CEUR-WS.org/Vol-3487/paper3.pdf

Is Al the better programming partner?
Human-Human Pair Programming vs. Human-Al
pAlr Programming”

Qianou Christina Ma™*, Sherry Tongshuang Wu' and Ken Koedinger'

ICarnegie Mellon University (CMU), Pittsburgh, PA, United States

Abstract

The emergence of large-language models (LLMs) that excel at code generation and commercial products
such as GitHub’s Copilot has sparked interest in human-AI pair programming (referred to as “pAlr
programming”) where an Al system collaborates with a human programmer. While traditional pair
programming between humans has been extensively studied in both industry and education, it remains
uncertain whether its findings can be applied to human-Al pair programming. We compare interaction,
measures, benefits, and challenges of human-human and human-AI pair programming. We find that the
effectiveness of both approaches is mixed in the literature (the measures used for pAlr programming
are not as comprehensive). We summarize moderating factors on the success of human-human pair
programming, which provide opportunities for pAlr programming. For example, mismatched expertise
makes pair programming less productive, therefore well-designed Al programming assistants may adapt
to differences in expertise levels. Finally, we discuss the potential of using LLMs to provide effective
pAlr programming learning for students at scale.

Keywords
Pair Programming, Large Language Model (LLM), Copilot, Al-based Programming Assistant

1. Introduction

Pair programming describes the practice of two programmers working together on the same
task using a single computer, keyboard, and mouse. One programmer in the pair, the “driver,”
performs the coding (typing) and implements the task, while the other programmer, the “navi-
gator,” aids in planning, reviewing, debugging, and suggesting improvements and alternatives.
Now, pair programming is used in a wide range of settings, including education, industry,
and open-source software development [1, 2]. For example, in education, human-human pair
programming has been adopted from K12 [3], CS1 [4] to higher-level project-based courses [5].

Recent advances in code-generating large-language models (LLMs) have led to the widespread
popularity of commercial Al-powered programming assistance tools such as GitHub Copilot
[6], which advertises itself as “your Al pair programmer.” Instead of two humans working on a
single computer, it is the programmer and the LLM-based Al that work together on the same
task. The shift in the paradigm raises the questions: Is the Al programming partner comparable

Empowering Education with LLMs — the Next-Gen Interface and Content Generation, July 7, 2023, Tokyo, Japan
*Corresponding author.

Q gianouma@cmu.edu (Q. C. Ma); sherryw@cs.cmu.edu (S. T. Wu); koedinger@cmu.edu (K. Koedinger)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
== CEUR Workshop Proceedings (CEUR-WS.org)



mailto:qianouma@cmu.edu
mailto:sherryw@cs.cmu.edu
mailto:koedinger@cmu.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

to a human pair programmer? Can they achieve similar or better performance, and should people
interact with them in the same way?

The question of whether Al can serve as a better programming partner is crucial. Under-
standing the comparative performance of Al and human programmers in a pair programming
context can guide developers and educators in utilizing the most effective collaboration methods.
Understanding the potential role and design of Al in pair programming can help educators
design more scalable pedagogical approaches to promote student learning and engagement
in programming. Furthermore, identifying the strengths and weaknesses of human and Al
programming partners may in turn contribute to the refinement and development of better AI
programming tools that augment human programmers’ capabilities.

Based on our readings of four existing meta-analysis papers on human-human pair program-
ming and over 50 studies on the topic of pair programming or Al-assisted programming, we
dive into comparisons of measurements of success (Section 2), as well as moderators, e.g., pair
compatibility factors like expertise (Section 3). We find that (1) prior work on both pair pro-
gramming paradigms has observed mixed results in quality, productivity, satisfaction, learning,
and cost, (2) human-AlI pair programming has yet to develop comprehensive measurements, and
(3) key factors to pAlr’s success have been largely unexplored.

