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Abstract
Transportation remains a significant contributor to greenhouse gas emissions, with a substantial proportion originating from
road transport and passenger travel in particular. Today, the relationship between transportation and urban emissions is
even more complex, given the increasingly prevalent role and the pervasiveness of AI-based GPS navigation systems such as
Google Maps and TomTom. While these services offer benefits to individual drivers, they can also exacerbate congestion and
increase pollution if too many drivers are directed onto the same route. In this article, we provide two examples from our
research group that explore the impact of vehicular transportation and mobility-AI-based applications on urban emissions.
By conducting realistic simulations and studying the impact of GPS navigation systems on emissions, we provide insights
into the potential for mitigating transportation emissions and developing policies that promote sustainable urban mobility.
Our examples demonstrate how vehicle-generated emissions can be reduced and how studying the impact of GPS navigation
systems on emissions can lead to unexpected findings. Overall, our analysis suggests that it is crucial to consider the impact
of emerging technologies on transportation and emissions, and to develop strategies that promote sustainable mobility while
ensuring the optimal use of these tools.
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1. Introduction
AssessingGreenhouse Gas (GHG) emissions and air pollu-
tion is essential to mitigating climate change and promot-
ing human health. Among various sources of emissions,
transportation ones significantly increased since 1970,
with 11.9% of global GHG emissions in 2016 originating
from road transport, 60% of which from passenger travel
[1, 2]. Additionally, transportation emissions contribute
to non-CO2 pollutants such as nitrogen oxides, ozone,
particulate matter, and volatile organic compounds, sig-
nificantly impacting climate change and threatening hu-
man health [1]. Achieving Sustainable Development
Goals (SDGs) by 2030 requires urgent action towards
reducing cities’ per capita environmental impact [3].

When examining the impact of transportation on ur-
ban emissions and welfare, it is essential to consider the
impact of Artificial Intelligence (AI) on human mobil-
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ity. GPS navigation systems, such as Google Maps and
TomTom, have become ubiquitous features in transporta-
tion and offer significant benefits to individual drivers.
However, they can also create congestion and increased
pollution when too many drivers are directed on the
same route [4, 5, 6]. The town of Leonia in New Jersey
is a notable example of this phenomenon. In 2017, nav-
igation apps repeatedly directed drivers onto Leonia’s
narrow, hilly streets, causing significant congestion [6].
As a result, the police had to close dozens of streets to
non-residents during rush hour periods, effectively tak-
ing most of the town out of circulation for popular traffic
apps. The unintended consequences of well-intentioned
navigation apps pose a significant challenge to trans-
portation planning and require careful consideration in
urban policy development.

This article presents examples of how vehicular trans-
portation and mobility-AI-based applications impact ur-
ban emissions. In Section 2, we examine the spatial pat-
terns of vehicle-generated emissions and how to design
more efficient emission reduction scenarios through re-
alistic simulations. In Section 3, we demonstrate how
studying the impact of GPS navigation systems on emis-
sions can reveal unexpected results. By evaluating the
impact of mobility and AI-based applications on emis-
sions, we aim to provide insights into the potential for
mitigating transportation emissions and developing poli-
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cies that promote sustainable urban mobility.

2. Understanding urban emissions
Existing methods to measure vehicles’ emissions vary
widely in their level of detail and generalizability. Some
methods rely on small samples of vehicles with high
spatio-temporal resolutions but limited generalizability
due to their sample size. For example, particulate sensors
and portable emissions measurement systems provide
accurate emissions measurements in real-world driving
conditions but are limited in scope [7, 8, 9]. In contrast,
studies using odometer readings provide estimates for
entire regions but lack instantaneous speed and accelera-
tion data [10, 11, 12, 13].

GPS traces offer a trade-off between these two ex-
tremes, providing high spatio-temporal resolution and
the ability to estimate emissions using microscopic mod-
els while covering a representative fraction of the ve-
hicle fleet [14]. Several studies have used GPS traces
to investigate the relationship between emissions and
the urban environment, vehicle miles travelled and fuel
consumption, trip rates and travel mode choice, and
more [15, 16, 17, 18, 19]. Overall, using GPS traces pro-
vides a valuable tool for understanding the impact of
vehicles on the environment and implementing strate-
gies to reduce emissions.

