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Abstract
Deep Learning (DL) has become one of the predominant tools for solving a variety of issue, often with superior performance
compared to previous state-of-the-art methods. DL models are often able to learn meaningful and abstract representations
of the underlying data; however, they have also been shown to often learn additional features in the data, which are not
necessarily relevant or required for the desired task. This could pose a number of issues, as the additional features can contain
bias, sensitive or private information, that should not be taken into account (e.g. gender, race, age, etc.) by the model. We refer
to this information as collateral. The presence of collateral information translates into practical issues when deploying DL
models, especially if they involve users’ data. Learning robust representations which are free of biased, private, and collateral
information can be very relevant for a variety of fields and applications, for example for medical applications and decision
support systems. In this work we present our group’s activities aiming at devising methods to ensure that representations
learned by DL models are robust to collateral features, biases and privacy-preserving with respect to sensitive information.
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1. Introduction
In this section we describe the latest research activities in
the field of fairness and privacy for deep learning at the
EIDOSLAB1 research group [1], the computer vision and
image processing laboratory in the Computer Science
department of the University of Turin. The lab is also a
member of the Italian Association for Computer Vision,
Pattern Recognition and Machine Learning [2].

Trustworthiness, fairness and ethics have become in-
creasingly important topics in deep learning. As deep
learning models become more prevalent in computer vi-
sion tasks, including medical imaging, concerns about
fairness and bias have come to the forefront. Biases can
creep into these models in a variety of ways, including
the selection and preparation of training data, the de-
sign of the model architecture, and the optimization of
the model parameters. These biases can have real-world
consequences, especially in medical imaging where de-
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cisions made based on the results of these models can
impact patients’ lives. As a result, researchers have been
actively working on methods for debiasing these models
and improving their overall fairness. This includes tech-
niques such as data augmentation, regularization, and
adversarial training, among others. In this context, debi-
asing methods aim to reduce disparities and ensure that
these models perform equally well across different demo-
graphic groups. It is crucial to address fairness and bias
in deep learning models in computer vision, especially in
medical imaging, to ensure equitable and effective care
for all patients. More specifically, one of the most im-
portant aspect of fairness and debiasing in deep learning
models, particularly in medical imaging, is the potential
for the model to learn additional information that can
introduce bias or compromise the privacy and security
of sensitive information. For example, a model may unin-
tentionally learn information about a patient’s race age
or gender, which could then be inadvertently used to
make decisions that unfairly advantage or disadvantage
certain groups. Another problem which affects medi-
cal imaging is the noise related to the acquisition site,
which in multi-site datasets can prevent the model from
correctly generalizing to new data from different acquisi-
tion sites. Additionally, medical imaging often contains
sensitive and personal information about patients (e.g.
gender, age, race) which must be handled with care to en-
sure patient privacy and prevent potential data breaches.
Thus, it is essential to not only address bias and fairness
in these models but also to consider the potential risks
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associated with the information they learn and how it is
handled. Referring to all the above cases, we define as
collateral any information that is not necessarily required
for the desired task, but that is picked-up by the model.
This concept which was conceptualized by John Dewey
as Collateral Learning, describes the accidental learning
that occurs in and outside the classroom [3]. Based on
this definition, and extending it to the deep learning con-
text, we say that collateral learning occurs when a model
learns more information than intended. In order to be
robust, DL models should not be affected by the collateral
learning problem.

1.1. Representation Learning
A more throughout understanding of how deep mod-
els can learn powerful representations can certainly be
helpful in all the above cases. Learning fair and robust
representations of the underlying samples, especially
when dealing with biased data or sensitive information,
is the main objective of the activities described in this
work. In the recent years, the topic of representation
learning has increasingly gained traction in the deep
learning community. Contrastive learning has become
the most widespread approach for this purpose, and many
losses and frameworks have been proposed [4, 5, 6, 7].
Contrastive learning approaches aim at pulling positive
samples representations (e.g. of the same class) closer
together while repelling representations of negative ones
(e.g. different classes) apart from each other. It has also
been shown that, in a supervised setting, this kind of opti-
mization can sometimes yield better results than standard
cross-entropy [5], and is also more robust against label
corruption [8] which can be seen as an instance of collat-
eral features. However, a lot remains to be done about
this matter, and research should focus on how to provide
reliable guarantees for avoiding collateral features learn-
ing. Furthermore, another relevant line of research is
addressing this issue from an unsupervised perspective
(i.e. automatically recognizing and excluding all bias and
collateral information without any prior knowledge).