Building on our exploration, we elaborate on future opportunities for developing best practices
and guidelines for pAlr programming (Section 4). First, we argue that moderating factors that
bring challenges to human-human pair programming (e.g., compatibility and communication)
unveil opportunities to improve human-Al pair programming. It can be promising to exploit
the differences between a human and an Al partner (e.g., more customizable expertise level
and more adaptable communication styles) to design for more successful pAlr programming
experiences. Second, we encourage future research to explore the best deployment environment
for pAlr programming, such as education. We hope this paper can inspire better evaluations
and designs of code-generating LLMs as a pAlr programmer, especially for students.

2. Mixed Outcomes

Literature reviews have suggested various benefits as well as mixed effects of human-human pair
programming [29, 1, 2]. According to Alves De Lima Salge and Berente [1], pair programming
improves code quality, productivity, and learning outcomes. However, according to Hannay
et al. [29], pair programming improves quality and shortens duration, but it increases effort,
higher quality comes at the expense of considerably greater effort, and reduced completion time
comes with lower quality. In the education context, pair programming brings benefits including
higher quality software, student confidence in solutions, increased assignment grades, exam
scores, success/passing rates in introductory courses, and retention [2, 30, 19]. All the reviews
acknowledged that even though meta-analyses can show a significant effect size, individual
studies could report contradictory outcomes (see examples in Table 1).

For human-AlI pair programming, existing works mainly focus on quality, productivity, and
satisfaction, and already demonstrated mixed results in quality and productivity [9, 31, 12] (see
examples in Table 1). Additionally, some measures are arguably too simplified as evaluation
metrics. For example, Imai [9] used the number of lines of added code as the measure of



Table 1

Comparison of Outcome Variables and Moderators for Human-Human Pair Programming vs. Human-Al

pAlr Program

ming

Outcomes

\ Human-Human vs. Human Solo

Human-Al (Copilot)

Quality

©:ssignificantly lower defect density for complex
code [7]

© no difference for simpler code [7]

© significantly higher percentage of test cases
passed [8]

® vs. Human-Human: more lines of code deleted in next ses-
sion (lower quality) [9]

© vs. Human Solo: significantly improve correctness score
and reduce encountered errors for novice students [10]

© vs. Human Solo: no significant difference in task success
[11] or task success rate in given time [12]

Productivity

@ significantly fewer lines of code per person
hour writing simpler code [7]

© no significant difference writing more com-
plex code [7]

© 29% shorter time to complete task (pair speed
advantage = 1.4) [13]

© vs. Human-Human: more lines of added code [9]

© vs. Human Solo: 55.8% reduction in completion time [11]
© vs. Human Solo: significantly increase task completion and
reduce task completion time for novice students [10]

© vs. Human Solo: no significant difference in the task com-
pletion rate in given time [12]

Satisfaction

© higher self-ratings of satisfaction [14]

@® students with greater self-confidence and
self-efficacy less enjoy the pair programming ex-
perience [15]

© vs. Human Solo: higher self-ratings of satisfaction [12, 16,
17]

Learning © higher grades, exam scores [18], and reten- | © vs. Human Solo: no significant difference in immediate
tion [19] and retention post-test performance of novices, students with
© significantly higher gains in exam perfor- | more prior experiences have more learning gains from Al code
mance in female students than male students | generator [10]

[20]

Cost @® increased management workload to match, | No experiment yet. Vaithilingam et al. [12], Bird et al. [16]
schedule a pair, resolve collaboration conflict, | hypothesized that human-Al may lead to more unnecessary
assess individual contributions, etc. [21] debugging vs. Human Solo
© reduced teaching staff workload (grading one
assignment from a pair) [8]

Moderators ‘ Human-Human vs. Human Solo ‘ Human-Al (Copilot)

Task Types Complex task improve quality, simple one does not [7]; debugging is perceived as less | N/A

& Complexity | enjoyable or effective than comprehension or refactoring [22]

Compatibility | Random pairing led to incompatible partners and conflicts during work [18]. Expertise: | N/A

(E.g., Expertise)| improve quality more effectively if pair is similarly skilled [14]; less-skilled students
learn more and enjoy more [20, 22]; if knowledge gap is large, less-skilled programmers
may tend to be more passive and disengaged [23]