Despite the variety of literature, it remains unclear
what statistical patterns characterize the distribution of
emissions per vehicle and road, how these distributions
change over time and space, and how this information
can be used to simulate emission reduction scenarios.
While studies have reported that the distribution of emis-
sions from on-road remote sensing sites across vehicles
is skewed [20, 21], this finding has been questioned due
to the limitations of this type of measurement [22].

2.1. Emissions patterns
In a recent study [23], we analyse anonymous GPS tra-
jectories describing 423,018 trips from 16,715 private
light-duty vehicles moving in Greater London, Rome,
and Florence throughout January 2017 to compute vehi-
cles’ emissions. The trajectories are produced by onboard
GPS devices that automatically turn on when the vehicle
starts, transmitting a point every minute to the server
via a GPRS connection.

We develop a methodological framework to compute
vehicles’ emissions from their raw GPS trajectories, and
we use a microscopic emissions model that estimates
the vehicles’ instantaneous emissions of carbon dioxide
(CO2), nitrogen oxides (NOx), particulate matter (PM),
and volatile organic compounds (VOC) from speed, ac-
celeration, and fuel type.

We find that a few “gross polluters” are responsible
for a tremendous amount of emissions in all three cities,
and most vehicles emit significantly less. Indeed, the
distribution of emissions per vehicle is associated with
a Gini coefficient higher than 0.55 for all the cities and
pollutants. The top 10% of gross polluters in Florence,
Rome, and London are responsible for 47.5%, 50.5%, and
38.5% of the total CO2 emitted during the month, re-
spectively. The study also finds that the distributions
of CO2 emissions per vehicle of Rome and Florence are
well approximated by a truncated power law, while a
stretched exponential well approximates London’s dis-
tribution. This pattern is consistent for other pollutants
as well. Similarly, a few “grossly polluted roads” suffer
from a significant quantity of emissions, but most suf-
fer significantly less. The distribution of emissions per
road is associated with a Gini coefficient higher than 0.64
for all the cities and pollutants, and a truncated power
law well approximates it. Figure 1 shows the entire road
network of Greater London, with the emissions on each
road normalised by the road length to better highlight
the differences between the roads.

2.2. Simulation scenarios
We study how electrifying a certain share of vehicles
would change the emissions on the three cities’ roads.
In this setting, even if a vehicle’s electrification changes
its driver’s mobility behaviour, it would not create any
emissions.

We find that the electrification of just the top 1% of
gross polluters would reduce emissions asmuch as electri-
fying 10% of random vehicles. In contrast, the percentage
reduction of the overall emissions grows almost linearly
when the share of electric vehicles is chosen randomly.
A Generalised Logistic Function (GLF) approximates the
growth rate when the gross polluters are electrified first.
The model gives 𝑅2 = 0.99 for Rome, and similar results
hold for Florence. In Greater London, the growth starts
slowly: there are fewer vehicles with high emissions lev-
els, and electrifying the most polluting vehicles is slightly
less effective in reducing emissions than in the other two
cities [23].

Given the increasing importance of remote work-
ing [25, 26], we also simulate the impact of a massive
shift to remote working on reducing vehicle emissions.
We assume that this working style eliminates commuting
trips. We then perform a simulation in which a grow-
ing share of these commuters become home workers,
i.e., they no longer travel between their home and work
locations (detected from GPS traces).

We find that emissions reduction is more effective
when the home workers are gross polluters: remote
working for the top 1% gross polluters leads to the same
reduction reached if they were ≈ 4% random vehicles.



Figure 1: (a) CO2 emissions (expressed as grams per metre of road emitted during January 2017) on the road network of
Greater London. The roads are coloured according to the level of emissions in a gradient ranging from yellow (low emission)
to red (high emission). The road network was plotted with the Python library OSMnx [24]. (b) Plot, on the log–log scale,
showing 𝑃(𝑋   >  𝑥), i.e., the complementary cumulative distribution function (CCDF; black dots) of the CO2 emissions per
vehicle, together with the best fit (red curve), in Greater London. (c) Plot, on the log–log scale, showing the CCDF (black dots)
of the CO2 emissions per road, together with the best fit (red curve), in Greater London.

