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Abstract
Recently, the number of attacks aiming at breaching networked and softwarized environments has been growing exponentially.
In particular, information hiding methods and covert attacks have been proven to be able to elude traditional detection
systems and exfiltrate sensitive data without producing visible network flows or data exchanges. In this context, Artificial
Intelligence techniques can play a key role in detecting these new emerging attacks, owing to their capability of quickly
processing huge amounts of data without the necessity of expert intervention. In this work, we discuss the main challenges
to face covert attacks in IoT and softwarized environments and we describe some preliminary results obtained by adopting
Deep Learning architectures.
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1. Introduction
The recent surge in the use of Artificial Intelligence (AI)
is also supported by its adoption to face the growing num-
ber of cyber threats [1]. In fact, in recent years, attacks
intensified both in terms of volume and complexity, for
instance, by using techniques to elude detection or to
conceal traffic flows exchanged with a remote controller
[2]. Moreover, advanced persistent threats demonstrated
their ability to bypass many security perimeters, also
due to the use of multi-stage loading architectures or
techniques to conceal attack routines. To this aim, AI
demonstrated to represent an effective tool for the de-
tection, reverse engineering, and forensics operations
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by offering valuable support during malware analysis
operations [3].

However, an emerging aspect concerns the use of infor-
mation hiding techniques to implement network covert
channels. In this case, the attacker aims at eluding de-
tection by not triggering classical defense systems based
on traffic anomalies or exfiltrating sensitive data without
producing visible flows. Owing to the effectiveness of the
approach, threat actors are increasingly exploring new
“carriers”, i.e., containers able to conceal secret and mali-
cious data. In this vein, a very recent effort is devoted to
understanding the feasibility of using the AI itself as a
carrier for malicious data; see, e.g., [4] for a discussion on
how information can be concealed in neurons or model
parameters. To make things more complex, the increas-
ing softwarization of networks and services accounts for
an almost boundless attack surface that can be exploited
to make future malware difficult to tame.
From this perspective, our paper showcases the most

recent advances and research questions on the use of AI
to mitigate malware leveraging covert communications
or implementing (hidden) leakage attempts in container-
ized architectures. Specifically, it discusses the use of
federated learning to efficiently deploy AI-based counter-
measures in ubiquitous IoT scenarios, as well as the chal-
lenges characterizing micro-service architectures built
around container technologies. In addition, to offer a
comprehensive discussion, we outline opportunities of-
fered by graph generation to devise new effective solu-
tions for detecting evolving threats.
Summing up, the contribution of this work is to shed
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Figure 1: Reference scenario for network covert channels.

new light on the use of AI to face the emerging threat
endowed with covert attacks, especially when targeting
realistic scenarios based on IoT or container technolo-
gies. Another contribution concerns the investigation
of “perspective” challenges given by the use of AI-based
frameworks.

The rest of the paper is structured as follows. Section
2 deals with AI to mitigate threats using covert channels
in IoT ecosystems, whereas Section 3 discusses oppor-
tunities for improving the security of containerized en-
vironments. Section 4 showcases opportunities arising
from graph generation, and 5 presents challenges and
opportunities of using AI for cybersecurity-related tasks.
Lastly, Section 6 concludes the paper.

2. Covert Malware in IoT Scenarios
Information hiding techniques are increasingly used by
attackers to conceal malware in different carriers [2]. For
example, network covert channels, i.e., hidden commu-
nications attempts nested within network traffic, can be
used to secretly exfiltrate information or to elude well-
known Intrusion Detection Systems (IDSes). Figure 1
depicts a possible reference scenario. In particular, it
shows the covert sender, e.g., a compromised node of an
IoT deployment, exchanging secret information via net-
work features with the covert receiver, e.g., the Command
& Control facility of the attacker. To do this, the sender
could directly conceal data within the header of a proto-
col or encode the information in the temporal evolution
of network packets belonging to a specific conversation.
Unfortunately, network covert channels are often ne-

glected by standard security tools, thus revealing their
presence is mandatory to fully assess the security of a
modern network. To this aim, we addressed the problem
of revealing hidden network communications targeting
the IPv4 protocol in an IoT ecosystem [5]. We considered
the exfiltration of data hidden in the Time To Live (TTL)
field of a tampered IoT node, i.e., the bit “1” and “0” are