Communica- | Conversations with intermediate-level details contribute to pair programming success | N/A

tion [24]; different types of discourse lead to more attempts or more debug success [25]

Collaboration | Over-reliance leads to conflicts and impedes satisfaction and learning, as work is en- | N/A
tirely burdened on one partner [4, 18]; educators recommend regular role-switching
to ensure equitable learning in collaboration [2]

Logistics Scheduling difficulties [26], teaching & evaluating individual responsibility and ac- | N/A
countability are important to collaboration success [27], but can lead to increased
management costs [21, 28]

productivity; however, the nature of interaction with Copilot (tab to accept suggestions) is
likely to contribute to more added lines in the human-Copilot condition, and how valid would
it represent the notion of productivity is questionable.

Since there is not enough research for a comprehensive review of human-Al pair programming,
we cannot reach any conclusion on pAlr effectiveness yet. It is also hard to compare the
human-human and human-Al pair programming literature, as they differ in what outcomes and
measurements they adopt. Therefore, in the top rows of Table 1, we listed the most common



outcome variables in both literature (quality, productivity, satisfaction, learning, and cost) and
some sample works to demonstrate mixed outcomes and example measures that operationally
define the outcomes. For more details, please refer to our more elaborated work [32].

Note that researchers can use different words to characterize similar constructs. For example,
duration, effort, and productivity are all types of “efficiency” outcomes that involve time and
accomplishment. Productivity can be measured in terms of the number of completed tasks in
a fixed unit of time, duration can be measured as the amount of elapsed or total time used to
complete a fixed number of tasks to a certain standard, and effort can be measured as twice the
duration, the person-hours required, etc. [1]. We use productivity as an aggregated outcome
variable of different measures, for consistency with the human-AlI literature.

3. Moderators

In search of the explanations of the cost-benefit of human-human pair programming experiences,
researchers have found moderators such as task type & complexity [29], compatibility factors
like expertise [27, 33], communication [34, 24, 23], collaboration factors like over-reliance and
role-switching [4, 35, 14], and logistics difficulties including scheduling and training [26, 29] (as
shown in the bottom rows of Table 1). For human-Al pair programming’s moderators, much
was unexplored — we do not know what could make human-AI pair programming more or less
effective. Therefore, in this section, we discuss the key moderators that are examined in the
human-human pair programming literature, and individual examples of moderating effects are
provided in Table 1.

3.1. Task Types & Complexity

For task type and task complexity, Chaparro et al. [22] found that debugging tasks lead to less
satisfaction and perceived efficacy compared to comprehension and refactoring tasks. Hannay
et al. [29] found that the duration is shorter for low complexity tasks, at the expense of lower
quality results, and quality is higher when complexity is higher, but it requires considerably
greater effort. Arisholm et al. [33] found that the moderating effect of complexity also depends
on the expertise of the pair, where “benefits of correctness on complex system apply mainly to
juniors, whereas the reductions in duration to perform the tasks correctly on the simple system
apply mainly to intermediates and seniors”

3.2. Compatibility

Salleh et al. [14] listed multiple factors for pair compatibility, such as personality, perceived
skills, actual skills (expertise), self-esteem, gender, and work ethic. Thomas et al. [15] found that
paired students with similar self-confidence levels produce their best work. Hannay et al. [35]
found that Big Five personality traits only have modest predictive value on pair programming
performance, in comparison to expertise, task complexity, and country. There also seems to be
evidence that women benefit from pair programming more than men [27, 30].

Expertise as a compatibility factor has been extensively studied. For example, researchers
found that a student pair performs the best when their expertise is similar [14] and students



preferred to be paired with similarly skilled partners [22]. However, in industry, Jensen [36]
reported that when both members were near the same capability level and strongly opinionated,
the collaboration was counter-productive and troublesome.

In the introductory programming context, Lui and Chan [37] found that pairing up novices
results in a larger improvement in productivity than pairing up experts. However, there are
concerns about “the blind leading the blind” if they don’t have an expert to consult with [21].
Researchers also found that less-skilled students learn and enjoy more than more-skilled students
in pair programming [22, 20]. However, when the knowledge gap is too large, students can be
less satisfied and the benefits of quality may be smaller [13]. Chong and Hurlbutt [23] reported
that a novice programmer collaborating with an expert may become disengaged, have lower
self-esteem, and be afraid of slowing down or annoying their more-skilled partner [21].

