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Abstract
The application of Variational Auto-Encoders (VAE) for full-field displacement reconstruction of a general non-linear system
is shown in this contribution to the framework of Structural Health Monitoring (SHM). The presented approach aims to
combine sensor data with a Finite Element representation of the structure, addressing the problem of Model Order Reduction
by using a Proper Orthogonal Decomposition approach. Physics knowledge of the system is embedded into the VAE model
which is trained to correctly reproduce non-linearities in the system. The model is evaluated both from the reconstruction
and prediction point of view in order to define possible limitation of the proposed approach as a tool for SHM.
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1. Introduction
The on-board integration of Structural Health Monitor-
ing (SHM) systems can improve the safety and reliabil-
ity of aerospace and automotive structures during oper-
ational life by preventing structural components from
catastrophic failure scenarios and identifying possible
damages sooner than common manual inspection. The
role of online parameters and load identification, together
with stress field distribution, is nonetheless of paramount
importance. With the advances in the development of
predictive algorithms in the field of Artificial Intelligence
(AI), physics-informed solutions have attracted great at-
tention in the field of SHM, by combining sensor data
with the numerical model of the monitored structure.
The choice of installed sensors depends on the applica-
tion. For example, Digital Image Correlation (DIC) and
Fiber Bragg Gratin (FBG) systems can be respectively em-
ployed for shape reconstruction and critical stress paths
identification. The challenge in SHM is to optimally de-
fine the map of such sensors which is able to retrieve
not-measured sensor data. Inverse identification from a
reduced set of measured data to full-field response is pos-
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sible starting from the knowledge of a numerical model
which is a digital representation of the physical system.
In the field of structural mechanics, Finite Element Mod-
els (FEMs) [1] are usually adopted to simulate the real
structure. Reduced Order Modelling (ROM) [2, 3] algo-
rithms are employed when complex FEM are involved
to reduce computational costs. Several methodologies
have been presented in the literature to address the sys-
tem identification task on dynamic structures by embed-
ding ROM models. One of the most used approaches is
the Kalman Filter (KF), which has been extensively in-
vestigated for the estimation of loads, parameters, and
full-field response [4, 5, 6]. The main advantage of KF
is that the baseline FE model needs to capture the main
dynamics of the system but high-correlated models are
not needed. In the last few years, AI-based techniques
have become competitive solutions. In particular, the
Auto-Encoders (AEs) and the variational counterpart, i.e.
Variational Auto-Encoders (VAE) [7] have been widely
used in literature to approach model order reduction
problems [8, 9, 10, 11]. The structure of the AEs defined
by an encoder, a latent space with a reduced order and
a decoder, has several similarities with the principles of
ROM. The formulation in the latent space is user-defined.
If there is no knowledge of the dynamical system, the la-
tent space is fully defined as a black-box model. In other
hand, if there is perfect knowledge of the model, the la-
tent space will be defined as a white-box model identified
by the ROM of our system. In a real case scenario, black
or white box modeling is never the case because the main
dynamic of the system is assumed to be known from de-
sign and validation of the investigated structure. The
customized setting of the latent space in AEs or VAEs
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gives an advantage over KF methodologies, allowing for
the estimation of missing physics in the FE model.

In this contribution, an application of VAE to full-field
displacement estimation is presented by implementing
a sliding time-windowing approach. The use-case is a
non-linear cantilever beam and a Proper Orthogonal De-
composition (POD) [12] reduction basis is adopted. The
article is structured as follows: the state-space formu-
lation of a FE model, the POD approach, and VAE are
described in Sec. 2; following, the use-case and the results
obtained through VAE are shown in Sec. 3.

2. Methodology

2.1. State-space formulation of a
structural dynamic system

The governing equation of motion of a dynamical system
described by the mass matrixM, the stiffness matrix K
and the damping matrix D is:

Mẍ + Kx + Dẋ + f(x) = Bu (1)

Where x ∈ ℝ𝑛𝑑 , ẋ ∈ ℝ𝑛𝑑 , ẍ ∈ ℝ𝑛𝑑 are respectively the
Degrees of Freedom (DoFs) of the system with size 𝑛𝑑
and their first and second derivative with respect to time.
The time dependence of these variables has been omitted
for simplicity. B and f(x) are respectively the Boolean
matrix that distributes the inputs vector u over the DoFs
of the system and a general nonlinear term.
By assuming f(x) = 0, Eq. 1 can be re-written in a

state-space formulation as follows:

{ ẋs = Axs + Bsu
y = Cxs + Dsu

(2)

where ẋs = [x, ẋ]𝑇 is the state vector, A and Bs are ob-
tained from Eq.1. The second equation of the system
if the measurement equations, where y ∈ ℝ𝑛𝑚 is the
measurements vector with size 𝑛𝑚 and C, Ds are matrix
depending on the measurements’ type.