encoded by the covert endpoints with two distinguished
TTL values. To reveal the presence of such covert chan-
nels, we developed a detection mechanism based on AI.
In particular, we leveraged autoencoders because of their
capability to also deal with attacks undocumented and
unknown a priori, as it happens when considering the
carrier used to create the covert channel. To perform
the detection, we monitored “windows” of network pack-
ets to extract statistical metrics related to the TTL, e.g,
the maximum, the minimum, or the average TTL values.
Only legitimate traffic information has been given to the
autoencoder to perform the training. By contrast, the
compromised traffic information has been used to eval-
uate the performance of the detection model. Results
showcased the effectiveness of the AI-based approach,
i.e., we obtained ∼91% and ∼94% for the accuracy and the
precision, respectively. Despite the promising results, we
extended the work evaluating an incremental learning
scheme based on an ensemble of autoencoders trained
on disjointed data chunks [6]. Figure 2 depicts the pro-
posed architecture. Compared to the results obtained by
using a single autoencoder, we obtained ∼95% both for
the accuracy and the precision when using an ensem-
ble of neural models. By using the incremental learning
scheme, the model can also be deployed on devices with
limited computational and storage resources, for instance
in home gateways or edge nodes.
Although the ensemble-based model allows for im-

proving the detection capabilities w.r.t. a single model,
it requires to set the ensemble size, i.e., the number of
windows to consider in learning the model. In addition,
it will be trained only against the data available on a
single edge node and the owners of the data could be not
inclined to share them.
To overcome all these issues, we are interested in in-

vestigating the usage of a federated learning approach
to address this task. In [7], we evaluated the benefits
of this paradigm in a related (information-hiding) sce-
nario in which malicious payloads are hidden within
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Figure 3: Federated Learning Architecture.

high-resolution icons that are commonly used in most
popular mobile ecosystems, including, Android and iOS.
Figure 3 depicts the proposed approach. We assume to
have a centralized server acting the role of coordinator
among 𝑛 nodes. The server contains a “weak” DNN de-
tector model trained on an initial dataset with a limited
number of examples. In the early stage, this initial detec-
tor is shared across n end nodes, which then fine-tune
their model against their own local data. To make the
predictor more robust and to find a global model in a
distributed manner, a subset of end nodes periodically
sends updates to the server containing the weights of
each layer composing their local DNN. The coordinator
aggregates the information received to build an ensemble
model and again shared it with the peers. This process is
iterated until a certain convergence criterion is reached.

3. Container Security
Containers are now the preferred choice for the creation
of scalable frameworks able to take advantage of the
micro-service paradigm. Specifically, their lightweight
nature offers many benefits compared to classical virtual
machines, e.g., a smaller resource footprint or a reduced
delay when deploying new services. Unfortunately, secu-
rity requirements of containers are still not fully under-
stood as for the case of virtual machines [8]. Among the

various possible attacks, threat actors are increasingly
exploiting techniques to let containers leak data beyond
a well-defined execution perimeter [9]. This mechanism
resembles the creation of a covert channel (see, Section 2):
in this case, a shared local resource is altered to encode a
secret message within its temporal evolution, which can
be observed outside the single container. For instance, a
sender process can manipulate the amount of memory
used within its container to alter the overall (host-level)
available memory. Then, in parallel, a receiving process
running into another container can infer the message by
inspecting such a global statistic, e.g., by reading an entry
in the /proc/ filesystem for the case of Docker [9, 10].
The security implications of such an “imperfect” isolation
are several. First, containers can exchange information
to orchestrate an attack and synchronize many processes
to implement DDoS/slow-DoS attacks [10, 11]. Second,
containers can leak information to recognize features
of the underlying hardware/software infrastructure and
support the reconnaissance stage at the basis of many
complex attack chains [10].
To mitigate such stealthy attacks, AI is a promising

approach, especially if jointly used with tools able to
gather precise information on the behavior of the overall
software architecture [12]. As an example, containers
exchanging information in a secret manner could exhibit
tight temporal correlations. This is due to the need of
altering a resource and “decode” changes close in time,
mainly to avoid that other competing processes will dis-
rupt the encoded secret [13]. Hence, AI can be used to
spot anomalies in the “wake-sleep” pattern of containers
or to enlighten possible correlations difficult to capture
with the common sense, e.g., the distillation of signatures
in system calls used to access shared statistics exposed by
the kernel of the guest OS. Another important application
of AI concerns the creation of suitable whitelists/black-
lists. In fact, containers can also exhibit tight-coupled
interactions when part of the same service. The AI can be
then leveraged to whitelist containers expected to have
overlapped or correlated timing behaviors and prevent
too aggressive detection rules. Techniques like process
mining can be used to define precise traces of the system
calls invoked by the software running within the vari-
ous containers. This can allow for the early revealing of
possible exfiltration attempts or feed an additional AI-
based framework to perform runtime detection of leaking
attempts.
Indeed, AI can also be employed to face other types

