
Few Shot Learning Approaches for Classifying Rare
Mobile-App Encrypted Traffic Samples
Giampaolo Bovenzi1,∗, Davide Di Monda2, Antonio Montieri1, Valerio Persico1 and
Antonio Pescapé1,∗

1University of Napoli Federico II, Napoli (Italy)
2IMT School for Advanced Studies Lucca

Abstract
Deep Learning (DL) is effective for classifying encrypted network traffic. However, it requires large amounts of labeled data
to feed typical data-hungry training processes. Unfortunately, collecting and labeling rich network-traffic datasets is a costly
procedure not always affordable in practice, possibly hindering DL solutions. Few Shot Learning (FSL) aims at tackling this
shortcoming, providing means to leverage non-few knowledge to support traffic classification tasks with few labeled samples
available. Although FSL has been largely investigated in other domains (e.g., computer vision), it has been only preliminarily
adopted for traffic classification. In this work, we provide a first attempt in adopting FSL for classifying mobile-app encrypted
traffic. We consider the two most popular FSL paradigms: meta learning (learn to learn) and transfer learning (knowledge
transfer from related tasks). We consider a number of variants for each (i.e. MatchingNet, ProtoNet, RelationNet, MetaOptNet,
fo-MAML, ANIL, Fine-Tuning, and Freezing) and provide an empirical assessment of these approaches when adopted for
mobile-app traffic classification considering the Mirage-2019 dataset as a test bench. Results show that FSL in mobile-app
traffic classification is feasible, reaching satisfactory results (up to 80% F1-score), but leaving room for improvement.
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1. Introduction and Background
The diffusion of mobile devices has dramatically modified
the landscape of network traffic, which is rapidly grow-
ing in volume and changing in nature. In this context,
traffic classification has acquired a more and more funda-
mental role as it supports a number of activities related
to network management, such as resource provisioning,
billing, accounting, security as well as user-activity iden-
tification and user profiling.

Indeed, traffic classification is an active research field,
with the available approaches to be constantly adapted to
the ever-evolving nature of the networks and the traffic
traversing them. For instance, simple approaches rely-
ing on port numbers are hindered by port-independent
applications or applications using standard ports to dis-
guise their traffic. Similarly, encryption (e.g., via TLS and
HTTPS protocols) critically compromises the effective-
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ness of approaches based onDeep Packet Inspection (DPI)
that look for signatures or patterns within cipher-text
(that are further challenged by the will of safeguarding
user privacy) [1]. To face these shortcomings, traffic
classification approaches often take advantage of statisti-
cal or time-series features, which are leveraged to train
data-driven approaches based on Machine Learning. Un-
fortunately, these approaches may not scale well with
traffic classes rapidly evolving over time, as they require
domain experts guiding the feature-extraction process.
Thus, recent traffic-classification solutions today resort
to Deep Learning (DL) approaches that capitalize on large
amounts of labeled data to automatically train supervised
models to perform feature extraction from raw data.

However, collecting large labeled network-traffic
datasets is a cumbersome and time-consuming process.
In fact, capturing network-traffic traces, splitting them
in traffic objects (e.g., biflows), and associating labels to
them, often requires dedicated setups [2] and introduces
user-privacy and business-sensitivity concerns [3]. In
addition, traffic rapidly evolving over time makes things
even worse: new apps and new app versions are con-
tinuously deployed and introduce drift in traffic. This
requires the above process to be run in a continuous way
in order to provide large, rich, and up-to-date datasets
that are mandatory to feed the data-hungry DL training
process. As a result, it is not uncommon for available
labeled data to be unbalanced, containing limited exam-
ples for some classes, thus hindering the adoption of DL
that falls short when only limited knowledge is available
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for some of the classes.
Few Shot Learning (FSL) aims at tackling this situation,

by leveraging non-few knowledge (about tasks related to
the few one) in order to build a model capable of gener-
alizing enough on new tasks (i.e. those with few samples
available). Indeed, the problem of learning with few sam-
ples (viz. shots) has strongly attracted the interest of the
research community of several research domains, with
the way, the prior knowledge is exploited defining differ-
ent families of approaches [4]. FSL was initially tackled
and in-depth explored in the computer vision domain.
Accordingly, the taxonomy of the available solutions is
very rich [4], including: (i) Algorithm-based approaches,
using prior knowledge to alter the search strategy for
new parameters, providing a baseline that may be useful
for the specific few-shot task [5]; (ii) Model-based ap-
proaches, allowing to jointly learn a set of related initial
tasks in order to reduce the searching space of best pa-
rameters [6–8]; (iii) Data-based approaches, leveraging
prior knowledge to augment data of the few-shot tasks.

