
Mitigating the Impact of Humidity on Low-Cost PM
Sensors
Martina Casari1, Laura Po1

1UNIMORE, Dipartimento di Ingegneria ”Enzo Ferrari”, via P. Vivarelli, Modena, 41125, Italy

Abstract
This preliminary study, conducted in Italy, aims to investigate the potential of growth functions and multi-layer perceptron
neural networks (MLP NN) in reducing the impact of humidity on low-cost particulate matter (PM) sensors, with a focus on
the sustainability of low-cost sensors compared to reference stations. All over the world, low-cost sensors are increasingly
being used for air quality monitoring due to their cost-effectiveness and portability. However, low-cost sensors are susceptible
to high humidity, which can lead to inaccurate measurements due to their hygroscopic property. This issue is particularly
relevant in Italy, where many cities such as Rome, Milan, Naples, and Turin experience high mean relative humidity levels
(>70%) for most months of the year. To improve data quality and gain useful data for quantitative analysis, techniques must
be developed to reduce the impact of humidity on the final data. The sensors used in this study were placed in proximity to a
reference station, solely for validation purposes in the case of corrective functions and involved in the training phase in the
case of MLP NN.
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1. Introduction
The issue of air pollution is becoming increasingly preva-
lent due to various factors such as urbanization, indus-
trial activities, and transportation [1]. It has been widely
acknowledged that air pollution can negatively impact
public health and contribute to global warming, acid rain,
and environmental degradation [2]. As a result, there
is a pressing need for sustainable solutions to combat
air pollution. One such solution is the use of low-cost
sensors (LCS) for air quality monitoring.
These sensors have the potential to make air qual-

ity monitoring more accessible and widespread, partic-
ularly in developing countries or areas with limited re-
sources [3]. The affordability and portability of these
sensors have opened up new possibilities for citizen sci-
ence projects and community-led monitoring efforts. Ad-
ditionally, low-cost sensors can provide real-time data,
enabling prompt actions to be taken to address air pol-
lution hotspots. However, the drawback of LCSs is their
restricted technology, which makes quantitative evalua-
tion difficult due to the fact that these sensors are very
sensitive to environmental factors, compared to reference
stations [4], [5].
When the relative humidity (RH) exceeds a certain

threshold, the water in the air can be detected by the sen-
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sor, leading to inaccurate measurements of particulate
matter mass concentration due to the properties of parti-
cles and the presence of condensed water droplets. RH
starts to significantly impact the concentration detected
when it exceeds 80-85%, although the impact may start
lower for some sensors [6]. This limitation is particu-
larly relevant for low-cost PM sensors, which utilize laser
scattering technology to measure particle concentration.
The purpose of this paper is to explore the feasibility

of using growth functions and multi-layer perceptron
neural networks to mitigate the effects of humidity on
low-cost particulate matter sensors. The study is pre-
liminary and is specifically focused on evaluating the
sustainability of low-cost sensors in comparison to ref-
erence stations. Experiments are carried out in Italian
cities.
The paper is divided into five sections, each cover-

ing a different aspect of the study. In Section 2, laser
scattering sensors are introduced and their operation is
explained. Section 3 presents the use of growth func-
tions as a method for mitigating the effects of humidity
on low-cost sensors. The section describes how these
functions can be used to correct the presence of water
in the air. In Section 4, the use of multi-layer perceptron
neural networks as an alternative method for correct-
ing humidity effects is discussed. Section 5 presents the
concept of a cooperative technique, which is a method
proposed to combine data from the application of the
corrective function as input to the MLP NN. Finally, in
Section 6, evaluation metrics are presented. This section
outlines the various metrics that were used to evaluate
the performance of the different correction methods, and
how they can be used to assess the accuracy of low-cost

mailto:martina.casari@unimore.it
mailto:laura.po@unimore.it
https://orcid.org/0000-0003-0406-3036
https://orcid.org/0000-0002-3345-176X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: The figure illustrates the operation of the Sensirion
SPS30 low-cost air quality sensor, which uses laser scattering
to detect particulate matter. The sensor operates by pulling in
ambient air through a blower fan, which then flows through a
laser diode channel. Particles in the air cause the laser light to
scatter and hit the light sensor. The non-scattered laser light
gets absorbed into a special surface to avoid any additional
scattering. Finally, the air is exhausted from the unit.

sensors.