of threats. For instance, the traffic exchanged by various
containers or softwarized architectures can be used to
detect exfiltration attempts, network-based attacks (e.g.,
DoS/DDoS) or the presence of crypto-miners sending
data to a centralized master entity [14]. Besides, more
classical approaches based on the analysis of logs or the
(automatic) correlation of configurations and network



traffic should be updated to handle the highly-mutable
and dynamic nature of containerized services. Despite
the considered threat, micro-service architectures imple-
mented via containers present many research challenges
and open issues, which are very stimulating. On one
hand, the need of gathering, processing and storing traf-
fic at “wire speed” without degrading the overall Quality
of Experience for feeding the AI poses many technical
challenges. On the other hand, the presence of sensitive
data and the need of conforming to constraints like the
General Data Protection Regulation (GDPR) impose to
minimize the disclosure of personal or de-anonymizable
bits. The GDPR also requires to consider both the phys-
ical and legal boundaries where data is stored and pro-
cessed. In this case, softwarized networks and infras-
tructures are expected to greatly benefit from federated
approaches, especially owing to the edge flavor of many
future scenarios such as those based on 5G (see, e.g., [15]
and the references therein).

Lastly, container security will also benefit from threat-
specific hardening and configuration mechanisms. Also
in this case, AI represents a stimulating asset. For in-
stance, part of the software development life cycle of
containerized applications [16] can take advantage of AI,
especially to evaluate configurations, impose hardening
constraints or match security issues against known CVEs
or taxonomies. For the specific case of covert attacks, a
promising use case for AI concerns the identification of
resources that can be (ab)used to encode secret informa-
tion and characterized by “loose” isolation properties. As
a paradigmatic example, a suitable resource matrix [17]
can be computed by inspecting containers and software
(e.g., used libraries, code patterns, or execution privileges)
to provide automatic configuration policies preventing
leaking behaviors. This represents a major research chal-
lenge, especially to avoid that the container engine will
terminate or impede the execution of “flagged” contain-
ers in a too aggressive manner, thus impairing the quality
of the overall service.

4. Graph Generation for Detection
In real-world scenarios, such as social networks, biology,
and recommender systems, complex relations among the
entities of graphs can hardly be modeled as flat tabu-
lar data. In addition, many current AI-based solutions
assume that the underlying graph is static, however real-
world networks are dynamic as both their topology and
dimension tend to change over time. Dynamic graphs
[18] are typically adopted in several application domains,
including cybersecurity with different purposes such as
malware [19] and intrusion detection [20]. Dynamic evo-
lution is difficult to model due to the dynamic nature
of the underlying process, where continuous changes in

the graph structure require flexible architectures able to
handle such modifications. We plan to devise a deep-
learning-based approach aiming at predicting graph evo-
lution by considering stepwise changes (that can affect
both, node and edge set). Moreover, to model long-term
evolutions, we are interested in defining an architecture
invariant to the network dimension. Learning the evolu-
tion of dynamic graphs by extracting their temporal and
structural characteristics could be useful to identify poly-
morphic cyber attacks, such as polymorphicmalware [21]
or those leveraging some form of obfuscation. This can
also help to assess the emerging wave of steganographic
malware [22]. In essence, this class of threats leverages
information hiding techniques to conceal malicious as-
sets (e.g., configuration files or additional attack stages)
in various software artifacts, such as images, executables
or metadata. Unfortunately, being very threat-specific,
generalizing their detection via standard mechanisms or
signature-based approaches is a challenging task. In this
vein, graph generation could lead to a more abstract and
unified framework to early detect malicious software try-
ing to reduce its footprint to remain unnoticed for long
time frames.