Given that such approaches proved promising in
other domains, recently research efforts have been
made to apply FSL also in networking to address
network-traffic classification. Hence, most networking-
related works dealing with FSL are typically based on
previous computer-vision solutions, with minor variants
being proposed [9–11]. In fact, most of the proposals
leveraging FSL in networking tackle the problem of attack
traffic classification [9–14]. To the best of our knowledge,
we provide the first attempt in applying FSL to mobile-app
encrypted traffic classification. More in general, although
the literature on FSL is rich, the studies that apply these
solutions to network-traffic classification are limited and
do not explore the whole range of possibilities that FSL
provides. Often, the evaluation of the solutions investi-
gated in the traffic-classification domain is also limited, as
proposals are only compared against others not tailored
for FSL [9, 11, 13, 14] (thus, emphasizing the benefits of
FSL but not investigating those related to specific FSL
families or approaches).

In this work, we provide an extensive empirical as-
sessment of two popular FSL paradigms: meta learning
and transfer learning. Meta learning improves the per-
formance of a new task given the meta-knowledge ex-
tracted across tasks by a meta-learner. In a few-shot
context, meta learning is used jointly with episodic learn-
ing, which consists in organizing the training phase in a
series of learning problems—also called episodes—in or-
der to allow a model (𝑖) to quickly learn novel knowledge
by generalizing from previously encountered learning
tasks and (𝑖𝑖) to distinguish unknown classes given few
samples. Differently, transfer learning aims to transfer
knowledge from a task to a related one with the objective
of fast adaptation, reduced complexity, and performance
improvements. In the few-shot scenario, the knowledge

acquired from abundant classes is used to train an em-
bedding function that is subsequently adapted to a new
task leveraging a limited number of samples. Herein, we
consider a number of solutions, including MatchingNet ,
ProtoNet , RelationNet , and MetaOptNet from the model-
based family, and fo-MAML , ANIL , Fine Tuning, and Freez-
ing from the algorithm-based one. We underline that
data-based approaches are not considered at all because
training a generation model with few real samples may
result in introducing biased synthetic samples.

Accordingly, in this paper: (i) we investigate eight FSL
approaches that are properly adapted to the traffic classi-
fication, dealing with the problem of scarcity of data in
mobile-app traffic; (ii) we introduce a meta-learning pro-
cedure that takes advantage of an extra portion of classes
(viz. validation classes) to enforce early-stopping in meta-
training; (iii) we explore several directions of analysis by
inspecting the impact of using different FSL setups in
terms of number of training classes (viz. 𝑁) and of shots
(viz. 𝐾); (iv) we leverage the publicly available mobile
traffic dataset Mirage-2019 to foster reproducibility.

2. Classifying Mobile-App Traffic
with FSL

2.1. Input Data and Embedding Function
We consider the bidirectional flow (biflow) as the relevant
traffic object of our analysis. A biflow is defined as an
aggregation of all network packets sharing the same 5-
tuple (i.e. source IP and port, destination IP and port,
and transport-level protocol) including both directions
of communication.

To feed the FSL methods exploited herein, we extract
a set of informative fields from the sequence of the first
𝑁𝑝 packets of each biflow: (i) the number of bytes in
transport layer payload; (ii) the packet direction (can be
−1 or 1); (iii) the TCP windows size (equal to 0 for UDP
packets); (iv) and the elapsed time since the arrival of the
previous packet (i.e. inter-arrival time). The input data
are Min-Max normalized within [0, 1].

Additionally, all FSL models embed the input data
into a lower-dimensional space using an embedding func-
tion. The specific embedding function used herein is a
state-of-the-art DL network widely used in and suited
for the traffic classification domain [15, 16].1 Specifically,
the embedding function is a single-modal bidimensional
convolutional neural network (2D-CNN) whose architec-
ture and hyperparameters are those originally proposed
for traffic classification [16].

1We have selected both input data and embedding function based on
state-of-the-art outcomes [15, 16] and a preliminary experimental
campaign whose results are not reported for the sake of brevity.