2.2. Reduction basis: Proper Orthogonal
Decomposition approach for
non-linear systems

ROM can be required when the number of DoFs 𝑛𝑑 of a
FEM is too large and, consequently, the computational
cost is too high. The projection of the Full Order Model
(FOM) to the ROM is defined by the following approxi-
mation:

ẋ ≅ Φq (3)

where Φ ∈ ℝ𝑛𝑑×𝑛𝑟 is the reduction basis mapping 𝑛𝑑 DoFs
to 𝑛𝑟 reduced DoFs q ∈ ℝ𝑛𝑟 .

When non-linear systems are involved, standard ROM
approaches as Guyan [2] or Craig-Bampton [3] can not
be applied. The Proper Orthogonal Decomposition (POD)
[12] method is one of the most used approaches for non-
linear dynamics. POD identifies an optimal subspace
based on a set of snapshots, i.e. time series data, of the
system solution space. In other words, the main prin-
ciple of the POD is in the selection of the meaningful
shapes or modes of the solution provided by snapshots of
e.g. displacements or velocities through a Singular Value
Decomposition (SVD). Given the matrix of snapshots
x ∈ ℝ𝑛𝑑×𝑛𝑡 , with 𝑛𝑡 = number of time samples (𝑛𝑡 ≥ 𝑛𝑑),
the SVD gives:

x = USV (4)

with U ∈ ℝ𝑛𝑑×𝑛𝑑 and V ∈ ℝ𝑛𝑑×𝑛𝑡 as left and right singular
vectors respectively and S ∈ ℝ𝑛𝑑×𝑛𝑑 as diagonal matrix
containing the singular values on the main diagonal. The
POD forms the reduction basis by selecting the first 𝑟-left
singular values (𝑟 < 𝑛𝑑) from the matrix U, such that the
following minimization problem is reached:

min ‖x − 𝑞‖2 (5)

The number of selected values depends on the threshold
selected.
The POD has the disadvantage of requiring the snap-

shots matrix, which needs to be computed offline using
FOM simulations. However, as a main advantage, the
POD reduction basis provides a higher accuracy for non-
linear and parametric models, as these characteristics
are present in the solution space and captured via the
snapshots. Furthermore, the selection of the meaningful
singular values also has a physical interpretation on the
solution. A good explanation can be found in [13]. If a
parametric model is considered, other techniques need
to be employed in order to have the POD basis working
for all the parameters samples, i.e. global reduction basis.
The most common ways are by interpolating or concate-
nating the POD basis obtained for each sample. When
the number of samples is limited, the concatenation ap-
proach is the easiest one. Given a set of 𝑝 concatenated
basis, the SVD is recomputed in order to remove pos-
sible linear dependencies between all the subspaces, as
follows:

SVD ([𝑈1 𝑈2 𝑈3 … 𝑈𝑝]) (6)

Given thus as global reduction basis of the mechanical
non-linear system, Eq. 2 projected in the reduced space
can be re-written as:

{ ż = Arz + Bru
y = Crz + Dru

(7)

where ̇z = [q, q̇]𝑇 is the reduced state vector and all the
matrices are in a reduced form.



Table 1
Model architecture. List of modules with number of layer,
neurons and the total number of parameters.

Architecture layers neurons parameters

MLP 2 [16, 8] 446
LSTM 1 64 19598
Ode Model 3 [128, 64, 32] 15294
model 35338

2.3. Variational Auto-Encoder for Model
Order Reduction

In this section, the principles of VAE addressing ROM
are described and schematically shown in Fig. 1. The
formulation used in this article is the same presented in
[8] and regard the extension of the variational autoen-
coder model to their dynamic version. Specifically, by
including a recurrent neural network into the standard
fully-connected layer, such architecture can process time
series data. So, starting from a subset of sensor data, the
following module are used to process a multidimensional
time-series data:

• Encoder: data-driven, i.e. no physics of the sys-
tem considered at this stage. It is composed by
two sub-networks: aMultilayer Perceptron (MLP)
and Long Short Term Memory (LSTM) returning
respectively distributions of initial conditions at
position q0 ∈ ℝ𝑛𝑟 and velocity ̇q0 ∈ ℝ𝑛𝑟 level of
the reduced model. The concatenation of q0 and
̇q0 forms the initial state vector z0 ∈ ℝ2𝑛𝑟

• Latent Model: physics-informed, modelled as
residual models, i.e. fbaseline(z) + fNN(z). From
Eq. 7: fbaseline(z) = Arz. The non-linear term
is instead added fNN(z) to compensate for model
truncation and for non-linearities (if any) as in
Eq. 1. In the latent space stage, the integration of
the state space model over time is performed.