In summary, there is a need for a reliable way to learn
robust representations which are free of biased, private
and collateral information.

2. Metric framework for
contrastive learning

In our research activities, we explore representation
learning from a theoretical perspective. We propose a
metric-learning based framework for supervised repre-
sentation learning, which allows us to derive and for-
malize a more robust set of debiasing constraints, along

with novel contrastive losses that show increased robust-
ness compared to the current literature [9]. We provide
a unified framework to analyze and compare existing
formulations of contrastive losses, such as the InfoNCE
loss [4, 6], the InfoL1O loss [7], and the SupCon loss [5].
Using our proposed metric learning approach, we can
reformulate each loss as a set of highly explainable met-
ric conditions. Our analysis provides a comprehensive
understanding of the different loss functions, explaining
their behavior from a metric point of view. Furthermore,
leveraging our metric learning approach, we investigate
the issue of biased learning. We point out the limitations
of the studied contrastive loss functions when dealing
with biased data, especially when the loss on the training
set is apparently minimized. By analyzing such cases, we
provide a more formal characterization of bias, which
eventually allows us to derive a new set of general regu-
larization constraints for debiasing that can be added to
any contrastive or non-contrastive loss.

Foundamentals Let 𝑥 ∈ 𝑋 be an original sample
(i.e., anchor), 𝑥+

𝑖 a similar (positive) sample, 𝑥−
𝑗 a dis-

similar (negative) sample and 𝑃 and 𝑁 the number of
positive and negative samples respectively. Contrastive
learning methods look for a parametric mapping func-
tion 𝑓 : 𝑋 → S𝑑−1 that maps “semantically” similar
samples close together in the representation space, a (𝑑-
1)-sphere, and dissimilar samples far away from each
other. Once pre-trained, 𝑓 is fixed and its representa-
tion is evaluated on a downstream task, such as clas-
sification, through linear evaluation on a test set. In
general, positive samples 𝑥+

𝑖 can be defined in differ-
ent ways depending on the problem: using transforma-
tions of 𝑥 (unsupervised setting), samples belonging to
the same class as 𝑥 (supervised) or with similar image
attributes of 𝑥 (weakly-supervised). The definition of
negative samples 𝑥−

𝑗 varies accordingly. Here, we fo-
cus on the supervised case, thus samples belonging to
the same/different class, but the proposed framework
could be easily applied to the other cases. We define
𝑠(𝑓(𝑎), 𝑓(𝑏)) as a similarity measure (e.g., cosine simi-
larity) between the representation of two samples 𝑎 and
𝑏. Please note that since ||𝑓(𝑎)||2 = ||𝑓(𝑏)||2 = 1,
using a cosine similarity is equivalent to using a L2-
distance (𝑑(𝑓(𝑎), 𝑓(𝑏)) = ||𝑓(𝑎) − 𝑓(𝑏)||22). Similarly
to [10, 11, 12, 13, 14], we propose to use a metric learning
approach which allows us to better formalize recent con-
trastive losses, such as InfoNCE [4, 6], InfoL1O [7] and
SupCon [5], and derive new losses that better approxi-
mate the mutual information and can take into account
data biases.

Derivation of 𝜖-SupInfoNCE Using an 𝜖-margin met-
ric learning point of view, probably the simplest con-



Figure 1: With 𝜖-SupInfoNCE (a) we aim at increasing the
minimal margin 𝜖, between the distance 𝑑+ of a positive sam-
ple 𝑥+ (+ symbol inside) from an anchor 𝑥 and the distance
𝑑− of the closest negative sample 𝑥− (− symbol inside). By
increasing the margin, we can achieve a better separation be-
tween positive and negative samples.

trastive learning formulation is looking for a mapping
function 𝑓 such that the following 𝜖-condition is always
satisfied:

𝑠(𝑓(𝑥), 𝑓(𝑥−
𝑗 ))⏟  ⏞  

𝑠−𝑗

− 𝑠(𝑓(𝑥), 𝑓(𝑥+
𝑖 )⏟  ⏞  

𝑠+𝑖

≤ −𝜖 ∀𝑖, 𝑗 (1)

where 𝜖 ≥ 0 represents a margin between positive and
negative samples, as shown in Fig. 1. The constraint
of Eq. 1 can be transformed into an optimization prob-
lem using, as it is common in contrastive learning, the
max operator and its smooth approximation LogSumExp.
The can lead to the derivation of different loss functions.
Some of them can be found in [9]. We propose to use the
following one, that we call 𝜖-SupInfoNCE:∑︁

