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Abstract
Integrating artificial intelligence and computer vision on wearable devices in industrial environments can increase productivity,
efficiency, and safety in the workplace. Despite the availability of wearable devices such as Microsoft HoloLens, Magic
Leap, and nreal, the application of artificial intelligence algorithms on wearable devices equipped with cameras is an open
research topic. To address this gap, the FPV@IPLAB group at the University of Catania has conducted research on the
construction of machine learning and computer vision algorithms for portable devices. The research has focused on three
main areas: localization and navigation, user-object interaction understanding, and user-object interaction anticipation. The
work conducted by the FPV@IPLAB group aims to enhance the use wearable devices and to develop artificial intelligence
techniques that can improve workplace efficiency and safety.
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1. Introduction
Artificial intelligence can be used in industrial environ-
ments to increase efficiency and safety in the workplace.
Wearable devices which acquire and analyze images and
videos in the surrounding environment can be used to
develop intelligent systems able to assist workers during
their activities. In this context, wearable devices can al-
low to overlay virtual elements on the observed scene
through augmented reality, and provide services based
on artificial intelligence via to the analysis of images and
videos acquired by the user. Moreover, due to their in-
trinsic mobility, wearable devices tend to be naturally
exposed to large amounts of data specific to the user’s
visual experience, which can in principle provide an im-
portant source of knowledge for training and adapting
machine learning and artificial intelligence algorithms.
Even if the market offers today devices such as Microsoft
HoloLens 1, Magic Leap 2, and Nreal 3, which are be
suitable for use in industrial environments, the applica-
tion of artificial intelligence algorithms in the context of
wearable devices equipped with vision is still an under-
explored field.

This article presents research conducted by the
FPV@IPLAB group at the University of Catania on the
construction of Machine Learning and Computer Vision
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Figure 1: Main areas of research of the FPV@IPLAB group.

algorithms for portable devices, with particular reference
to the use of these technologies in industrial environ-
ments. In particular, research conducted in three areas
relevant to the industry will be presented: localization
and navigation based on images acquired by portable
devices, user-object interaction understanding, and user-
object interaction anticipation (see Figure 1). For further
information on the research conducted by the IPLAB lab-
oratory in the field of First Person Vision, please visit the
web page http://iplab.dmi.unict.it/fpv/.

2. Localization and Navigation
The ability to identify the position of workers within a
building, provide them with contextualized information
and guide them to a destination, can be achieved through
the processing of images acquired from wearable devices.
While outdoor localization generally relies on GPS sys-
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Figure 2: Diagram of the localization and temporal segmen-
tation system for video captured by wearable devices [1].

tems, traditional approaches to indoor localization are
based on radio-frequency technologies, such as Wi-Fi
and BLE, which requires the installation of ad hoc in-
frastructures and cannot always guarantee a satisfactory
accuracy. On the other hand, image-based localization
allows to obtain more accurate results without the need
for dedicated infrastructures.

2.1. Context-Based Localization
IPLAB has worked on recognizing the environment in
which the user is located, called “personal location”,
which corresponds to specific places where the user
performs certain activities, such as an office or a work-
bench [1, 2]. The set of relevant personal locations varies
from user to user, and the developed algorithms allow
to identify the environments from a set of examples pro-
vided by the user themselves, acquiring a 30-second video
for each environment. The algorithm is able to recog-
nize the personal locations of interest and discard other
environments, even those not specified during system
configuration. This approach allows for real-time lo-
calization and temporal segmentation of the video into
coherent temporal units based on the user’s context. Fig-
ure 2 illustrates the developed system, which allows to
automatically index the video in order to easily navigate
it, segment it into coherent clips, and estimate the time
spent in each personal location. These applications can
be useful in industrial contexts for work analysis and
staff training. The localization system has also been used
for environment recognition in a museum for visitor lo-
calization [3, 4].4 Similar approaches have been exploited
in the context of natural sites [5].

4Demonstration video: https://youtu.be/VYZ6Awqy1ko
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Figure 3: Approach for transferring a navigation policy to
real environments [12].