• Decoder: it represents the reduction basis Φ
and can be trainable or not-trainable, e.g. pre-
computed via POD. It allows to retrieve FOM data
from the latent space.

In table 1 is reported some details about the architecture.
The Evidence Lower Bound (ELBO) loss is commonly

used with VAE as objective function to be minimized.
This loss can be formulated as follows:

𝐿ELBO = −KL(𝑞(𝑧|𝑥)||𝑝(𝑧)) + 𝔼𝑞(𝑧|𝑥) [log 𝑝(𝑥|𝑧)] (8)

where KL(𝑞(𝑧|𝑥)||𝑝(𝑧)) is the Kullback-Leibler (KL) di-
vergence between the learned posterior distribution and
the prior distribution over the latent variables. The first
term encourages the learned posterior to be close to the

Figure 1: Scheme of VAE applied to reduced numerical model
starting from the knowledge of sensor data.

prior, while the second term encourages the VAE to re-
construct the observed data accurately. Minimizing the
ELBO loss in a VAE corresponds to find the optimal trade-
off between reconstruction accuracy and regularization
of the learned posterior distribution. Moreover, to get
a better reconstruction quality, the posterior ditribution
can be explicitely derived in place of the standard mean
squared loss. In this work, a normal distribution is used:

𝑓 (𝑥) = 1
𝜎√2𝜋

exp (−
(𝑥 − �̂�)2

2𝜎2
) (9)

where 𝑥 is a a time step of the input sequence, �̂� is
the model output, 𝜎 is the standard deviation. This latter
term is a constant equal to 3𝑒 − 2

3. Non-linear cantilever beam
use-case

The object of the current study is a cantilever Euler-
Bernoulli beam, with an end non-linear grounded spring
(Fig. 2). This benchmark has been presented and stud-
ied in several contributions [14, 15, 16]. The model here
is characterized by the following parameters: density
𝜌 = 2700𝑘𝑔/𝑚3, cross-sectional inertia 𝐼 = 4.3𝑒−9𝑚4,
sectional area 𝐴 = 3.23𝑒−4𝑚2, stiffness parameter 𝑘𝑛 =
3𝐸𝐼
𝐿3 = 3𝑒3𝑁/𝑚, first natural frequency 𝜔 = 1 𝑟𝑎𝑑/𝑠,

𝛼4 = 𝜔2 𝜌𝐴𝐿4

𝐸𝐼 , proportional damping factor 𝜁 = 1𝑒−4.
The model has been discretized via 2D FE analysis with
𝑁𝑒 = 15 beam elements. The DoFs of the system are the



Figure 2: Schematic representation of the FE model of a
clamp-free beam with a grounded spring.

vertical displacement in 𝑧 direction and rotation along
𝑦−axis, for a total of 𝑛𝑑 = 2𝑁𝑒. The system has been sim-
ulated via Euler implicit integrator in a time window of
𝑇 = 100𝑠. The parameter 𝑘𝑛, associated to the non-linear
spring, is sampled in order to create the dataset for differ-
ent values of non-linearities. The values of 𝑘𝑛 range in
[1𝑒−9, 9𝑒−9]𝑁/𝑚 and 5 uniformly distributed samples are
selected. The beam is loaded at the tip with a sinusoidal
force along 𝑧−direction:

𝑓𝑒𝑥𝑡(𝑡) = 12 sin 6𝑡 + 9 sin 𝜋 𝑡 − 2𝑒3

0.05
(10)