2.2. Few-Shot Learning Paradigms
Meta Learning. Meta-learning approaches require
a preliminary phase to manage the generation of
N-way K-shot episodes. In detail, given a dataset
𝐷 = {𝐷𝑛𝑓1 , 𝐷𝑛𝑓2 , 𝐷𝑓 }, the three subsets have a disjoint la-
bel space. 𝐷𝑓 includes the samples from the less popu-
lated (i.e. few-shot) classes, while 𝐷𝑛𝑓1 and 𝐷𝑛𝑓2 contain
non-few classes. Detailing, each episode is formed by
randomly sampling 𝑁 classes (N-way). 𝐷𝑛𝑓1 , 𝐷𝑛𝑓2 , and 𝐷𝑓
are used during training, validation, and testing phases,
respectively. Defining an episode consists in construct-
ing two (non overlapping) partitions: (𝑖) the support set
having𝑁 ×𝐾𝑠 samples (where𝐾𝑠 defines the𝐾-shot setup)
and (𝑖𝑖) the query set having 𝑁 × 𝐾𝑞 samples.

Based on this episode creation, (𝑖) during a meta-
training phase, the model learns from a set of 𝑇 tasks—
i.e. N-way K-shot classification tasks—using samples from
the support set and measures the error on the query
set. Then, (𝑖𝑖) the generalization ability of the classi-
fier is tested with a meta-testing phase, using an anal-
ogous episode-based procedure. Unlike the common
meta-learning procedure, we perform an additional (𝑖𝑖𝑖)
meta-validation phase leveraging 𝐷𝑛𝑓2 .

More specifically, meta-training is performed for a
certain number of epochs in an episodic manner. On the
other hand, 𝐷𝑛𝑓2 is exploited to enforce an early-stopping
procedure based on the accuracy attained on it and to
select the model showing the best performance on it after
the training procedure is completed. Finally, meta-testing
is performed on this best-performing model. We remark
that during meta-testing the performance achieved by
the selected model is properly evaluated on 𝐷𝑓.
Transfer Learning. Transfer learning aims at learning
generic features from a set of non-few classes (𝑇𝑛𝑓 task)
and then specializes in the few-shot context (𝑇𝑓 task). Ac-
cordingly, similar to the meta-learning, 𝐷 = {𝐷𝑛𝑓1 , 𝐷𝑓 },
with the latter encompassing the few-shot classes. How-
ever, transfer learning needs to further split 𝐷𝑛𝑓1 and 𝐷𝑓
(e.g., via hold-out) into a training set and a test set, which
are analogous to the support and the query sets in meta
learning, respectively. Specifically, 𝑇𝑛𝑓 learns (resp. eval-
uates the error) with the training (resp. test) data from
𝐷𝑛𝑓1 . Similarly, 𝑇𝑓 enriches the knowledge obtained on 𝑇𝑛𝑓
with a set of data obtained from the samples belonging
to 𝐷𝑓. To mimic the support set of the meta-learning
procedure, during 𝑇𝑓 we sampled from the training set 𝐾
shots per class.

2.3. Few-Shot Learning Approaches
Here, we describe the FSL approaches we deal with. They
belong to the model- and algorithm-based families. All
(but transfer learning ones) implement meta learning.
Model-based Approaches. Model-based methods

learn by constraining the hypothesis space to a smaller
one through the use of prior knowledge, with the aim of
reducing the risk of overfitting. More specifically, they
apply a dedicated embedding function—learned based
on prior knowledge extracted from the meta-training
tasks—to support and query samples mapping them in a
lower-dimensional space. In such a way, similar samples
are closer to each other, whereas dissimilar samples are
more easily differentiable (i.e. the hypothesis space is
reduced). Then, the embeddings of the support set are
used by a comparator to classify the embedded query set
by measuring their similarity.

Model-based approaches differ by the comparator
and then the similarity mechanism leveraged. We con-
sider the following approaches: (i) Matching Networks
(MatchingNet ) [6] performs a generalized form of nearest-
neighbors classification based on Euclidean distance;
(ii) Prototypical Networks (ProtoNet ) [7] classify a sample
via a Euclidean distance function calculated between its
embedding and a prototype, i.e. a centroid representative
of a class; (iii) Relation Network (RelationNet ) [8] employs
a relation module based on a convolutional network that
measures the similarity between the embeddings of query
and support samples of each class; (iv) MetaOptNet [17]
exploits a linear Support Vector Machine, trained on la-
beled support samples, as the comparator and measures
the generalization error on query samples.
Algorithm-based Approaches. Learning models be-
longing to the algorithm-based category search in the
hypothesis space for the parameter set corresponding
to the best hypothesis in such a space. Unfortunately,
in few-shot scenarios, the samples available for training
are limited to properly update the parameter set, thus re-
sulting in an unreliable risk minimizer. To deal with this
issue, algorithm-based methods exploit the prior knowl-
edge to influence how the parameter set is obtained.