𝑖

max(−𝜖, {𝑠−𝑗 − 𝑠+𝑖 }𝑗=1,...,𝑁 ) ≈

≈
∑︁
𝑖

log

(︃
exp(−𝜖) +

∑︁
𝑗

exp(𝑠−𝑗 − 𝑠+𝑖 )

)︃

= −
∑︁
𝑖

log

(︃
exp(𝑠+𝑖 )

exp(𝑠+𝑖 − 𝜖) +
∑︀

𝑗 exp(𝑠
−
𝑗 )

)︃
⏟  ⏞  

𝜖−𝑆𝑢𝑝𝐼𝑛𝑓𝑜𝑁𝐶𝐸

(2)

Here, we can notice that when 𝜖 = 0, we retrieve a
generalization of InfoNCE loss, whereas when 𝜖 → ∞
we obtain a generalization of InfoL1O loss. It has been
shown in [7] that these two losses are the lower and upper
bound of the Mutual Information 𝐼(𝑋+, 𝑋) respectively:

InfoNCE ≤ 𝐼(𝑋+, 𝑋) ≤ InfoL1O (3)

By using a value of 𝜖 ∈ [0,∞), one might find a
tighter approximation of 𝐼(𝑋+, 𝑋) since the exponen-
tial function at the denominator exp(−𝜖) monotonically
decreases as 𝜖 increases.

Experiments and Results Results on general com-
puter vision datasets are presented in Tab. 1, in terms
of top-1 accuracy. We report the performance for the
best value of 𝜖; the complete results can be found in [9].
The results are averaged across 3 trials for every config-
uration, and we also report the standard deviation. We
obtain significant improvement with respect to all base-
lines and, most importantly, SupCon, on all benchmarks:
on CIFAR-10 (+0.5%), on CIFAR-100 (+0.63%), and on
ImageNet-100 (+1.31%). For the experiments, we use the
original setup from SupCon [5], employing a ResNet-50.
The complete experimental setup is provided in [9].

3. Debiasing with FairKL
Satisfying the 𝜖-condition (1) can generally guarantee
good downstream performance, however, it does not take
into account the presence of biases (e.g. selection biases).
To tackle this issue, we propose FairKL, a set of debias-
ing constraints that prevent the use of the bias features
within the proposed metric learning approach. In order
to give a more in-depth explanation of the 𝜖-InfoNCE
failure case, we employ the notion of bias-aligned and
bias-conflicting samples as in Nam et al. [15]. In our con-
text, a bias-aligned sample shares the same bias attribute
of the anchor, while a bias-conflicting sample does not.
In this work, we assume that the bias attributes are ei-
ther known a priori or that they can be estimated using
a bias-capturing model, such as in [16].

Characterization of bias We denote bias-aligned sam-
ples with 𝑥·,𝑏 and bias-conflicting samples with 𝑥·,𝑏′ .
Given an anchor 𝑥, if the bias is “strong” and easy-to-
learn, a positive bias-aligned sample 𝑥+,𝑏 will probably
be closer to the anchor 𝑥 in the representation space than
a positive bias-conflicting sample (of course, the same rea-
soning can be applied for the negative samples). This is
why even in the case in which the 𝜖-condition is satisfied
and the 𝜖-SupInfoNCE is minimized, we could still be able
to distinguish between bias-aligned and bias-conflicting
samples. Hence, we say that there is a bias if we can
identify an ordering on the learned representations, e.g.:

𝑠−𝑗 − 𝜖 ≤ 𝑠+,𝑏′

𝑘 < 𝑠+,𝑏
𝑖 ∀𝑖, 𝑘, 𝑗 (4)

This represents the worst-case scenario, where the order-
ing is total (i.e., ∀𝑖, 𝑘, 𝑡, 𝑗). Of course, there can also be
cases in which the bias is not as strong, and the ordering
may be partial.

FairKL regularization for debiasing Ideally, we
would enforce the conditions 𝑠+,𝑏′

𝑘 − 𝑠+,𝑏
𝑖 = 0 ∀𝑖, 𝑘

and, meaning that every positive bias-conflicting sample
should have the same distance from the anchor as any



Table 1
Accuracy on vision datasets. SimCLR and Max-Margin results from [5]. Results denoted with * are (re)implemented with
mixed precision due to memory constraints.