Differentely from the contribution in [8], the global reduc-
tion basis Φ is computed through SVD by concatenating
local reduction basis as in Eq. 6. Each local basis is ob-
tained via POD which is applied to the snapshots of each
solution in the range of 𝑘𝑛 parameter. The singular val-
ues after concatenation and the first three mode shapes
are shown in Fig. 3 and Fig. 4. The mode shapes show
differences with standard normal modes of a cantilever
beam because of the effect of the non-linearities. A total
of 7 modes, i.e. 𝑛𝑟 = 7 is selected from SVD analysis.
This number results to be the optimal one by comparing
reference with reconstructed time data. This reduction
basis allows the model to capture all the non-linearities
presented in the simulated dataset. In [? ], the decoder
is defined by the reduction basis coming from eigenanal-
ysis of the linear model. That approach can however
lead the model to be projected in a wrong reduction basis
and thus to a wrong reconstruction. The comparison
between the two approaches is out of the scope of this
article. Anyway, the choice of using a POD is the most
suitable for the analyzed system, according to theory in
[12].

3.1. Displacement field estimation
through VAE

The scope of this work is to train a VAE to estimate the dy-
namical behavior of 𝑛𝑑 = 30 DoFs of the cantilever beam
starting from a subset of DoFs. These limited number
of measurements has been defined in order to guarantee
the observability of the system and are the 7 measures
marked in red in Fig. 2. To train such architecture on
the data simulated following the process described in

Figure 3: Singular values of the concatenated basis.

Figure 4: First three mode shapes of the POD basis.

section 3, a windowing approach is defined. Specifically,
the temporal sequences of each DoF are split into several
temporal windows with a length defined a-priori. In this
way, the dataset is augmented and the windowing allows
the encoder to learn the model non-linearities and the
initial conditions of the latent model starting from the
time-series of a subset of observations.
Among the 5 simulated samples, 4 of these are used

for the training. Each sample describes the cantilever
beam behaviour in a range of 10000 time steps. The size
of the train set is thus equal to 40000 time steps. The
windowing is performed with a fixed size of 200 time
steps. The sample generated with a value of 𝑘𝑛 in the
middle of the specified range of parameters identifies
the validation set. A scheduler is also implemented such
that if the validation loss doesn’t improve after 5 epochs,
the learning rate decreases to the 80% of its previous
value. A batch size of 32 is used and the model reaches
its optimal state after nearly 25 epochs. The reason why
the loss converges after few epochs is justified by the
high number of data that the model processes for each
epoch. An early stopping of 20 epochs is used. The trend
of the train and validation losses normalized with respect
to the value of the training loss at the first epoch is shown
in Fig. 5. The validation loss is always lower than the
training loss because the validation set has been defined
in the middle of the sampling parameter range. However,



a more challenging validation set should be also tested in
order to quantify the overall performances of the model.

Figure 5: Train and validation normalized loss trend epoch
by epoch.

(a) measured Dof

(b) unmeasured Dof

Figure 6: Time history reconstruction of an un-measured and
a measured DoF.

The results are reported for the sequences belonging to
the validation set. The model is trained to reconstruct all
the DoFs of the system starting from a subset. In Fig. 6,
are reported the results concerning both an un-measured
and one measured DoFs. From these plots it is possible
to observe that the model is able to catch the dynamics of
the signals. These DoFs have been chosen without loss
of generality on the overall performances. In Fig. 3.1 are
reported the result for the prediction task. In this latter
scenario, the model receives in input a sequence of 200
time steps and predicts also the next 200 time steps. The

(a) measured Dof

(b) unmeasured Dof

Figure 7: Model prediction in a time horizon of 600 steps: the
green line refers to the reconstruction of the sequences while
the yellow one shows the prediction of each window for the
next 200 time steps.

results are shown in Fig. 3.1 and Fig. 3.1 over a greater
time horizon. For each window, the prediction coming
from the previous window and the actual reconstruction
are compared. This comparison is shown starting from
time step 200, i.e. second window. From the reported re-
sults, the prediction is in some cases accurate. However,
we observe that this estimation depends drastically from
the input sequence and generally does not produce reli-
able estimation. A more accurate training could perhaps
return more reliable prediction.

