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Abstract
The application of Artificial Intelligence technologies in healthcare can enhance and optimize medical diagnosis, treatment,
and patient care. Medical imaging, which involves Computer Vision to interpret and understand visual data, is one area of
healthcare that shows great promise for AI, and it can lead to faster and more accurate diagnoses, such as detecting early
signs of cancer or identifying abnormalities in the brain. This short paper provides an introduction to some of the activities of
the Artificial Intelligence for Media and Humanities Laboratory of the ISTI-CNR that integrate AI and medical image analysis
in healthcare. Specifically, the paper presents approaches that utilize 3D medical images to detect the behavior-variant of
frontotemporal dementia, a neurodegenerative syndrome that can be diagnosed by analyzing brain scans. Furthermore, it
illustrates some Deep Learning-based techniques for localizing and counting biological structures in microscopy images,
such as cells and perineuronal nets. Lastly, the paper presents a practical and cost-effective AI-based tool for multi-species
pupillometry (mice and humans), which has been validated in various scenarios.
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1. Introduction
Artificial Intelligence (AI) is rapidly transforming many
industries, including healthcare. AI refers to using com-
puter algorithms to simulate intelligent behavior. When
applied to healthcare, these technologies can be used to
enhance and optimize medical diagnosis, treatment, and
patient care.

One area belonging to healthcare where AI is particu-
larly promising is medical imaging, which involves Com-
puter Vision (CV). CV specifically focuses on teaching
computers to interpret and understand visual data from
the world around us. Medical imaging plays a crucial
role in diagnosing and treating many medical conditions.
However, interpreting medical images can be a time-
consuming and complex process, and even experienced
experts can sometimes miss subtle changes that indicate
disease. This is where Artificial Intelligence (AI) and
Computer Vision come in. These technologies can be
used to enhance and optimize medical imaging, enabling
faster and more accurate diagnoses, such as detecting
early signs of cancer or identifying structural abnormali-
ties in the brain [1, 2, 3, 4]. In addition, AI and CV can
help reduce the workload of radiologists and other medi-
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cal professionals. By automating certain aspects of the
image analysis process, such as identifying regions of
interest or flagging potentially abnormal findings, these
technologies can enable medical professionals to focus
their time and attention on the most critical cases.

This short paper is a gentle introduction to some of
the activities of the Artificial Intelligence for Media and
Humanities Laboratory of the ISTI-CNR that connect AI
and medical image analysis to healthcare. Specifically,
we present some approaches dealing with 3D medical
images to detect the behavior-variant of frontotemporal
dementia, a neurodegenerative syndrome possible to diag-
nose by analyzing brain scans. Then, we illustrate some
Deep Learning-based techniques aimed at localizing and
counting cells frommicroscopy images, a step that can be
useful to assist in cytotoxicity estimation. Furthermore,
we describe an approach that can estimate the number
of perineuronal nets, i.e., extracellular matrix aggregates
surrounding the cell body of many neurons whose alter-
ation is considered responsible for psychiatric disorders
like schizophrenia. Finally, we show a cheap and practi-
cal AI-based tool to perform multi-species pupillometry
(mice and humans), validating it in several scenarios.

2. 3D Image Analysis
In this line of research, we focus on complex representa-
tions of medical data, that is, volumetric structures, such
as computed tomography (CT) or magnetic resonance
(MR) 3D images, coming from acquiring patients’ body
parts.

Specifically, in [5], we focused on several neural
network architectures to detect, from brain scans, the
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behavior-variant of the frontotemporal dementia (bvFTD),
a neurodegenerative syndrome whose clinical diagno-
sis remains a challenging task, especially in the early
stage of the disease. Currently, the presence of frontal
and anterior temporal lobe atrophies on magnetic res-
onance imaging (MRI) is part of the diagnostic criteria
for bvFTD. However, MRI data processing is usually de-
pendent on the acquisition device and mostly requires
human-assisted crafting of feature extraction. Follow-
ing the impressive improvements of deep architectures,
in our study, we reported on bvFTD identification us-
ing various classes of artificial neural networks, and we
presented the results achieved on classification accuracy
and obliviousness on acquisition devices using extensive
hyperparameter search. As shown in Figure 1, we demon-
strated the stability and generalization of different deep
networks based on the attention mechanism, where data
intra-mixing confers models the ability to identify the
disorder even on MRI data in inter-device settings, i.e.,
on data produced by different acquisition devices and
without model fine-tuning.