2. Laser Scattering Sensors
Sensor scattering is a technique (shown in Figure 1) com-
monly utilized to measure the concentration of PM in the
air. This technique involves the use of lasers to scatter
light off particles in the air, which are then detected by a
sensor. The amount of scattered light is proportional to
the number of particles in the air, allowing for an estima-
tion of the PM concentration. However, this technique
is limited by the sensitivity and accuracy of the sensor,
particularly in the case of low-cost sensors.

Low-cost sensors lacking a drying function or installed
in humid environments, such as coastal areas, are more
susceptible to humidity interference. Particles with hy-
groscopic properties absorb water from the air [7], re-
sulting in larger particle sizes and an increase in light
scattering within the sensor [8]. This leads to overesti-
mated PM concentration levels (Figure 2) for high levels
of RH.

It is important to note that pollution and humidity are
not directly correlated and that water vapor is not harm-
ful to human health. Therefore, to accurately measure
pollution levels, it is essential to clean the data from this
artifact. The EU air quality standards [9] and the WHO
air quality guidelines [10] and other governmental orga-
nizations measure pollution impact based on the dry PM
concentration.

Calibrating a low-cost sensor using data from a refer-
ence station and humidity levels is possible if a reference
station is available. However, it may not work well for

PM sensors because the problem is highly localized, with
different types of pollutants having different hygroscopic
properties based on surrounding environmental emis-
sions [11], [12], [13]. Placing the sensor near a reference
station, even if it is far from the final location of the LCS,
is another possibility for calibration, but it may also result
in poor data quality. Therefore, the proposed methods
aim to clean data in a location-agnostic manner.
In addition to the previously proposed methods that

utilize reference stations [14], two potential techniques
were proposed for cleaning low-cost sensor data in a
location-agnostic manner. The first technique involves
using a corrective function to reduce the correlation be-
tween PM concentration and humidity [15]. By reducing
the correlation, the concentration level detected can be
reduced by a particular factor. The second technique in-
volves training a multi-layer perceptron neural network
using data from a reference station, taking into account
not only the relative humidity but also other atmospheric
variables, such as pollutants and meteorological factors.
This could enable the NN to learn the relationship be-
tween humidity, pollutants, and the growth of PM con-
centration. Although the network is trained using data
from a reference station, the learned function is generic
and not location-specific. To make this technique work,
the network needs to be exposed to multiple contexts to
be used in locations far from the training site.

3. Growth functions
High relative humidity causes low-cost air particulate
matter sensors to measure higher values than profes-
sional sensors, due to the condensation effect and hygro-
scopic properties of the particles. To correct this effect, a
growth function that estimates the increase in PM values
due to humidity can be applied [15]. In the context of air
quality monitoring, a growth function is used to estimate
the increase in particulate matter concentration due to
the absorption of humidity by the particles. Specifically,
the growth function is used to estimate the amount by
which the concentration of wet particulate matter ex-
ceeds the concentration of dry particulate matter at a
given relative humidity level.

The growth function, given the level of the RH, returns
the coefficient to use in the correction. Dividing the PM
concentration detected by the low-cost sensor, which
we define as 𝑃𝑀𝑤𝑒𝑡 is returned the PM concentration
without the humidity contribution, defined as 𝑃𝑀𝑑𝑟𝑦. See
equation 1.

𝑃𝑀𝑑𝑟𝑦 = 𝑃𝑀𝑤𝑒𝑡/𝑔𝑓 (𝑅𝐻) (1)

The use of growth functions for humidity correction
can be implemented over the entire dataset or with a



Figure 2: The figure illustrates the impact of relative humidity on the detection of PM concentration by low-cost sensors. The
dotted line represents an RH threshold of 70%, which is used to distinguish between the RH levels where the effect is less
pronounced, based on the LCS Sensirion SPS30.

threshold approach, depending on the sensor and envi-
ronmental factors. Applying the growth function across
the entire dataset may result in coefficients being applied
to low RH levels, which can negatively impact already
corrected data. Therefore, a threshold approach is pre-
ferred, whereby the growth function is only applied to
RH values above the chosen threshold. The threshold
level can be determined based on the specific sensor be-
ing used or by taking into consideration environmental
knowledge. A commonly used threshold is around 70%.