In the present paper, we exploit MAML [5] and ANIL [18],
which are meta-learning approaches that aim at refin-
ing meta-learned parameters by learning an initial pa-
rameter set via a meta-learning procedure and further
refining it using 𝐷𝑓. MAML—short forModel-Agnostic Meta-
Learning—continuously updates the initial meta-learned
parameter set based on the performance attained on the
episodic tasks (viz. inner-loop adaptation) with the aim of
finding a highly adaptable set of parameters. To mitigate
the well-known computational burden of MAML , herein
we employ a simpler but almost equally well-performing
version named First-Order MAML (fo-MAML) [5] that only
uses first-order gradients during parameter optimization.
In addition to fo-MAML , we also evaluate ANIL—short for
Almost No Inner Loop—a simplified version of MAML be-
ing equally effective but computationally faster. ANIL
removes the inner-loop updates for the embedding func-
tion during meta-training and meta-testing and applies
them only to the model head.



We also employ two transfer learning approaches
(i.e. Fine-Tuning and Freezing) that allow the model to
learn an initial parameter set from other tasks (𝐷𝑛𝑓1) and
then refine it using 𝐷𝑓. More specifically, Fine-Tuning
(TL FT ) involves: (𝑖) learning the initial model parameters
through task 𝑇𝑛𝑓 and, (𝑖𝑖) refining the weights—during the
training phase of 𝑇𝑓—starting from the values computed
in the preceding task using only samples from few-shot
classes. This results in significantly faster execution. On
the other hand, TL FT is affected by the problem of forget-
ting the old classes. Freezing (TL FZ ) freezes the weights
of the embedding function when a new task is presented
and allows the update of the weights associated with the
model head (differently from TL FT where both the em-
bedding function and head are updated). The expected
result is that the model retains the previously learned
knowledge, but also adapts to few-shot classes in case of
proper generalization capability.

3. Experimental Setup and
Evaluation

3.1. Experimental Setup
3.1.1. Dataset

In this study, we leverage the publicly released Mirage-
2019 dataset [2] containing traffic of 40 Android apps.2

It was collected at the University of Napoli “Federico II”
in 2017–2019 by involving 300 voluntary students mim-
icking typical app use cases. Ground truth is obtained by
using metadata log files collected during each capture:
each biflow is labeled with the related Android-package
name. The number of biflows per app depends on the
specific app and ranges from 361 to 8246, despite the time
that apps are used was roughly the same. This denotes a
real-world and challenging scenario for the mobile-app
traffic classification task considered.

3.1.2. Few-Shot Learning Setup

The FSL setup is described by detailing the commonmeta-
learning setup and the configuration of FSL models.
Meta-Learning Setup. We explain the meta-learning
setup in terms of dataset partitioning and episode def-
inition. The classes (viz. apps) of Mirage-2019 are par-
titioned into three disjoint sets corresponding to the
apps considered to build 𝐷𝑛𝑓1 , 𝐷𝑛𝑓2 , and 𝐷𝑓, respectively
(Sec. 2.2 describes their use). More specifically, 𝐷𝑛𝑓1 in-
cludes the 24 most populous apps of Mirage-2019 , 𝐷𝑛𝑓2
consists of the most populous 8 apps besides those in
𝐷𝑛𝑓1 , and the last subset 𝐷𝑓 includes the 8 remaining
least-populated apps (i.e. with less than 1000 samples).

2https://traffic.comics.unina.it/mirage/mirage-2019.html

Once the dataset partition is set, the definition of
meta-learning episodes is based on how 𝑁 (ways) and
𝐾 (shots) are selected (see Sec. 2.2). For meta-training,
we set 𝑁 and 𝐾 according to the goals of our analyses
(always considering 𝐾 = 𝐾𝑠 = 𝐾𝑞). For meta-validation
and meta-testing, we set 𝑁 = 8 and 𝐾𝑞 = 100, to classify
the samples belonging to all classes in 𝐷𝑛𝑓2 and 𝐷𝑓 and
improve the coverage and the stability of results.