4. Conclusions
The application of the Variational Auto-Encoder to non-
linear dynamics is shown in this article. A non-linear
cantilever beam is investigated by simulating the Finite
Element model with different values of non-linear param-
eters. The simulated dataset allows to form the reduction
basis by performing a snapshots-based Proper Orthog-
onal Decomposition. This step leads to a pre-defined
decoder in the VAE architecture by reducing the num-
ber of total trainable parameters. However, a trainable
decoder could give some advantages e.g. more adapt-



(a) measured Dof

(b) unmeasured Dof

Figure 8: Model prediction in a time horizon of 1000 steps:
the green line refers to the reconstruction of the sequences
while the yellow one shows the prediction for the next 200
time steps.

able reduction basis with respect to training data. The
latent model described as residual grey-box model of the
system dynamics allows also for the identification of all
the contributions that have not been implemented in the
baseline model as e.g. external forces, parameters, and
non-linearities. In a real test case, the available dataset
is normally not enough for a deep learning application
and thus the windowing approach has been tested in or-
der to perform data augmentation. The analysis shown
in this article led to accurate results in the estimation
of un-measured data, starting from the knowledge of a
subset of measurements. The structure of the presented
approach with time windowing and a pre-trained model
can be used for online structural monitoring applications.

References
[1] O. Zienkiewicz, R. Taylor, The Finite Element

Method, Butterworth Heinemann, Oxford, 2000.
[2] R. J. Guyan, Reduction of stiffness and mass matri-

ces, AIAA journal 3 (1965) 380–380.
[3] R. R. Craig Jr, M. C. Bampton, Coupling of substruc-

tures for dynamic analyses, AIAA journal 6 (1968)
1313–1319.

[4] R. Cumbo, T. Tamarozzi, K. Janssens, W. Desmet,

Kalman-based load identification and full-field esti-
mation analysis on industrial test case., Mechanical
Systems and Signal Processing 117 (2019) 771–785.

[5] E. Risaliti, T. Tamarozzi, M. Vermaut, B. Cornelis,
W. Desmet, Multibody model based estimation of
multiple loads and strain field on a vehicle suspen-
sion system, Mechanical Systems and Signal Pro-
cessing 123 (2019) 1–25.

[6] C. E. Capalbo, D. De Gregoriis, T. Tamarozzi, H. De-
vriendt, F. Naets, G. Carbone, D. Mundo, Parameter,
input and state estimation for linear structural dy-
namics using parametric model order reduction and
augmented kalman filtering, Mechanical Systems
and Signal Processing 185 (2023) 109799.

[7] D. P. Kingma, M. Welling, Auto-encoding varia-
tional bayes, arXiv preprint arXiv:1312.6114 (2013).

[8] Z. Lai, W. Liu, X. Jian, K. Bacsa, L. Sun, E. Chatzi,
Neural modal ordinary differential equations: In-
tegrating physics-based modeling with neural or-
dinary differential equations for modeling high-
dimensional monitored structures, Data-Centric
Engineering 3 (2022) e34.

[9] T. Simpson, N. Dervilis, E. Chatzi, Machine learning
approach to model order reduction of nonlinear sys-
tems via autoencoder and lstm networks, Journal
of Engineering Mechanics 147 (2021) 04021061.

[10] M. Banihashemi, F.and Weber, W. Lang, Model or-
der reduction of building energy simulation models
using a convolutional neural network autoencoder,
Building and Environment 207 (2022) 108498.

[11] M. Mrosek, C. Othmer, R. Radespiel, Variational
autoencoders for model order reduction in vehicle
aerodynamics, AIAA Aviation 2021 Forum (2021)
3049.

[12] P. Benner, S. Gugercin, K. Willcox, A survey of
projection-basedmodel reductionmethods for para-
metric dynamical systems, SIAM review 57 (2015)
483–531.

[13] J. Weiss, A tutorial on the proper orthogonal de-
composition, AIAA Aviation 2019 Forum (2019)
3333.

[14] M. Gürgöze, On the eigenfrequencies of a cantilever
beam with attached tip mass and a spring-mass
system, Journal of Sound and Vibration 190 (1996)
149–162.

[15] M. W. Sracic, M. S. Allen, Numerical continuation
of periodic orbits for harmonically forced nonlinear
systems, Civil Engineering Topics 4 (2011) 51–69.

[16] M. S. Allen, M. W. Sracic, System identification
of dynamic systems with cubic nonlinearities us-
ing linear time-periodic approximations, Interna-
tional Design Engineering Technical Conferences
and Computers and Information in Engineering
Conference 49019 (2009) 731–741.


	1 Introduction
	2 Methodology
	2.1 State-space formulation of a structural dynamic system
	2.2 Reduction basis: Proper Orthogonal Decomposition approach for non-linear systems
	2.3 Variational Auto-Encoder for Model Order Reduction

	3 Non-linear cantilever beam use-case
	3.1 Displacement field estimation through VAE

	4 Conclusions