5. Future and Main Challenges
To effectively deploy AI for taming covert and hidden
threats, various challenges and refinements have to be
addressed. First, the obtained data should model as faith-
fully as possible real scenarios dealing with cybersecurity.
This is in general complex, but it becomes exception-
ally hard when considering information-hiding-capable
threats. In fact, the lack of publicly-available datasets
capturing the presence of malware using covert channels
or other elusive mechanisms is a well-known problem
[2, 22]. Moreover, in publicly-available datasets samples
that represent cyber attacks are rare. Hence, the class
imbalance can dramatically affect the performances of
the detection models. Therefore, it is crucial to devise ap-
proaches able to handle this skewness, e.g., by exploiting
generative models able to produce realistic anomalies.
Again, real data are difficult to retrieve, and, moreover,
they are usually affected by noise. In this respect, un-
labelled data can lead the systems to make errors if not
properly handled as anomalies could be labeled as “nor-
mal”, and, vice versa. In addition, due to data scarcity
and skewness, the systems could erroneously classify in-
frequent legit behaviors (due to data shifts) as anomalous
ones.
Moreover, some of the techniques briefly discussed

in this work [5, 6, 7] are threat-dependent and difficult
to generalize. For instance, AI-based models are able
to detect hidden communication attempts only in fields
of the IPv4 protocol sharing similar functionalities [6].



Therefore, a more general approach should be considered
to devise flexible and robust models. A possible idea is
to use more abstract metrics typical of at least a class
of hiding mechanisms. Then, multiple AI pipelines can
be deployed to efficiently detect a family of attacks, e.g.,
methods targeting IPv4 or IPv6 conversations [23]. In
addition, in unsupervised settings, it is difficult to define
boundaries between normal and anomalous behaviors.
Again, this is especially hard when considering covert at-
tacks, which are stealthy by-design. Similarly, challenges
have to be faced when considering container security.
On one hand, the overall security model still needs to be
fully understood. On the other hand, the complexity of
the various software layers requires proper modeling to
efficiently provide data to the AI.

Lastly, as cyber-attacks can be represented via dynamic
graphs, it is crucial to define strategies able to detect
threats in evolving networks. Modeling and predicting
the evolution of dynamic graphs is a challenging task due
to their evolving nature. State-of-the-art systems lack
flexibility, and, in this respect, models that guarantee
invariance w.r.t the input size should be devised.

6. Conclusions
This paper discussed the use of AI to address emerging
challenges, i.e., threats endowed with mechanisms able
to covertly leak data in networked and softwarized en-
vironments. As discussed, each scenario requires facing
different challenges. For instance, when dealing with
IoT ecosystems, federated learning could be considered
a main “technology enabler”, especially for distributing
computation and guaranteeing that sensitive data remain
confined at the border of the network. Instead, container-
ized architecture could benefit from AI to find correla-
tions and patterns in the complex interplay of software
components.
Unfortunately, the AI could also be exploited to hide

data, thus spawning new threats. To this aim, graph gen-
eration should be carefully considered as it can help in
finding a convenient representation of operations (both
at the abstract level or in terms of system calls) to sup-
port the detection of advanced offensive schemes. Ac-
cordingly, part of our future research will address the
aforementioned topics.

Acknowledgments
This work was partially supported by project SERICS
(PE00000014) under the NRRP MUR program funded by
the EU - NGEU.

References
[1] M. J. H. Faruk, H. Shahriar, M. Valero, F. L. Barsha,

S. Sobhan, M. A. Khan, M. Whitman, A. Cuzzocrea,
D. Lo, A. Rahman, et al., Malware detection and
prevention using artificial intelligence techniques,
in: 2021 IEEE International Conference on Big Data
(Big Data), IEEE, 2021, pp. 5369–5377.

[2] W.Mazurczyk, L. Caviglione, InformationHiding as
a Challenge for Malware Detection, IEEE Security
& Privacy 2 (2015) 89–93.

[3] D. Ucci, L. Aniello, R. Baldoni, Survey of machine
learning techniques for malware analysis, Comput-
ers & Security 81 (2019) 123–147.

[4] T. Liu, Z. Liu, Q. Liu, W. Wen, W. Xu, M. Li, Ste-
gonet: Turn deep neural network into a stegomal-
ware, in: Annual Computer Security Applications
Conference, 2020, pp. 928–938.

[5] M. Guarascio, M. Zuppelli, N. Cassavia, G. Manco,
L. Caviglione, Detection of Network Covert Chan-
nels in IoT Ecosystems Using Machine Learning, in:
Proc. of The Italian Conference on CyberSecurity,
volume 3260 of CEUR Workshop Proceedings, 2022,
pp. 102–113.