Regarding the common hyperparameters, charac-
terizing all FSL models, the best configuration has 200
epochs, each encompassing 100 episodes, and the Adam
optimizer set with 10−4 learning rate and a learning rate
scheduler having step size of 20 and decay of 1.0. To miti-
gate the overfitting, we exploit an early-stopping mecha-
nism thatmonitors the accuracy on𝐷𝑛𝑓2 and hasminimum
delta of 0.01 and patience of 20 epochs. Finally, regarding
input data (see Sec. 2.1), we use 𝑁𝑝 = 10. This choice is
motivated by the outcome of the sensitivity analysis we
conducted in [2] on Mirage-2019 using the same embed-
ding function considered herein.

3.1.3. Performance Metrics

To evaluate the performance of FSL methods, we use
the macro F1-score and the silhouette score. For both
metrics, we show the per-episode mean and related stan-
dard deviation attained on 𝐷𝑓.3 Themacro F1-score is the
harmonic mean of per-class precision and recall arith-
metically averaged over apps. We leverage the F1-score
for both meta-learning (whose episodes are balanced by
construction) and transfer-learning (suffering from data
imbalance) approaches because it is more robust than the
common accuracy when working with skewed data. The
silhouette score quantifies how similar a sample is to its
own cluster compared to the others, and it ranges from
−1 (worst) to +1 (best). This is paramount since most
meta-models behave like a nearest-neighbor classifier in
the embedded space.

3.2. Experimental Evaluation
3.2.1. Sensitivity to N

This experimental campaign investigates the trend of
the F1-score when varying the number of train ways 𝑁.4

More specifically, 𝑁 ranges from 2 to 8 with a step of
2, and the number of shots is kept constant at 𝐾 = 25
for both query and support sets (i.e. 𝑁-ways 25-shots
meta-training episodes).

Results in Fig. 1 show that the number of train ways has
little impact on the performance of FSL approaches, with

3For transfer-learning approaches we perform multiple 𝑇𝑓 (starting
from the same 𝑇𝑛𝑓) by randomly sample 𝐾 biflows over 10 runs.

4Note that the algorithm-based approaches (i.e. fo-MAML and ANIL)
require that the same value of 𝑁 is used for both meta-training and
meta-testing, not allowing for this specific analysis.

https://traffic.comics.unina.it/mirage/mirage-2019.html


the best-performing ones exhibiting a constant trend
when varying 𝑁. More specifically, MatchingNet reaches
the highest F1-score of ≈ 70%, TL FZ and TL FT follow close
behind, while MetaOptNet achieves ≈ 65% F1-score. fo-
MAML and ANIL perform worse than all model-based ap-
proaches but RelationNet , being the worst performing.
Notably, only the performance of the latter significantly
varies with 𝑁.
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Figure 1: Sensitivity analysis to the number of ways (𝑁).

3.2.2. Sensitivity to K

This section presents the sensitivity analysis of FSL al-
gorithms when considering a variable number of shots
𝐾. For meta-training episodes, we consider 𝐾 = 𝐾𝑞 =
𝐾𝑠 ∈ {5, 15, 25, 50, 100} in both query and support sets
and 𝑁 = 8. For meta-testing and meta-validation ones,
𝐾𝑠 follows the values used in meta training.

Figure 2 exhibits that all FSL approaches significantly
increase their F1-score for higher values of train shots. The
best-performing approach (i.e. MatchingNet) achieves an
F1-score > 80% when 𝐾 = 100, despite starting from 50%
when 𝐾 = 5. TL FT , TL FZ , and MetaOptNet similarly have
satisfactory performance. ProtoNet , ANIL , and fo-MAML
do not exceed 60% F1-score, despite a sharp rise when
passing from 𝐾 = 5 to 𝐾 = 15 can be observed.