3.3. Communication

According to Freudenberg et al. [24], “the key to the success of pair programming [is] the
proliferation of talk at an intermediate level of detail in pair programmers’ conversations.” Re-
searchers found that pair programming eliminates distracting activity and enables programmers
to focus on productive activity [38], which could be why engaging communications contribute
to successful pair programming. Murphy et al. [25] used transactive analysis to break down
communication by different types of transactions and found that attempting more problems
associated with more completion and debugging success correlated with more critique transac-
tions. Some other works pointed out the social support aspect of communication [23] and an
explanation effect where the verbalization of the thought process makes thinking clearer [16].

In human-human pair programming, programmers spend about 1/3 of the time primarily
focusing on communication [34], which forces them to concentrate, rationalize, and explain
their thoughts [38, 29]. In human-AlI pair programming, Mozannar et al. [39] has shown that
an analogous 1/3 amount of time is spent communicating with Copilot, such as thinking and
verifying (22.4%) Copilot’s suggestion, which may be replicating the self-explanation effects in
some ways, and prompt crafting, which takes 11.56% of the time. These activities are arguably
efforts to understand and communicate with Copilot. However, there is no other human
to co-verify the answers, and there is no study that evaluate the communicative nature of
human-Copilot interaction as human-human pair programming,.

3.4. Collaboration

Collaboration can fail in various ways in a human-human pair. For example, the free-rider
problem, where the entire workload is on one partner while the other remains a marginal player,
can result in less satisfaction and learning [4, 18]. In human-AlI pair programming, educators
are worried that easily available code-generation tools may lead to cheating, and over-reliance
on Al may hinder students learning [40]. However, no study has formally evaluated it yet.
For human-human pair programming, there is a suggested collaboration pattern of role-
switching — two software developers periodically and regularly switch between writing code
(driver) and suggesting code (navigator), aiming to ensure that both are engaged in the task
and alleviate the physical and cognitive load borne by the driver [1, 34]. Some researchers



Freudenberg et al. [24] argue that the success of pair programming should be attributed to com-
munication rather than “the differences in behavior or focus between the driver and navigator,”
as they found both driver and navigator worked on similar levels of abstraction. Neverthe-
less, instructors still recommend drivers and navigators to regularly alternate roles to ensure
equitable learning experiences [2].

In human-AlI interaction, given Copilot’s amazing capability to write code in different lan-
guages, some have argued that Copilot can take on the role of the “driver” in pair programming,
allowing a solo programmer to take on the role of the “navigator” and focus on understanding
the code at a higher level [9]. However, while it is possible for humans to offload some API
lookup and syntax details to Copilot, humans still need to jump back into the driver’s seat
frequently and fluidly switch between the thinking and writing activities [39]. It is ultimately
the human programmer’s sole responsibility to understand the code at the statement level [41].

3.5. Logistics

Logistical challenges, including scheduling difficulties, teaching and evaluating collaboration
for the pair, and figuring out individual accountability and responsibility [26, 27], can add to
the management cost of human-human pair programming [21, 28].

In human-Al pair programming, some may argue that the human is solely responsible in the
human-Al pair [41], but the accountability of these LLM-based generative Al is still under debate
[40]. There may be new logistics issues for the human-Al pair, such as teaching humans how
to best collaborate with Copilot. There could also be unique challenges as in every human-AI
interaction scenario, such as bias, trust, and technical limitations — much to be explored. More
study would be needed to empirically and experimentally verify the moderating effects of
different variables in human-AI pair programming,.

