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Abstract

Hyperspectral images have shown great potential for the target detection task. These images collect the reflectance physical
value over a large electromagnetic spectrum providing a fingerprint that characterizes uniquely distinct materials. In this
work, a framework is developed to recognize different materials using several approaches ranging from classical methods to
deep learning ones. Different learning paradigms are investigated considering both supervised and self-supervised methods.
The main difference between these approaches concerns the labeling process. Indeed, while the former method requires
labeling the data, the latter approach is based on pseudo-labels generation described in this contribution.
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1. Introduction

Hyperspectral imaging (HSI) [1] is an advanced tech-
nology that allows for the collection of a wide range of
spectral data acquired by remote sensors. It has been
shown to be useful for various applications, including
object detection, classification, and material recognition.
In particular, hyperspectral images provide unique ma-
terial fingerprints that can be used to identify different
materials.

In recent years, there has been an increasing interest in
developing machine learning models that can accurately
recognize materials from hyperspectral images. Deep
learning has emerged as a promising approach to solving
complex problems in various fields. Among the differ-
ent deep learning models, convolutional neural networks
(CNNs) [2] have become dominant for processing visual-
related tasks. The concept of CNNs was first introduced
in a paper by LeCun et al. [3] and has since been im-
proved upon by subsequent research [4] and refined and
simplified by other studies [5] [6] .

This paper proposes a framework that leverages both
classical and deep learning approaches for material
recognition in hyperspectral images. Different learn-
ing paradigms, including supervised and self-supervised
methods, are investigated and evaluated for their perfor-
mance on a benchmark dataset. The approach demon-
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strates promising results and can have practical applica-
tions in fields such as remote sensing, geology, environ-
mental monitoring, and target detection.

2. HyperHound Framework

HyperHound is a framework developed specifically for
analyzing hyperspectral images. It has been designed
to allow for easy implementation and testing of various
models for target detection. This framework comes with
a broad range of capabilities, with its main features de-
scribed below and provided with a simple user interface
(UI) shown in Fig. 1:

« Compatibility with the PIX format: support
loading files in PCI (Geomatics Database File) for-
mat, splitting them into smaller patches, and vi-
sualizing them for the analysis process.

« Datasets: Integration of both publicly available
and privately collected datasets to enable model
evaluation and comprehensive data analysis.

« Implementation of classic target detection
models: target detection is a critical task in com-
puter vision, which involves identifying specific
objects of interest within an image, HyperHound
implements several algorithms that provide a
solid foundation for measuring the performance
of newer and more advanced models. Implement-
ing these classic models allows us to compare
the results of different models and evaluate their
relative strengths and weaknesses. Some of the
classical models implemented are Euclidean dis-
tance, CEM, MF, and ACE.

- Datalabeling: the interface of HyperHound pro-
vides two options for labeling data, individual
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Figure 1: Ul of Hyperhound framework loading Salinas data
and analyzing a spectral signature of the selected pixel.

pixel labeling and bounding box selection. The
labeled data can be used to train a classification
model.

» Functionalities of Inference and Training:
HyperHound implements functionalities to both
perform inference with pre- trained deep learn-
ing models and training models on the fly from
the interface. The inference process is optimized
by splitting the input image into smaller slices
and processing them in parallel on a GPU.

» Database of spectral signatures: consisting of
laboratory- sampled materials collected from on-
line sources. This resource enables comparisons
between the reflectance of individual pixels and
available materials, enabling the computation of
similarity scores.

« Atmospheric correction: Integration with
Py6S [7], a Python implementation of the 6S
model [8], to compute atmospheric correction of
the spectral image according to the atmospheric
conditions during the data acquisition.

3. Methods

3.1. Standard Methods

Classical hyperspectral image target detection algo-
rithms, such as Spectral Angle Mapper (SAM) [9] and
Spectral Information Divergence (SID) [10] are two
straightforward detection algorithms that measure the
“distance” between the spectrum of the test pixel and the
prior spectral signature of the target. Also Constrained
Energy Minimization (CEM) [11] [12] matched filter
(MF) [13], and adaptive coherence/cosine estimator (ACE)
[14] [15] are typically developed using constrained least
square regression methods or hypothesis testing methods

that assume a Gaussian distribution. However, real-world
hyperspectral data obtained through remote sensing of-
ten exhibits strong non-linearity and non-Gaussianity,
which can result in a decline in the performance of these
classical detection algorithms.