Different corrective functions have been developed to
address the problem of humidity affecting PM concen-
tration measurements. Soneja et al. [16] research sug-
gests that there is an overestimation bias that becomes
significant at around 75% relative humidity, while an un-
derestimation bias exists at very low RH levels (below
30%). To address this issue, they have proposed humidity
adjustment equations that cover the entire RH range.
In this paper [15], the author proposes a compre-

hensive approach to correct nephelometric 1 PM for
humidity-related bias. The paper starts with an overview
of different sources that explain the principle behind the
hygroscopic growth of particulates [17], [18].

The author proposes a new approach, named “combo”,
described in 2, to address humidity-related bias in PM
measurements. This approach wants to combine some
of the existing methods.

1Nephelometry is a method used to measure the concentration of
suspended particles in a liquid or gas.

𝑔𝑓𝑐𝑜𝑚𝑏𝑜 = 1 + 𝛼 ⋅ 𝑟ℎ2

(1 − 𝑟ℎ)𝛽
(2)

The growth functions can be customized to fit mea-
sured data by selecting appropriate values for the param-
eters 𝛼 and 𝛽. A key feature of all growth functions is
that they have a value of 1 when the relative humidity is
0 and a significantly larger value as the relative humidity
approaches 100%.

3.1. Parameters optimization
One approach to choosing the growth function parame-
ters is to use reference station values as a ground truth.
Different 𝛼 and 𝛽 parameters are chosen within a certain
range and the parameters that best improve the PM de-
tected compared to the data detected by the reference
station are selected, as in [8] and [19]. However, this
approach links the parameters to the specific location of
the reference station and is limited to the period studied.
This approach is only useful if the low-cost sensor is co-
located and fixed near the reference station and never
moved. In this way, it is possible to update the param-
eters over time and use the reference station as ground
truth, [20]. However, this approach involves the opti-
mization of the growth function parameters concerning
the reference station values, which may not be feasible
in all situations.
To address this limitation, an alternative approach is

to select growth function parameters that result in the



lowest correlation between corrected PM concentrations
and RH [15]. This method does not require optimization
of the growth function parameters concerning reference
station values and may be more practical in certain situ-
ations where a reference station is not available or the
low-cost sensor is not co-located with a reference station.

In this approach, it is necessary to have data on the PM
concentration as well as the relative humidity detected in
the same location and at the same time. However, since
the accuracy of the sensors used is lower than that of
a reference station, it is always better to preprocess the
initial data and remove anomalies using typical anomaly
removal methods. It is also important to note that this
approach works on the assumption that relative humidity
and PM concentration are not strongly correlated, as
shown by the lack of correlation observed in reference
station data.

4. Neural network
One alternative that we propose as a solution is to use a
multi-layer perceptron neural network to model and gen-
eralize the relationship between relative humidity and
PM concentration growth. To achieve this, the neural net-
work is trained on a dataset containing input-output pairs
of RH, PM concentrations, and other relevant variables
like meteorological and atmospheric variables. Once
trained, the neural network can be used to correct PM
concentrations. This method has the advantage of being
able to capture complex, nonlinear relationships between
RH and PM concentrations and has the potential to gen-
eralize well to different locations and periods. However,
it requires a significant amount of high-quality training
data and careful tuning of the network architecture.

To effectively generalize the relationship between RH
and PM hygroscopic growth using a neural network, it is
necessary to feed the network with additional variables
beyond just RH and PM concentration data. Hygroscopic
growth is a process that occurs as water vapor accumu-
lates on the surface of aerosol particles with increasing
relative humidity. The extent to which this process oc-
curs depends on the chemical composition of the parti-
cles, which can vary widely in time and space [21].
Therefore, to improve the neural network’s ability to

accurately correct PM concentrations and generalize its
predictions to new contexts, additional variables that cap-
ture information about the chemical composition of the
particles should be included as inputs to the network.
However, these variables are often not available at the
sensor location and must be obtained from online re-
sources like Copernicus 2.