Dataset Network SimCLR Max-Margin SimCLR* CE* SupCon* 𝜖-SupInfoNCE*

CIFAR-10 ResNet-50 93.6 92.4 91.74±0.05 94.73±0.18 95.64±0.02 96.14±0.01

CIFAR-100 ResNet-50 70.7 70.5 68.94±0.12 73.43±0.08 75.41±0.19 76.04±0.01

ImageNet-100 ResNet-50 - - 66.14±0.08 82.1±0.59 81.99±0.08 83.3±0.06

other positive bias-aligned sample. However, in prac-
tice, this condition is very strict, as it would enforce
uniform distance among all positive samples. A more
relaxed condition would instead force the distributions
of distances, {𝑠·,𝑏

′

𝑘 } and {𝑠·,𝑏𝑖 }, to be similar. Here, we
propose two new debiasing constraints using either the
first moment (mean) of the distributions or the first two
moments (mean and variance). Using only the average
of the distributions, we obtain:

1

𝑃𝑐

∑︁
𝑘

|𝑠+,𝑏′

𝑘 | − 1

𝑃𝑎

∑︁
𝑖

|𝑠+,𝑏
𝑖 | = 0 (5)

where 𝑃𝑎 and 𝑃𝑐 are the number of positive bias-aligned
and bias-conflicting samples, respectively2. Coinciden-
tally, this constraint is also known as EnD [17], which
we proposed in 2021. Denoting the first moments with
𝜇+,𝑏 =

1
𝑃𝑎

∑︀
𝑖 𝑠

+,𝑏
𝑖 , 𝜇+,𝑏′ =

1
𝑃𝑐

∑︀
𝑘 𝑠

+,𝑏′

𝑘 , and the sec-
ond moments of the distance distributions with 𝜎2

+,𝑏 =
1
𝑃𝑎

∑︀
𝑖(𝑠

+,𝑏
𝑖 −𝜇+,𝑏)

2, 𝜎2
+,𝑏′ =

1
𝑃𝑐

∑︀
𝑘(𝑠

+,𝑏′

𝑘 −𝜇+,𝑏′)
2,

and making the hypothesis that the distance distribu-
tions follow a normal distribution, we can define a new
debiasing constraint ℛ𝐹𝑎𝑖𝑟𝐾𝐿 using, for example, the
Kullback–Leibler divergence:

1

2

[︃
𝜎2
+,𝑏 + (𝜇+,𝑏 − 𝜇+,𝑏′)

2

𝜎2
+,𝑏′

− log
𝜎2
+,𝑏

𝜎2
+,𝑏′

− 1

]︃
= 0

(6)
The proposed debiasing constraint can be easily added
to any contrastive loss using the method of the Lagrange
multipliers, as a regularization term. Thus, our final loss
function is:

ℒ = 𝛼ℒ𝜖−𝑆𝑢𝑝𝐼𝑛𝑓𝑜𝑁𝐶𝐸 + 𝜆ℛ𝐹𝑎𝑖𝑟𝐾𝐿 (7)

where 𝛼 and 𝜆 are positive hyperparameters.

Experiments and results We perform experiments on
our proposed loss on five biased datasets: Biased-MNIST,
Corrupted-CIFAR10, bFFHQ, and 9-Class ImageNet along
with ImageNet-A. For brevity, in this presentation we
report Biased-MNIST only, the results are reported in

2The same reasoning can be applied to negative samples (omitted
for brevity.)

Tab. 2. The complete results and experimental details are
provided in [9]. On this dataset, where colors are injected
into the background of the MNIST digits with a varying
degree of correlation, we achieve state-of-the-art results.

Table 2
Top-1 accuracy (%) on Biased-MNIST. Reference results
from [16]. Results denoted with * are re-implemented without
color-jittering and bias-conflicting oversampling.