3.2. Self-supervised

Self-supervised learning is a type of machine-learning
technique in which a model is trained to learn patterns
and relationships within a dataset without the need for
explicit labeling or supervision. For the scope of this
work, this method is used to learn a space topology to
cluster similar hyperspectral signatures. In this sense,
starting from a reference signature, this algorithm can
detect similar targets from the images analyzed. To over-
come the labeling burden, an unsupervised method is
used to generate pseudo-labels. The strategy used in this
work is described in the evaluation and results section
and leverages a clustering pre-text task. Once pseudo-
labels are generated, contrastive learning is used to train
the model to cluster properly signatures belonging to
distinct classes. It is worth remembering that these are
the classes defined in a self-supervised manner, that is,
using an unsupervised pre-text task. A fully connected
neural network was chosen to learn the distance metric
for class discrimination.

3.3. Fully-connected neural network
(FCNN)

A fully-connected neural network consists of a series of
fully connected layers that connect every neuron in one
layer to every neuron in the other layer.

Each neuron represents a computational unit that pro-
cesses its input and passes its results to each neuron of the
next layer. Layer by layer a hierarchical representation
of the input is learned to improve the classification task
that consists of producing a probability for each pixel to
belong to the target object. For the hyperspectral images,
the input of the FCNN is represented by all the channels
of a single image pixel that are processed consequently
by all the fully-connected layers. Indeed, the first layer of
the network has an input dimension equal to the hyper-
spectral channels while the other layers have a number
of neurons that gradually decreases. The last layer has a
number of neurons equal to the dimension of the code
used to encode the pixel given in the input.

Indeed, the network is trained to encode the input into
a sequence of numbers in a latent space. In this way,
pixels belonging to the same class are clustered together
to reduce their distance into the latent space. To promote
this behavior, the training proceeds by means of a metric
learning approach as explained at the beginning of this
paragraph.
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Figure 2: CNN3D Architecture

3.4. Supervised

The supervised learning method involves training a
model using labeled training data, which consists of a set
of inputs and their corresponding outputs or class labels.
The model’s parameters are updated iteratively during
the training phase to accurately predict the desired out-
puts. In the testing phase, the model is evaluated against
new input or test data to assess its ability to predict the
correct labels. With sufficient training, the model can
predict the labels of new input data. However, this ap-
proach requires a large amount of labeled training data
to fine-tune the model parameters. Therefore, it is most
appropriate for situations where much-labeled data is
available. The HyperHound framework facilitates this
labeling process and the following training. The model
adopted to test the framework is a convolutional neural
network with 3D convolutional filters.

3.5. 3D Convolutional neural network
(3D-CNN)

Identifying ground objects in hyperspectral imaging re-
quires both spectral and spatial information. To effec-
tively classify these objects, a 3D convolutional neural
network (CNN) was implemented. The network pro-
cesses each pixel of the images by considering the relation
between adjacent channels, in addition to spatial patterns
across neighboring pixels. The input of the 3D-CNN is a
patch of 7x7 pixels, where N is the number of channels
in the hyperspectral image. The architecture consists
of a series of 3D convolutional layers, with decreasing
filter numbers leading to the last fully- connected layer.
This final layer takes the flattened concatenation of a
set of feature maps from the last convolutional layers as
input and outputs the probability of the center pixel of
the input patch belonging to a target object. A scheme
of this neural network is reported in Fig. 2.

3.6. Hyperparameters optimization

The model included in the HyperHound framework is
the result of extensive hyperparameter optimization. To
scale the search for optimizing hyperparameters, Ray
Tune, a Python library designed to execute experiments
and tune hyperparameters at any scale, was utilized. This
was done using the Leonardo HPC system, specifically

the Davinci-1 infrastructure, which comprises a total of
80 nodes, each equipped with four Nvidia A100 GPUs.

4. Evaluation and Results

The following paragraphs begin by presenting one of the
datasets used to validate the self-supervised approach.
Subsequently, the training and validation processes were
expanded to other hyperspectral datasets [16]. Finally,
the supervised method, including the labeling process
and performance evaluation, is reported.