Again, a GLF fits emissions reduction when the gross
polluters become home workers. Overall, these results
demonstrate that targeting specific profiles of vehicles
can significantly improve emission reduction policies.

3. Understanding impact of AI
According to preliminary research, the influence of navi-
gation applications on the urban environment is a topic
that remains unclear and incomplete, as existing stud-
ies produce inconsistent and sporadic outcomes [27, 28].
On the one hand, these apps may contribute to miti-
gating CO2 emissions [29]. On the other hand, their
usage may increase population exposure to pollution
in highly populated regions [30]. Real-time navigation
apps provide drivers with optimal routes to reach their
destinations, considering the current traffic conditions.
However, despite their undeniable practicality, online
navigation applications can in principle generate several
issues in urban traffic [5, 4]. These apps are usually opti-
mized to minimize individual drivers’ travel time with-
out considering the collective impact of the aggregated
drivers’ behaviour on the city’s overall traffic situation.
For example, these apps may not factor in whether the
recommended routes could handle the additional traffic
generated by the app or whether this traffic could pose a
risk to safety or lead to further pollution. The impact of

a driver’s routing choice cannot be evaluated in isolation
because it depends on the concurrent choices of other
drivers in the city. If too many drivers select the same
”eco-friendly” route, the route may become congested,
reducing its eco-friendliness. Therefore, a better under-
standing of the impact of individual routing choices on
the urban environment is necessary.

In a recent paper [31], we designed a simulative frame-
work – TraffiCO2 – using the state-of-the-art traffic sim-
ulator SUMO [32] to create realistic simulations of traffic
under different settings. The simulations were conducted
in the city of Milan assuming that vehicles would either
adhere to the directions of commercial navigation sys-
tems – OpenStreetMap (OSM) and TomTom (TT) – or
follow a randomised deviation from the fastest route that
emulates the unpredictability and irrationality of human
drivers.

We varied the percentage of vehicles of the fleet circu-
lating in Milan that followed a navigation app’s sugges-
tions, in order to assess the impact of the rate of routed
vehicles on the urban environment. We found that the
greater the number of vehicles following the navigation
app’s suggestion, the higher the total CO2 emissions in
the city: blindly following the recommendations of a
navigation app, which are optimised from an individual
standpoint, can lead to traffic congestion in some areas
of the city, thus leading to spatial polarisation which re-
sults in increased travel time and emissions. Conversely,



taking “noisy” routes increases the diversity of travelled
paths, resulting in a better distribution of traffic on the
road network and a decreased travel time and emissions.
The fraction of routed vehicles also influenced the spatial
distribution of emissions in the city, with more emis-
sions concentrating on the external ring road when more
vehicles were routed.

Our results also suggested that introducing random-
ness into the path generation and suggestion phases
could be a solution to avoid suggesting only the opti-
mal paths: route perturbation was beneficial, resulting
in shorter travel times and lower emissions in the city.

The study acknowledged that the situation in the real
world is more complex, with multiple navigation apps
coexisting simultaneously, each with its heuristics and
representation of urban reality. The evidence suggests
a need for algorithms that can exploit social and collec-
tive dimensions while simultaneously meeting individual
needs. This challenge requires shifting from an individ-
ual to a collaborative and social paradigm, where the
choices of non-rational or AI-assisted agents who exploit
the system and their impact on the whole society are
considered.

4. Conclusion
Urban traffic is a complex system where individual satis-
faction is intimately bound to collective happiness, e.g.,
traffic is smooth for an individual if it is so for everyone.
A systemwhere individual interests go hand in hand with
collective happiness. There is plenty of room for a better
understanding of the impact of individual routing choices
on the urban environment, as well as for studying how
to design platform architectures and routing recommen-
dations that influence citizens’ behaviour towards better
aggregated outcomes. The challenge is to turn collective
goals into an optimization target, whereby users trans-
parently understand and accept recommendations, which
can be individually sub-optimal but produce a more effi-
cient collective outcome. Using (social) norms (such as
minimising CO2 emissions) as targets for collective goals
without using them as global constraints might be a way
to achieve this goal.
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