2.2. Camera pose estimation
We have also studied the problem of localization through
camera position estimation. In particular, the localiza-
tion of shopping carts inside a supermarket was studied
using cameras mounted on the carts themselves [6, 7].
This allows the development of intelligent systems capa-
ble of guiding customers inside the store and studying
their behavior to offer personalized services [8]. Localiza-
tion is performed using image retrieval techniques and a
metric built through deep metric learning.5 These same
technologies can be used to develop systems capable of
localizing operators and guiding them inside a warehouse
or other industrial environment [9]. In addition, cam-
era pose estimation from wearable devices has also been
studied considering simulated data generated from a 3D
model of a real building [10]. The generation of synthetic
data allows obtaining large amounts of labeled data suit-
able for the development of localization algorithms. The
use of domain adaptation techniques also allows using
synthetic data to train localization models that can work
on real data [11].

2.3. Navigation
Beyond localizing workers in an industrial site, wearable
systems should be able to navigate them towards a des-
tination. A navigation system may also guide workers
to follow secure paths, e.g., avoiding dangerous areas
and suspended loads. Navigation algorithms can also
be used to enable robots to move within the industrial
environment and support the workers by escorting them
or retrieving tools for them. The research activity of the
FPV@IPLAB group in this area has focused on techniques
for embodied visual navigation in virtual replicas of real
environments [13], adaptation techniques for transfer
to real scenarios [12] (see Figure 3), and human-aware
robot navigation [14].

5Demonstration video: https://youtu.be/BxbdgWxFhgc
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Figure 4: Protocol to generate synthetic images for human-
object interaction understanding [23].

3. User-Object Interaction
Understanding

Recognizing the interactions between the user and the
objects through wearable devices can be useful for a vari-
ety of applications in industrial scenarios, ranging from
providing additional information on objects of interest
through augmented reality, to monitoring user behavior
and assessing the correct execution of procedures.

3.1. Object Detection and Tracking
As a first step towards user-object interaction understand-
ing, we focused on the detection of objects seen from
a first-person perspective, including synthetic-to-real
domain adaptation for object detection and segmenta-
tion [15, 16, 17, 18], panoptic segmentation in industrial
environments [19] and safety monitoring in construction
sites [20]. Other works have considered the problem of
recognizing objects in the scene and estimating which of
them are currently being observed by the user [21, 22]. 6

This type of analysis allows for acquiring behavioral in-
formation on users by inferring which points of interest
have been observed and for how long. Moreover, artifi-
cial intelligence algorithms can use such information to
provide suggestions on the next things to see or to use.

3.2. Interaction Understanding
The FPV@IPLAB group has also focused on algorithms
for understanding user-object interactions from synthetic
images [23] (see Figure 4), and by leveraging the software
layer provided by augmented reality devices [24]. The
group is currently investigating the integration of natural
language processing and object recognition to develop
systems able to provide assistance to the user on the exe-
cution of specific procedures [25]. The problem of tempo-
ral segmentation of videos based on actions performed by
users has also been studied in [26] and later in [27] in the
form of temporal action detection. The output of these
algorithms can be used as input for advanced artificial
intelligence systems capable of analyzing user actions,
inferring the next relevant actions, or determining any
critical points in the workflow. We also investigated the

6Demo video: https://youtu.be/nBkYOdKYu0s

Figure 5: The MECCANO dataset [29].

impact of visual object tracking algorithms in first-person
vision [28]. Visual tracking algorithms allow to keep a
reference to a given object of interest in each frame of a
video, which can be useful for the analysis of user-object
interactions and for anticipation.