4.1. Salinas

Salinas is a hyperspectral dataset collected by the 224-
band AVIRIS sensor over Salinas Valley, California, and is
characterized by high spatial resolution (3.7-meter pixels).
The area covered comprises 512 lines by 217 samples. 20
water absorption bands were discarded: [108-112], [154-
167], for a total number of bands equal to 224. This image
was available only as at-sensor radiance data. It includes
vegetables, bare soils, and vineyard fields. Salinas ground-
truth contains 16 classes.

4.2. Data Labelling

The self-supervised approach for labeling involves gen-
erating samples that are labeled without full supervision.
One method for accomplishing this is through the use
of endmembers, which are defined as pure spectral sig-
natures that can be linearly combined to represent the
hyperspectral image pixels. Endmembers can be thought
of as the basis vectors of a geometrical subspace. During
image acquisition, due to the relatively low spatial reso-
lution of hyperspectral sensors, some pixels may collect
a mix of signatures from different materials. This means
that each pixel can be seen as a superimposition of each
endmember. By identifying the endmembers in the hy-
perspectral image, it is possible to obtain a set of pure
spectral signatures that can be used to label the image
data. Once the endmembers have been identified, they
can be used in a variety of ways to label the image data.
For example, one approach is to use spectral unmixing to
estimate the abundance fractions of each endmember in
each pixel. Nevertheless, some methods exist to unmix
the pixel to find the basic constituents of each material,
but their application doesn’t guarantee the optimality
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Figure 3: Evaluation on Salinas dataset using only one se-
lected target pixel belonging to the class “Stubble”. Heatmap
of the classification on the left, Selected target pixel on the
center, GT on the right.

of the solution. Indeed, the method used should define
both the exact number of pure signatures inside a pic-
ture and the relative abundances of each end member
that represents the coefficient of the linear mixing. Both
these parameters are unknown and so the solutions are
ill-defined. However, a guess about the number of end-
members is made to perform the unmixing. Once the
endmembers are defined, the dataset generation can be
provided by sampling the coefficients that define their
linear mixing following the equation:

n
xi:Zeixci;. (1)

1

where ¢; are the randomly generated coefficients and ¢;

represents the n endmembers extracted from the source
image. This sampling is repeated to generate all the
dataset samples. The key step in this process is the la-
beling step, where the endmember corresponding to the
highest coefficient is used to label the sample, in other
words:

y; = Argmax(c); . 2)

So, in the end, a dataset with a custom number of
samples is generated with several classes equal to the
number of endmembers.

4.3. Performance

All the models were evaluated on different hyperspectral
datasets, each containing one or multiple classes to de-
tect. For each dataset, one of the classes was designated
as the target class, while the others were considered back-
ground classes.

To identify the target class, a representative pixel was
selected and the distance between that pixel and all other
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Figure 4: Comparison of the mean AUC on different datasets.
The blue bar refers to the self-supervised model performance.

pixels in the dataset was computed. If the similarity score
between the target pixel and another pixel was above
a certain threshold, that pixel was classified as a target
pixel; otherwise, it was classified as a background pixel.

This process was repeated for each class, with the
threshold value varied to calculate the relative area un-
der the curve (AUC) performances. The final AUC value
was calculated by taking the mean value over all the
classes. Using this approach, the ability of different mod-
els to detect target objects in hyperspectral datasets with
multiple classes can be accurately measured. In Fig. 3 is
shown the inference results of the trained model, which
was able to successfully detect the target class. Fig. 4
shows the results on 6 datasets: Pavia University, Pavia
Centre, Salinas, Indian Pines, San Diego, Cuprite. It can
be observed that the self- supervised model outperforms
other models on most of the tested datasets.

It is important to highlight that the datasets used in the
study consist of a single image with pixel-based labeling,
resulting in a scarcity of data variability. This may lead
to a high correlation between the training and validation
sets, which could negatively impact the model’s robust-
ness. This limitation can be observed in the paragraph
below evaluating the same models on data acquired with
real-world conditions variability.

4.4. Proprietary dataset

The dataset used for the supervised task is a proprietary
dataset. It consists of 4 images collected with a hyper-
spectral sensor during an aerial acquisition. The images
were pre- processed by performing the L1 pre-processing
chain, which consists of the following operations:

« Spectral and Radiometric Calibration
+ Geo-Referencing
+ Geo-Rectification



Table 1
Dataset train validation and test splitting proportion

Data ‘ Train ‘ Validation ‘ Test
Tiles containing the target (613x613) 11 7
Patches (7x7) 1050 | 450 Full tiles

These operations are missing the L2 pre-processing
chain, which involves atmospheric correction and con-
version of values to reflectance. In addition, the images
have artifacts probably due to the vibrations the sensor
was subjected to during the flight. With these limitations,
a single pixel may contain a mixture of multiple hyper-
spectral signatures making the detection task harder.