2Copernicus is a European Union Earth observation and monitoring
program that provides free and open access data (www.coperni-
cus.eu)

In training the network, data from one or more sensors
located near a reference station can be used, including
PM concentration, meteorological and atmospheric vari-
ables, and the additional variables as inputs, with the
reference station as the output. It’s critical to ensure
that the additional variables used are also available in
other locations where low-cost sensors are placed. The
elemental analysis is the most crucial additional variable,
describing the concentration of each element present. To
improve the network’s ability to generalize and correct
PM concentrations accurately, the network should learn
the correlation between RH and PM growth in different
pollutant contexts, as the hygroscopic properties are de-
pendent on the specific pollutants present at the time of
detection.
It is common in the literature to find studies that aim

to calibrate low-cost PM sensors against reference sta-
tions. In addition to using an MLP NN, there may be
other suggestions in the literature [22]. Some possible
methods include regression analysis, decision tree mod-
els, and support vector machines. Each method has its
advantages and limitations, and the choice of method
depends on the specific application and data available.
We believe that MLP NN has the potential to correct

PM concentration levelsmore effectively than othermeth-
ods. To achieve this, a wide range of scenarios, including
those that the sensors are likely to encounter, and differ-
ent periods should be presented to the network during the
training phase. This will improve the network’s ability
to generalize and correct PM concentration levels accu-
rately, even for sensors located far from the reference
station.

5. Cooperative techniques
One alternative and potential way to improve the accu-
racy of PM concentration measurement is to combine
different methods. Preprocessing techniques can be ap-
plied to eliminate obvious anomalies in the raw data
before applying the growth function. The resulting cor-
rected data can then be used as input to train a neural
network, which can further improve the accuracy of the
PM concentration measurements. This approach has the
potential to benefit from the strengths of each method,
leading to more accurate and reliable results. However,
the success of this approach depends on the quality and
consistency of the data, as well as the effectiveness of the
preprocessing.

6. Evaluation metrics
The wide range of possibilities for calibrating sensor de-
vices makes it challenging to assess their performance
and suitability for specific applications, especially since



Table 1
Recommended Performance Metrics and Target Values for PM2.5 Air Sensors

Performance Metric Target Value

Standard Deviation (SD) 𝑆𝐷 ≤ 5𝜇𝑔/𝑚3

or or
Coefficient of Variation (CV) 𝐶𝑉 ≤ 30%

Slope 1.0 ± 0.35
Intercept (b) −5 ≤ 𝑏 ≤ 5𝜇𝑔/𝑚3

Coefficient of Determination (𝑅2) 𝑅2 ≥ 0.70

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 ≤ 7𝜇𝑔/𝑚3

or or
Normalized Root Mean Square Error (NRMSE) 𝑁𝑅𝑀𝑆𝐸 ≤ 30%

data from these devices are often made public and used
for monitoring pollutant levels. To address this issue, the
U.S. EPA has proposed guidelines [23], containing met-
rics of Table 1, for evaluating the data quality of low-cost
sensors, which can be useful for non-regulatory purposes
such as identifying local air quality trends and hotspots,
promoting environmental awareness, and providing sup-
plemental monitoring.
The goal of the report is to establish a consistent set

of testing protocols, metrics, and target values for evalu-
ating the performance of PM2.5 air sensors in outdoor,
fixed-site environments specifically for non-regulatory
supplemental and informational monitoring (NSIM). The
metrics proposed can be used to assess the performance
of these methods and guide future developments in this
field.

7. Conclusion
In conclusion, it is expected that correction functions
based on hygroscopic growth factor can be applied in
locationswhere reference stations are not available. How-
ever, a neural network trained in various contexts may
still be superior. Therefore, the winning approach may
eventually come from a combination of these two tech-
niques. Future work will focus on exploring the potential
of these methods in mitigating the effects of humidity on
low-cost PM sensors and improving the accuracy of their
measurements.
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