In more recent times, we are also studying how brain
anomaly detection techniques based on neural architec-
tures, e.g., Generative Adversarial Networks (GANs) or
Masked Auto Encoders (MAEs), can be used to enrich the
diagnosis toolbox of medicians with nowadays standards
and off-the-shelves equipment.

3. Counting Biological Structures
in Microscopy Images

Detection and counting of biological structures in mi-
croscopy images is an analysis of considerable interest
in biology and medicine. For instance, a viable cell count
is a fundamental step in diagnosing several diseases, and
it can be exploited to assist in cytotoxicity estimation,
i.e., the quality of being toxic to cells. To this end, in
[6], we investigated several counting approaches that
have been successfully exploited in the literature over
three public collections of microscopy images containing
marked cells (see Figure 2 for some samples), assessing
not only their counting performance compared to several
state-of-the-art methods but also their ability to localize
the counted cells correctly. Our analysis showed that
counting errors do not always agree with the localization
performance, and relying only on the counting metrics
can lead to SOTA models producing incorrect cell lo-
calization. Therefore, we suggest measuring the mean
average precision, or at least a grid average mean abso-
lute error [7], to help practitioners develop better models
and guide users to choose the model most tailored to
their needs.

This dataset has been presented in [10] and comprises
100 RGB microscopy H&E stained histology images of

Figure 1: bvFTD: Pearson Correlation Coefficients among
predictions of various transformer-based models. T = ViT, m
= MLP-Mixer, g = gMLP. For each configuration, we report
five runs with randomly initialized weights. Note that when
ROI processing is used, predictions tend to correlate highly
independently from the model or random weight initialization
used. .

Figure 2: Some samples of the data used for counting cells in
microscopy images. From left to right, (i) theModified Bone
Marrow (MBM) Cells [8, 9], a dataset of the human bone mar-
row tissues pertaining to 8 different patients; (ii) the Nuclei
Cells dataset [10] comprising RGB microscopy H&E stained
histology images of colorectal adenocarcinomas; (iii) the VGG
Cells dataset [11], a synthetic collection of fluorescence mi-
croscopy images emulating bacterial cells.

colorectal adenocarcinomas having a common size of
500 × 500 × 3. The images refer to 9 different patients.
They have been cropped from non-overlapping areas rep-
resenting a variety of tissue appearances from normal
and malignant regions. Still, they also comprise areas
with artifacts, over-staining, and failed autofocussing to
simulate realistic outliers. Another peculiarity of this
dataset is that the nuclei of the cells belong to four differ-
ent categories, presenting different visual characteristics;
some experts have manually annotated them by putting
a dot over the centroids of each biological structure for a
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Figure 3: Proposed pipeline for detecting and counting PNNs in microscopy images under weakly-labeled data settings.

total of 29,756 nuclei marked. In the following, we refer
to this dataset as Nuclei Cells dataset.

Furthermore, the AIMH Lab, in collaboration with
the Institute of Neuroscience (IN-CNR), is researching
Deep Learning-based approaches able to automatically
evaluate the number of perineuronal nets (PNNs) in mi-
croscopy images. Specifically, PNNs are extracellular
matrix aggregates surrounding the cell body of a large
number of neurons [12, 13], and their alterations are as-
sociated with psychiatric disorders such as schizophrenia
[14]. In [15], we proposed a two-stage counting method-
ology for counting PNNs in weakly-labeled data settings.
We show the proposed pipeline in Figure 3. In the first
stage, we adopted existing state-of-the-art solutions na-
tively designed for detecting and counting cells trained
over single-rater weakly-labeled data, i.e., containing
annotation errors due to the difficulty in finding the cor-
rect patterns, even among experts. In the second stage,
using a small set of multi-rater data, i.e., data labeled
by multiple annotators, we defined a rescoring model
aimed at refining predictions of the previous stage, in-
creasing the correlation between the scores assigned by
the model to the predictions and the raters’ agreement
on the sample labels. Finally, very recently, we presented
a comprehensive atlas of PNN distribution and colocal-
ization with parvalbumin (PV) cells for over 600 regions
of adult mouse brains that offers a novel resource for
understanding the organizational principles of the brain
extracellular matrix [16].