[6] N. Cassavia, L. Caviglione, M. Guarascio, A. Liguori,
M. Zuppelli, Ensembling Sparse Autoencoders for
Network Covert Channel Detection in IoT Ecosys-
tems, in: Foundations of Intelligent Systems:
26th International Symposium, Springer, 2022, pp.
209–218.

[7] N. Cassavia, L. Caviglione, M. Guarascio, A. Liguori,
G. Surace, M. Zuppelli, Federated learning for the
efficient detection of steganographic threats hidden
in image icons, in: Pervasive Knowledge and Collec-
tive Intelligence on Web and Social Media, Springer
Nature Switzerland, Cham, 2023, pp. 83–95.

[8] S. Sultan, I. Ahmad, T. Dimitriou, Container secu-
rity: Issues, challenges, and the road ahead, IEEE
Access 7 (2019) 52976–52996.

[9] Y. Luo, W. Luo, X. Sun, Q. Shen, A. Ruan, Z. Wu,
Whispers between the containers: High-capacity
covert channel attacks in docker, in: Trustcom/Big-
DataSE/ISPA, IEEE, 2016, pp. 630–637.

[10] X. Gao, B. Steenkamer, Z. Gu, M. Kayaalp, D. Pen-
darakis, H. Wang, A study on the security implica-
tions of information leakages in container clouds,
IEEE Transactions on Dependable and Secure Com-
puting 18 (2018) 174–191.

[11] I. Vaccari, M. Aiello, E. Cambiaso, Slowtt: A slow
denial of service against iot networks, Information
11 (2020) 452.

[12] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari,
A. Zomaya, Ai-enabled secure microservices in
edge computing: Opportunities and challenges,
IEEE Transactions on Services Computing (2022).



[13] C. Marforio, H. Ritzdorf, A. Francillon, S. Capkun,
Analysis of the communication between colluding
applications on modern smartphones, in: Proceed-
ings of the 28th Annual Computer Security Appli-
cations Conference, 2012, pp. 51–60.

[14] J. A. Perez-Diaz, I. A. Valdovinos, K.-K. R. Choo,
D. Zhu, A flexible sdn-based architecture for
identifying and mitigating low-rate ddos attacks
using machine learning, IEEE Access 8 (2020)
155859–155872.

[15] V. Rey, P. M. S. Sánchez, A. H. Celdrán, G. Bovet,
Federated learning for malware detection in iot de-
vices, Computer Networks 204 (2022) 108693.

[16] T. Rangnau, R. v. Buijtenen, F. Fransen, F. Turk-
men, Continuous security testing: A case study
on integrating dynamic security testing tools in
ci/cd pipelines, in: 2020 IEEE 24th International En-
terprise Distributed Object Computing Conference
(EDOC), IEEE, 2020, pp. 145–154.

[17] R. A. Kemmerer, Shared resource matrix methodol-
ogy: An approach to identifying storage and timing
channels, ACM Transactions on Computer Systems
1 (1983) 256–277.

[18] S. Gupta, S. Bedathur, A survey on temporal graph

representation learning and generative modeling,
2022. doi:10.48550/ARXIV.2208.12126.

[19] B. Anderson, D. Quist, J. Neil, C. Storlie, T. Lane,
Graph-based malware detection using dynamic
analysis, Journal in computer Virology 7 (2011)
247–258.

[20] G. Duan, H. Lv, H. Wang, G. Feng, Application
of a dynamic line graph neural network for intru-
sion detection with semisupervised learning, IEEE
Transactions on Information Forensics and Security
18 (2023) 699–714.

[21] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti, T. Du-
mitras, When malware changed its mind: An em-
pirical study of variable program behaviors in the
real world., in: USENIX Security Symposium, 2021,
pp. 3487–3504.

[22] L. Caviglione, W. Mazurczyk, Never mind the mal-
ware, here’s the stegomalware, IEEE Security &
Privacy 20 (2022) 101–106.

[23] W. Mazurczyk, K. Powójski, L. Caviglione, IPv6
covert channels in the wild, in: Proceedings of the
third central european cybersecurity conference,
2019, pp. 1–6.

http://dx.doi.org/10.48550/ARXIV.2208.12126

	1 Introduction
	2 Covert Malware in IoT Scenarios
	3 Container Security
	4 Graph Generation for Detection
	5 Future and Main Challenges
	6 Conclusions

