN recognizes a high number of attacks even
after being trained with only good data (no attacks).



Round Training Detection Rate Normal Detection Rate DoS Detection Rate R2L Detection Rate U2R Detection Rate Probe
1 normal 83.02 94.11 99.22 83.58 99.36
2 dos 85.38 91.72 87.15 97.01 99.34
3 r2l 82.34 93.75 98.82 97.01 100.00
4 u2r 83.17 94.71 98.49 97.01 99.59
5 probe 86.70 92.46 85.31 88.06 99.67

Table 3
Incremental ASFSOINN test result on category test sets

4. Conclusions and Future works
In conclusion, the importance of cyber security research
cannot be overstated in achieving collective security.
With the rise of new types of attacks, it is crucial to
have a reliable machine learning model that can detect
anomalies.

The SF-SOINN model used in this study is a neural
network designed for efficient continuous learning. It is
capable of learning and adapting to new data, making it
well-suited for detecting anomalies in network traffic. On
the other hand, the Autoencoder is a neural network that
has excellent ability to detect anomalies by compressing
and reconstructing input data. By combining the two
models, the proposed system in this study is able to de-
tect new attacks and evolve its knowledge, making it a
promising approach for intrusion detection.

The NSL-KDD dataset used in the experiments is a
widely-used dataset for evaluating intrusion detection
systems. It contains various types of network traffic, in-
cluding both normal and attack traffic, and is designed to
simulate real-world network traffic scenarios. By using
this dataset, in this study we have been able to demon-
strate the effectiveness of the proposed system in detect-
ing and learning new types of attacks.

It is important to note that while the proposed sys-
tem achieved high detection rates, it also had a slightly
high False Positive Rate. This means that the system
may identify normal network traffic as an attack. To ad-
dress this issue, future work could focus on developing
a solution that combines the results produced by both
subsystems, improving the overall performance of the
intrusion detection system.

Overall, the proposed system in this study shows great
potential for detecting and learning new types of attacks
in network traffic, making it a promising approach for
improving cyber security.
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