3.2.3. Embedding Effectiveness vs Performance

This analysis relates classification performance (mea-
sured via F1-score) to the capability of the embedding
function to separate app-clusters into the latent space
(expressed via silhouette score). Accordingly, Fig. 3 de-
picts the related scatter-plot by considering 8-ways 𝐾-
shots episodes with 𝐾 ∈ {5, 15, 25, 50, 100}. Three main
trends emerge for different FSL approaches: (i) corre-
lated, for ANIL , fo-MAML , and MetaOptNet ; (ii) not correlated,
for RelationNet and TL FZ ; (iii) negatively correlated, for
ProtoNet , TL FT , and MatchingNet . In detail, considering
the peculiarities of each approach, these results can be
summarized as follows. First, exploiting complex com-
parators (i.e. ANIL , fo-MAML , and MetaOptNet ) leads to more
separable clusters: the better accuracy, the higher num-
ber of shots used. Then, TL FZ (and also TL FT ) behavior
clearly demonstrates that training a complex comparator
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Figure 2: Sensitivity analysis to the number of shots (𝐾).
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Figure 3: Scatter plot of F1-score and silhouette score of
all FSL approaches considering 8-ways 𝐾-shots episodes with
𝐾 ∈ {5, 15, 25, 50, 100}. The bigger 𝐾, the bigger the marker.

(i.e. a fully-connected layer) on a poorly separable latent
space still obtains a higher accuracy when the number
of shots increases. Finally, using a simple comparator
(i.e. MatchingNet and ProtoNet using Euclidean distance)
does not lead to an easily-separable latent space—which
is less separable with higher values of 𝐾—but it is increas-
ingly capable of distinguishing classes when the number
of shots grows.

From this analysis emerges that the selection of the ap-
proach has an impact on the embedding function training.
Particularly, the way the embeddings are manipulated
by the comparator/classifier has the most impact.

4. Related Work
Because of the relevance of the problem FSL aims to solve,
it has attracted the interest of research communities
working in several domains, including networking and
traffic classification. Because FSL originated in the field
of computer vision [5–8, 17, 18], applications of FSL to
the networking domain mostly exploit minor variants of
solutions designed for computer vision. Hereinafter, we
discuss the most relevant studies facing traffic classifica-
tion in a few-shot context, underlining their key aspects
and the changes made w.r.t. computer vision-tailored FSL
approaches that inspired them. Notably, all the relevant
studies [9–14, 19, 20] date to 2018–2022, witnessing the
recent interest of the networking community in this topic.
Additionally, we select these works mainly because they
focus on the problem of classifying unseen traffic with
just few samples. On the other hand, we do not consider
other studies dealing with FSL that perform the model



evaluation on seen classes (i.e. where the main goal is
simply mitigating the class imbalance in data). Regarding
the specific task addressed, a reduced number of works
face (encrypted) traffic classification [11, 19, 20]. How-
ever, differently from the present paper, none considers
mobile-app traffic. Conversely, a higher number of works
leverage FSL in the (similar) context of attack traffic clas-
sification and intrusion detection [9, 10, 12–14]. The FSL
approaches applied in these contexts belong to model-
based and algorithm-based families. Most of them also
exploit prior knowledge via meta learning, whereas only
the oldest works [19, 20] leverage the transfer-learning
paradigm. We underline that only two studies [10, 12]
evaluate more than one FSL approach. This aspect high-
lights the lack of a wide comparison among the various
few-shot families in the traffic-classification literature.

5. Conclusions
In this paper, an extensive empirical study of mobile
traffic classification through different FSL approaches
has been performed, as a means to cope with the prob-
lem of scarcity of training data for some of the classes.
The evaluation relied on Mirage-2019 , a publicly available
mobile-app dataset. The analyses assessed: (i) the impact
of changing the number of classes in episodic learning,
(ii) the sensitivity to the number of samples available for
each class, and (iii) the relation between the goodness of
embedding space and the classification performance.

The performance figures of a number of meta-learning
FSL algorithms have been assessed: ProtoNet ,
MatchingNet , RelationNet , MetaOptNet , MAML , and
ANIL . Transfer-learning approaches were also consid-
ered, i.e. Fine-Tuning, and Freezing. We found that
(i) the number of train ways has little impact on the
performance of FSL approaches, (ii) all FSL approaches
significantly increase their F1-score for higher values
of train shots, and (iii) performance of FSL approaches
with less (resp. more) complex comparators obtains high
F1-score and bad (resp. good) embedding separation.

Based on the outcomes of the experimentation, we
identify various improvement avenues. These will ex-
plore novel FSL methods in multiple directions linked
to (i) the optimization of the learning objective (using
more complex loss functions to enhance the goodness
of embeddings), (ii) the adoption of different embedding
functions (e.g., multimodal architectures) to explore their
benefits, and (iii) the implementation of a real prototype
that can scalably run over a real network infrastructure.
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