3.3. Datasets to Study User-Behavior
Understanding

To facilitate the study of user-object interactions from
first-person vision, the FPV@IPLAB group has con-
tributed by collecting and labeling different datasets of
egocentric videos. The MECCANO dataset [29, 30] is
a multimodal dataset of egocentric videos collected in
an industrial-like procedural scenario where subjects
were asked to assemble a toy model of a motorbike. The
dataset is provided with gaze signals, depth maps, and
RGB videos acquired simultaneously with a custom head-
set, explicitly labeled for fundamental tasks in the context
of human behavior understanding from a first-person
view, such as recognizing and anticipating human-object
interactions.7 Figure 5 illustrates the parts involved in
the assembly of the toy model. We collaborated in the
creation of EPIC-KITCHENS [31, 32], a large dataset of
first-person-view videos for action recognition, action
anticipation, and object recognition. The dataset was ac-
quired from 32 subjects in 3 different countries (Italy, UK,
and Canada) and contains 55 hours of video, annotations
for approximately 40,000 actions, and 500,000 objects. 8

An extension of the dataset including more videos, la-
bels and benchmark tasks has been subsequently pro-
posed [27]. The FPV@IPLAB group has also participated
in the definition, collection, labeling and benchmarking
of EGO4D [33], a large-scale egocentric video dataset that
offers a vast amount of daily-life activity videos captured
by 931 individuals from 74 different locations and 9 coun-
tries, accompanied by audio, 3D meshes, eye gaze, stereo

7Dataset: https://iplab.dmi.unict.it/MECCANO/
8Dataset: https://epic-kitchens.github.io/
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Figure 6: Taxonomy of tasks of future prediction from ego-
centric vision [34].

and synchronized videos. Together with the dataset, new
benchmark challenges for understanding the first-person
visual experience in the past, present and future are pre-
sented. The work has been done in collaboration with a
consortium of 13 universities around the world.

4. Object Interaction Anticipation
A desirable feature for a wearable device equipped with
artificial intelligence is the ability to anticipate what will
happen in the scene in advance. This allows building sys-
tems that can guide the user through complex workflows
and notify them if an incorrect or dangerous action is
about to be taken. Our research group has investigated
algorithms to predict which objects in the scene the user
will interact with in the short term. We surveyed the
main tasks related to the prediction of the future form
egocentric videos in [34] (see Figure 6) and investigated
approaches to tackle specific prediction tasks.

The FPV@IPLAB group investigated algorithms to pre-
dict which objects in the scene will be used by the user
in the short term. In particular, the studies conducted
in [35] have highlighted how the analysis of trajectories
of objects identified from first-person videos allows ob-
taining information about the next objects that will be
used by the user in a dynamic context. 9 We later ex-
plored the task in the context of procedural videos using
object-detection based approaches in [29, 30]. The task
has then been formalized as the multi-task problem of
recognizing objects, and predicting future actions and
time-to-contact for each of them in [33], which has also
lead to the definition of the “short-term object interaction
anticipation” challenge.10

The topic of anticipating interactions with objects has
also been investigated through the definition of a chal-
lenge on egocentric action anticipation 11 related to the
EPIC-KITCHENS dataset [31] and through the study of
architectures and evaluation measures suitable for ad-
dressing the problem of anticipated prediction of actions

9Video: http://iplab.dmi.unict.it/NextActiveObjectPrediction/
10Challenge: https://eval.ai/web/challenges/challenge-page/1623/
overview

11Challenge: https://codalab.lisn.upsaclay.fr/competitions/707
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Figure 7: The Rolling-Unrolling LSTM model [38].

from first-person videos [36]. A novel architecture to
tackle the problem based on recurrent networks has been
proposed in [37, 38] and extended in [39]. The devel-
oped algorithms allow predicting the set of likely next
actions based on the observation of videos before they
occur.12 Applications of this approach to the domain of
personal health have also been explored in [40]. The anal-
ysis of the problem has later been extended considering
untrimmed input videos [41] and real-time computation
constraints [42].

5. Conclusion
We presented the research conducted by the FPV@IPLAB
group in the development of artificial intelligence algo-
rithms for wearable vision devices. The problems ad-
dressed have potential applications in industrial contexts
and revolve around three main themes related to localiza-
tion and navigation, user-object interaction understanding,
and user-object interaction anticipation.
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