4. Discussion and Future Work

4.1. LLM, A Better pAlr Programmer?

As reviewed in Section 2, previous literature has explored a variety of measures to evaluate
different aspects of human-human pair programming, while the current exploration in human-
Al pair programming is quite limited. Murillo and D’Angelo [42] have proposed evaluation
metrics for LLM-based creative code writing assistants in software engineering. More works
could use more valid measures in the human-human pair programming literature to explore how
to best help humans and LLM-based Al programming assistant collaborate together. It would
also be interesting to have a study setup with three conditions — human-human, human-AI, and
human solo — working on the same task.

Note that in this paper, we mostly covered studies using the VSCode Extension Copilot. Tools
like ChatGPT may support the communication aspect better than Copilot [43], and there are
also Bard developed by Google [44] and an experimental version of Copilot Labs by Github [45],
which support more functionalities such as fix bug, clean, and customizable prompts. Those
tools may already improve the human-AlI pair programming interaction in some ways, so future
studies could also compare across a variety of LLM-based programming tools.



Table 2
Challenges in Human-Human Pair Programming Yield Opportunities for Human-Al pAlr Programming

Moderating Factors | Human-Human Challenges | Human-Al Opportunities

Task Types & Complexity: pair work bet-
ter if the task is not too simple and good for
collaboration [7, 22]

Hard to design suitable tasks
of appropriate complexity
level

Al may be used to generate collab-
oration tasks and adjust tasks com-
plexity

Compatibility: pairs with similar skill lev-
els and compatible working styles work bet-
ter [14, 22]

Hard to find a similarly skilled
or compatible partner

Al partner should adjust to human
skill level and adapt to be compati-
ble with different people

Communication: pairs work better with
productive conversations [24], and critiques
lead to more debugging success [25]

Hard to teach effective com-
munication and constructive
criticism

Al partner should support produc-
tive conversations and provide cri-
tiques

Collaboration: pairs work better with posi-
tive interdependence [27] and clear and bal-
anced responsibilities [18]

Hard to teach collaboration
and prevent free riders

Al should support positive social
interactions and collaboration and
avoid over-assist that eliminates hu-
man’s need to engage

Logistics: pair programming is costly to im-
plement because of management challenges
[21, 28]

Hard to schedule and assess
individual contributions in a
pair

Scheduling is no longer a prob-
lem, but humans should be account-
able and responsible when using Al-

generated code

Previous literature suggested some key factors in the success of human-human pair program-
ming, as summarized in Table 1. These moderators that cause challenges for human-human
pair programming may yield opportunities to explore in human-AI pair programming (Table 2).
For example, self-efficacy can lead to a difference in satisfaction [15] and gender can lead to
a difference in learning [20], do these compatibility moderators influence pAlr too? Can we
improve pAlr outcomes using insights derived from human-human literature (e.g., simulate an
Al partner with similar self-efficacy levels and the same gender)? We discuss more details on
how and why might LLM be used in ways presented in Table 2 in our later work [32].

Therefore, in general, we can ask the following questions for future works: could these
factors be implemented for human-AlI pair programming; would they make human-Al pair
programming more effective, less effective, or have no influence, and why?

4.2. LLM, Students’ pAlr Programmer?

Most current studies that evaluate the efficacy of Copilot are conducted with experienced
software developers. If we estimate Copilot’s problem-solving abilities as an average student
in introductory programming classes, evaluating its performance when pairing up with a
professional software developer with much more expertise may not bring enough benefit to the
professional. Therefore, working with LLM’s current capabilities, it seems like a student-Al
pair programming setup would be the most promising to explore, so the next question is: how
should we best support student-Al pair programming?

Re-prioritize programming skills. First of all, co-working with Al requires a special skill
set, and future work could explore how to support students to better develop these crucial skills.



Bird et al. [16] argued that the popularity of LLM-based programming assistants will result in
the growing importance of reviewing code as a skill for developers. Nonetheless, in Perscheid
et al. [46]’s interview, none of the professional developers remembered training on debugging
at school. There is already rich literature on debugging and testing instructions [47, 48, 49], but
logistical challenges like the lack of instructional time still exist [49, 50], and educators need to
better prepare students with debugging and testing skills needed to work with unreliable AL

Integrate AIEd frameworks. Holstein et al. [51] developed a framework to map ways to
mutually augment humans and Al in education, for example, by augmenting interpretation,
action, scalability, and capacity. Future works can use existing theories in the Al education
space to improve the design of the Al pAlr programming partner, and further investigate if
LLMs bring new focus and affordances to previous human-Al education frameworks.