Correlation (%)
Method 99.9 99.7 99.5 99

CE [16] 11.8±0.7 62.5±2.9 79.5±0.1 90.8±0.3

LNL [18] 18.2±1.2 57.2±2.2 72.5±0.9 86.0±0.2

EnD [17] 59.5±2.3 82.70±0.3 94.0±0.6 94.8±0.3

BC+BB* [16] 30.26±11.08 82.83±4.17 88.20±2.27 95.04±0.86

BB [16] 76.8±1.6 91.2±0.2 93.9±0.1 96.3±0.2

BC+CE* [16] 15.06±2.22 90.48±5.26 95.95±0.11 97.67±0.09

FairKL 90.51±1.55 96.19±0.23 97.00±0.06 97.86±0.02

4. Multi-site acquisition noise in
brain age prediction

In this section, we present our recent work in the field
of neuroimaging, focusing on brain age prediction from
MRI. This is a challenging task that requires robust and
accurate models capable of generalizing across different
imaging sites. Dealing with multi-site dataset is a delicate
matter in biomedical imaging in general, as the collat-
eral noise related to the different acquisition sites often
limits the generalization capability of DL models. In this
context, together with our partners at Télécom Paris (IP
Paris) and NeuroSpin (CEA), we have developed a novel
contrastive learning loss for regression of brain age from
MRI [19], which is based on our metric learning frame-
work. We validated it on the OpenBHB challenge [20], a
recently released3 public challenge, which provides one
of the largest datasets of healthy brain MRIs. Based on
the framework presented in Sec. 2, we propose a novel
contrastive learning regression loss for brain age pre-
diction, achieving state-of-the-art performance on the
OpenBHB challenge.

3https://baobablab.github.io/bhb/

https://baobablab.github.io/bhb/


Contrastive Learning Regression Loss The notion
of negative and positive samples is rooted in the con-
trastive learning framework. The loss formulation of
Sec. 2 is thus not adapted for regression (i.e. continuous
labels), as it is not possible to determine a hard boundary
between positive and negative samples. All samples are
somehow positive and negative at the same time. Given
the continuous label 𝑦𝑖 for the anchor and 𝑦𝑘 for a sam-
ple 𝑘, one could threshold the difference ∆ between 𝑦𝑖
and 𝑦𝑘 at a certain value 𝜏 in order to create positive and
negative samples (i.e. k is positive if ∆(𝑦𝑖, 𝑦𝑘) < 𝜏 ). The
problem would then be how to choose 𝜏 . Differently, we
propose to define a degree of “positiveness” between sam-
ples using a kernel function 𝑤𝑘 = 𝐾(𝑦𝑖 − 𝑦𝑘), where
0 ≤ 𝑤𝑘 ≤ 1. Our goal is thus to learn a parametric
function 𝑓 : 𝒳 → S𝑑−1 that maps samples with a high
degree of positiveness (𝑤𝑘 ∼ 1) close in the latent space
and samples with a low degree (𝑤𝑘 ∼ 0) far away from
each other. To adapt such a framework to continuous
labels, we propose to use a kernel function 𝑤𝑘 , and we
develop multiple formulations. A first approach would
be to consider as “positive” only the samples that have
a degree of positiveness greater than 0, and align them
with a strength proportional to the degree:

𝑤𝑘∑︀
𝑗 𝑤𝑗

(𝑠𝑡 − 𝑠𝑘) ≤ 0 ∀𝑗, 𝑘, 𝑡 ̸= 𝑘 ∈ 𝐴(𝑖) (8)

where we have normalized the kernel so that the sum
over all samples is equal to 1 and we denote with 𝐴(𝑖)
the indices of samples in the minibatch distinct from 𝑥𝑖.
From Eq. 8 we can derive the following loss:

ℒ𝑦−𝑎𝑤𝑎𝑟𝑒 = −
∑︁
𝑘

𝑤𝑘∑︀
𝑡 𝑤𝑡

log

(︃
exp(𝑠𝑘)∑︀𝑁
𝑡=1 exp(𝑠𝑡)

)︃
(9)

Interestingly, this is exactly the y-aware loss proposed in
[21] for classification with weak continuous attributes.
Due to the non-hard boundary between positive and neg-
ative samples, both 𝑠𝑡 and 𝑠𝑘 are defined over the entire
minibatch. The kernel 𝑤𝑘 is used to avoid aligning sam-
ples not similar to the anchor (i.e. 𝑤𝑘 ≈ 0). It can be
noted that, while the numerator aligns 𝑥𝑘 , in the denom-
inator, the uniformity term (as defined in [22]) focuses
more on the closest samples in the representation space:
this could be undesirable, as these samples might have a
greater degree of positiveness than the considered 𝑥𝑘 . To
avoid that, we formulate a first extension (ℒ𝑡ℎ𝑟) of (8),
which limits the uniformity term (i.e., denominator) to
the samples that are at least more distant from the anchor
than the considered 𝑥𝑘 in the kernel space (omitting the
normalization in the starting condition):