4. Pupillometry
Pupillometry is an innovative non-invasive technique
that measures changes in pupil size in response to var-

ious stimuli, providing insight into the functioning of
the central nervous system. Pupil size is regulated by
the sympathetic and parasympathetic nervous systems,
which modulate the pupillary light reflex and the pupil re-
sponse to cognitive and emotional stimuli. Pupillometry
has been increasingly used in the assessment of vari-
ous neuropsychiatric disorders, including autism spec-
trum disorder, attention deficit hyperactivity disorder,
schizophrenia, and anxiety disorders.

In collaboration with the Institute of Neuroscience (IN-
CNR), we developed cheap, practical, AI-based setups to
perform multi-species pupillometry (mice and humans)
and validated it in several scenarios [17].

In [18], we studied Cyclin-dependent kinase-like 5
(Cdkl5) deficiency disorder (CDD) — a severe neurode-
velopmental disorder that causes early-onset seizures,
intellectual disability, motor, and social impairment. No
effective treatment is currently available, and medical
management is only supportive. Recently, mouse models
of CDD have been developed, demonstrating that mice
lacking Cdkl5 exhibit autism-like phenotypes, hyperac-
tivity, and dysregulation of the arousal system, provid-
ing the possibility to use these features as translational
biomarkers. In this study, pupillometry was used to as-
sess the integrity of the arousal system in CDD mice, and
the results revealed a global defect in arousal modulation
(see Figures 4 and 5). Therefore, pupillometry may pro-
vide an easy and valuable biomarker for the diagnosis
and monitoring of CDD.

5. Conclusions
In this short paper, we reported some activities of the
Artificial Intelligence for Media and Humanities (AIMH)



Figure 4: Locomotor activity and pupil size reveal arousal alterations in Cdkl5 male and female mutant mice. (A) Diagram
showing the pupillometry timeline. (B) Schematic representation of the head-fixed pupillometry setup. The mouse was
head-fixed to a custom-made metal arm equipped with a 3D-printed circular treadmill to monitor running behavior. In the
meantime, we assessed: baseline pupil size (uniform gray screen), orienting response (to isoluminant virtual reality), and the
pupillary light reflex (high luminance white screen). Each condition is repeated three times. We repeated the same protocol on
three different days.

Figure 5: Locomotor activity and pupil size reveal arousal alterations in Cdkl5 male and female mutant mice. (C) Pupil
diameter trace from a WT male mouse (Cdkl5−/y) and a Cdkl5 null male mouse (Cdkl5+/y). (D) Cdkl5 null mice showed
alterations in locomotor activity compared to WT: a decreased number of moving epochs (defined as a period of continuous
movement): P-value < 0.01, unpaired T-test; an increase in the average duration of moving epoch: P-value < 0.05, unpaired
T-test; and an increase in epochs mean velocity: P-value < 0.001, unpaired T-test. (E) Cdkl5−/y showed a constitutively smaller
pupil size compared to Cdkl5+/y both during resting and running (resting, P-value < 0.05; running, P-value < 0.05; unpaired
T-test). (F) Pupil diameter trace from a WT female mouse (Cdkl5+/+) and a Cdkl5 heterozygous female mouse (Cdkl5+/−). (G)
Cdkl5+/− mice showed an enhanced locomotor activity compared to Cdkl5+/+, in terms of percentage of time spent running,
P-value < 0.05, unpaired T-test and velocity, P-value < 0.05, unpaired T-test. (H) Cdkl5+/− mice showed a baseline smaller
pupil size compared to Cdkl5+/+ during running, P-value < 0.05, unpaired T-test, and a strong trend in resting, P-value = 0.057,
unpaired T-test. n = 11 Cdkl5+/y, n = 10 Cdkl5−/y; n = 8 Cdkl5+/+, n = 7 Cdkl5+/−. *P-value < 0.05, **P-value < 0.01 and
***P-value < 0.001.

laboratory of the ISTI-CNR concerning Computer Vision
approaches relying on Artificial Intelligence for medical
image analysis. The proposed technologies can be used to
enhance and optimize medical diagnosis, treatment, and
patient care and represent valid tools exploitable by medi-
cal professionals. We described some approaches tackling
the detection of the behavior-variant of frontotemporal de-
mentia in 3D brain scans, some Deep Learning networks
for counting biological structures, such as cells and PNNs,

in microscopy images, and, finally, a cheap and practi-
cal AI-based tool to perform multi-species pupillometry
(mice and humans).
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