Support explanation and communication with students. Previous attempts of using
Al agent as pair programming partner have shown some preliminary success in knowledge
transfer and retention [52, 53], and the limitation discussed was the lack of discussion and
explanation [54]. Nowadays, as an LLM-based agent can support more natural interaction and
provide good quality explanations in the introductory programming context [55], it would be
interesting to explore if LLM-based Al could resolve some limitations mentioned in pedagogical
and conversational agent works before. Self-reflection and explanation techniques may also be
adopted to make up for the communication aspect as in human-human pair programming.

Match expertise with students. Furthermore, as discussed in Section 3, matching expertise
is a tricky problem. Lui and Chan [37] found that expert-expert pair may not gain as much of
an advantage over an expert solo programmer, in comparison to novice-novice pair vs. a solo
novice. Meanwhile, pairing two novices together raise concerns of “the blind leading the blind,”
but pairing a novice with an expert may lead to lower self-esteem of the novice [21]. Given
all these complexities, when it comes to a student-Al pair and when we only care about the
student’s learning gains, there are a lot of research questions to ask. If we have full control of
the perceived skill level of the Al partner, should we configure it to be similar to the student,
slightly higher skilled, or a lot better? Would it be beneficial to have both a peer Al agent but
also a tutor Al agent to assist if students get stuck?

Avoid over-helping students. Note that for programming learners, it would be important
to configure the LLM-based programming assistant to avoid over-help. In the few studies that
examined novice interaction with Copilot [56] or a customized programming environment based
on LLM-based code generation model Codex [10]. Prather et al. [56] found that novices do have
unique interaction patterns with Copilot and a tendency to rely on and trust the generated code
too much. Kazemitabaar et al. [10] discussed design implications including control over-use
and support complete novices. There have also been concerns about academic integrity and
changing perception of learning when LLM-based programming tools become easily accessible
to students [40, 57, 56], which are issues to further explore for student-Al pair programming.



Boost students’ self-confidence. Pair programming has been shown to benefit students
with lower self-efficacy and self-confidence levels [15] and women [20] more, which could make
it a pedagogical tool to engage more vulnerable or underrepresented populations in CS. When
an Al is introduced in pair programming, would the same benefits retain? How should we
present the Al differently to make it compatible with students with different confidence levels?
How do we mitigate the risks of unreliable but seemingly authoritative AI?

Address critical risks in using LLM. Last but not least, LLMs may be an opportunity to
address some existing challenges that student-student pair programming has (as summarized in
Table 2), but there are critical risks associated with using generative Al in education, such as bias,
trust, and transparency [58]. Evaluation on existing benchmarks shows that ChatGPT exhibits
ethnically risky behaviors and presents inaccurate information [59]. Therefore, to ethnically
and responsibly use Al as a student’s pair programming partner, besides keep improving model
designs, we also need to keep human instructors’ supervision and education students about
AT’s limitations.

5. Conclusion

This paper has discussed the concept of human-Al pair programming (pAlr programming).
Research has yet to pinpoint which of these supposed advantages of human-Al pair programming
yields the largest benefits in efficiency and learning. Human-human pair programming literature
yield insights on what outcomes and measures should researchers use to evaluate their pAlr
programming work (e.g., use more valid quality and productivity measurements, and further
investigate cost), and what moderators should researchers consider to further analyze and
improve pAlr programming’s process and design (e.g, compatibility, communication, etc.).

In conclusion, more valid and comprehensive measurements are needed to evaluate pAlr
programming, more comparisons can be drawn between human-human vs. human-AI pair
programming, and more works can explore how to best support LLM-assisted programming
with insights from the rich literature on human-human pair programming.

Acknowledgments

Thanks to Ken'’s lab members for giving feedback on this work. Thanks to Stephen MacNeil for
coming up with the creative “pAlr” keyword for this project.