𝑤𝑘(𝑠𝑡 − 𝑠𝑘) ≤ 0 if 𝑤𝑡 − 𝑤𝑘 ≤ 0 ∀𝑘, 𝑡 ̸= 𝑘 ∈ 𝐴(𝑖)

ℒ𝑡ℎ𝑟 = −
∑︀

𝑘
𝑤𝑘∑︀

𝑡 𝛿𝑤𝑡<𝑤𝑘
𝑤𝑡

log
(︁

exp(𝑠𝑘)∑︀
𝑡 ̸=𝑘 𝛿𝑤𝑡<𝑤𝑘

exp(𝑠𝑡)

)︁
(10)

Table 3
Final scores on the OpenBHB leaderboard.

Method Model Int. MAE BAcc Ext. MAE ℒ𝑐

Baseline (𝐿1) ResNet-18 2.67±0.05 6.7±0.1 4.18±0.01 1.86
ComBat ResNet-18 4.15±0.01 4.5±0.0 4.76±0.03 1.88

ℒ𝑒𝑥𝑝 ResNet-18 2.55±0.00 5.1±0.1 3.76±0.01 1.54

Ideally, ℒ𝑡ℎ𝑟 avoids repelling samples more similar than
𝑥𝑘 . However, it still focuses more on the closest sam-
ple “less positive” than 𝑥𝑘 , i.e. 𝑥𝑡 s.t 𝑤𝑡 > 𝑤𝑥 and
𝑤𝑡 ≤ 𝑤𝑗 ∀𝑗 ̸= 𝑘. As noted in [9, 5], increasing the mar-
gin with respect to the closest “negative” sample works
well for classification; however we argue it might not be
best suited for regression. For this reason, we propose
a second formulation (ℒ𝑒𝑥𝑝) that takes an opposite ap-
proach. Instead of focusing on repelling the closest “less
positive” sample, we increase the repulsion strength for
samples proportionally to their distance from the anchor
in the kernel space:

𝑤𝑘[𝑠𝑡(1− 𝑤𝑡)− 𝑠𝑘] ≤ 0 ∀𝑘, 𝑡 ̸= 𝑘 ∈ 𝐴(𝑖)

ℒ𝑒𝑥𝑝 = − 1∑︀
𝑗 𝑤𝑗

∑︁
𝑘∈𝐴(𝑖)

𝑤𝑘 log
exp(𝑠𝑘)∑︀

�̸�=𝑘 exp(𝑠𝑡(1− 𝑤𝑡))

(11)
In the resulting ℒ𝑒𝑥𝑝 formulation, the weighting factor
1 − 𝑤𝑡 acts like a temperature value, by giving more
weight to the samples which are farther away from the
anchor in the kernel space. Also, for a proper kernel
choice, samples closer than 𝑥𝑘 will be repelled with very
low strength (∼0). We argue that this approach is more
suited for continuous attributes (i.e., regression task), as
it enforces that samples close in the kernel space will be
close in the representation space.

Results With our proposed loss, we achieve the best
results (at this time) [9] on the OpenBHB leaderboard, as
shown in Tab. 3 (ℒ𝑐). Compared to the L1 and ComBat
baselines [19], we achieve a lower generalization error
to unseen sites (Ext. MAE), meaning that our method is
more robust to the collateral information related to the
site noise. We are currently carrying out further research
to gain further insights on the reasons of this behavior.

5. Privacy in deep learning
We investigated the possibility of utilizing debiasing tech-
nique also to prevent privacy leakage. In this context,
we are interested in recovering some private attribute
of the data, starting from the model outputs or embed-
dings. These kind of private attributes can be, in the
example of natural or facial images, age, gender, race,
etc. We observed that, under certain conditions, some
of the debiasing approaches are also suitable for privacy



preservation. We discovered the determining condition
to be the capability of effectively suppressing the bias re-
lated information inside of the model, rather than simply
re-weighting it. We show in [23] that debiasing tech-
niques can be used for privacy preservation purposes
when they allow to retain a high accuracy on the target
class, while making it harder to determine the private
attributes. In our work, we successfully remove collateral
private information, e.g. gender or age, from the latent
representation of the DL models on a variety of datasets,
including medical images; thus ensuring that they cannot
leak from the model outputs.
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