4.5. Data Labelling

Each of the 4 images was cropped into 200 smaller tiles,
each measuring 613 x 613 in size, for a total of 800 tiles.
Through ground surveys, it was determined that 18 of
these tiles contained the targets to identify. Of these
18 tiles, 11 were included in the training-validation sets,
while the remaining 7 tiles were used to test the models.
The labeling process is provided using the HyperHound
interface. Through this interface, it is possible to display
an image and collect a set of pixels to represent both
target and background samples. This collection can be
performed by using both bounding boxes or dot anno-
tations, for a finer pixel selection. This procedure was
repeated on all 18 tiles used for the training, validation,
and test. A patch of dimension 7x7 was cropped around
each pixel collected to provide the input in the form of
images to the 3D CNN used for the training. The total
number of patches collected for training and validation
was nearly 1500 with a proportion of 1:14 between tar-
get and background samples. The partition of data into
training, validation, and testing is summarized in Table
1.

4.6. Performance

The objective was to identify target areas, and a detec-
tion metric was used to evaluate the model’s performance.
The F; score was chosen as the evaluation metric since it
handles class imbalances better than accuracy and other
metrics. An algorithm was developed to associate the
model’s predictions with the ground-truth labels, and
assess the model’s performance. The output of the model
is a heat-map representing the probability of a pixel be-
longing to a target area. Therefore, the first step was to
apply a threshold to obtain a binary mask, where each
cluster of fully-connected pixels represents a predicted
object. Subsequently, if a predicted object partially or
fully overlaps with an object in the ground-truth mask,
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Figure 5: Comparison between the proposed model (CNN3D,
center top row) and the other standard methods on the tile
n°1 of the test set.

Table 2
Performance metrics.

Tile Num. | TP | FP | FN
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it is considered a true positive (TP). On the other hand,
if there is no overlap between a predicted object and
a ground-truth object, it is considered a false positive
(FP). Finally, if a ground-truth label is not associated with
any predicted object, the false negative (FN) count is in-
creased by one unit. The results are provided in the table
2).

The proposed model was evaluated on seven images
that were not included in the training or validation set
and achieved an F; score of 0.6 in identifying the targets.
An example of detection comparison on a test image
is reported in Fig. 5. The first patch (top left corner)
represents the ground truth, that is, a completely black
image with green boxes corresponding to the targets to
detect. The image is black in order to preserve sensitive
information and the original image pertaining to this
test is not shown. The remaining patches represent the
predictions of all the competing methods. Notably, only
the CNN3D was able to detect correctly all the targets



on this test tile.

5. Conclusions

This article presents the HyperHound framework, which
has been developed for hyperspectral image analysis. The
framework provides an effective solution for analyzing
hyperspectral data by applying deep learning techniques.
Two types of deep learning models were analyzed using
the framework: self-supervised and supervised. The self-
supervised approach is particularly useful in addressing
the challenges of a lack of labeled data and the difficulty
of pixel-level ground truth annotation. The model learns
to predict features from the input data itself, without
any explicit supervision. This approach is particularly
effective when the ground truth data is not available, and
it has shown good results in many literature datasets.
However, the self- supervised models are less robust and
their detection metrics are generally lower compared
with supervised models. The supervised model, on the
other hand, utilizes ground truth data to train the model.
This type of model yields good results, providing accurate
results even under different real-world conditions where
classical and unsupervised models often fail.

In this study, it is highlighted that many hyperspectral
datasets used as benchmarks lack sufficient data, and the
training and validation data are often highly correlated,
resulting in models that are not robust to different real-
world conditions. However, the supervised models have
shown significant improvement and are particularly use-
ful for man-in-the-loop applications. They provide an
excellent tool for guiding and facilitating the task of an
expert analyst in identifying targets, which is a challeng-
ing task in hyperspectral data analysis. Therefore, the
HyperHound framework and supervised models provide
a promising direction for hyperspectral data analysis, and
they hold great potential for addressing the challenges
of real-world applications.
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