References

[1] C. Alves De Lima Salge, N. Berente, Pair programming vs. solo programming: What do we
know after 15 years of research?, in: 2016 49th Hawaii International Conference on System
Sciences (HICSS), 2016, pp. 5398-5406. URL: http://dx.doi.org/10.1109/HICSS.2016.667.
doi:10.1109/HICSS. 2016.667.


http://dx.doi.org/10.1109/HICSS.2016.667
http://dx.doi.org/10.1109/HICSS.2016.667

[2] K. Umapathy, A. D. Ritzhaupt, A Meta-Analysis of Pair-Programming in computer pro-
gramming courses: Implications for educational practice, ACM Trans. Comput. Educ. 17
(2017) 1-13. URL: https://doi.org/10.1145/2996201. doi:10.1145/2996201.

[3] X. Wei, L. Lin, N. Meng, W. Tan, S.-C. Kong, Others, The effectiveness of partial
pair programming on elementary school students’ computational thinking skills
and self-efficacy, Comput. Educ. 160 (2021) 104023. URL: https://www.sciencedirect.
com/science/article/pii/S03601315203022197casa_token=BCC-5YvaAgAAAAAA:
TOmfQPTBGpeL296DBtelqwPs7pNeHKuugy8gsVKONn6bha9pdJIMm2G3JLUNXTwTUZavVA2Fw.

[4] L. Williams, E. Wiebe, K. Yang, M. Ferzli, C. Miller, In support of pair programming in
the introductory computer science course, Comput. Sci. Educ. 12 (2002) 197-212. URL:
http://www.tandfonline.com/doi/abs/10.1076/csed.12.3.197.8618. do0i:10.1076/csed. 12.3.
197.8618.

[5] S.Xu, V. Rajlich, Pair programming in graduate software engineering course projects,
in: Proceedings Frontiers in Education 35th Annual Conference, IEEE, 2006. URL: http:
//ieeexplore.ieee.org/document/1612027/. doi:10.1109/fie.2005.1612027.

[6] GitHub, Your Al pair programmer: Copilot, https://github.com/features/copilot, 2021. URL:
https://github.com/features/copilot, accessed: 2022-10-5.

[7] R.Sison, Investigating the effect of pair programming and software size on software quality
and programmer productivity, in: 2009 16th Asia-Pacific Software Engineering Conference,
2009, pp. 187-193. URL: http://dx.doi.org/10.1109/APSEC.2009.71. doi:10. 1109/APSEC. 2009.
71.

(8] L. Williams, R. L. Upchurch, In support of student pair-programming, in: Proceed-
ings of the thirty-second SIGCSE technical symposium on Computer Science Education,
ACM, New York, NY, USA, 2001. URL: https://collaboration.csc.ncsu.edu/laurie/Papers/
WilliamsUpchurch.pdf. doi:10.1145/364447.364614.

[9] S.Imai, Is GitHub copilot a substitute for human pair-programming? an empirical study,
in: 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), ieeexplore.ieee.org, 2022, pp. 319-321. URL: http://dx.doi.
org/10.1145/3510454.3522684. doi:10.1145/3510454.3522684.

[10] M.Kazemitabaar, J. Chow, C. K. T. Ma, B. ]J. Ericson, D. Weintrop, T. Grossman, Studying the
effect of Al code generators on supporting novice learners in introductory programming
(2023). URL: http://arxiv.org/abs/2302.07427. arXiv:2302.07427.

[11] S. Peng, E. Kalliamvakou, P. Cihon, M. Demirer, The impact of Al on developer pro-
ductivity: Evidence from GitHub copilot (2023). URL: http://arxiv.org/abs/2302.06590.
arXiv:2302.06590.

[12] P. Vaithilingam, T. Zhang, E. L. Glassman, Expectation vs. experience: Evaluating the
usability of code generation tools powered by large language models, in: Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems, number
Article 332 in CHI EA 22, Association for Computing Machinery, New York, NY, USA,
2022, pp. 1-7. URL: https://doi.org/10.1145/3491101.3519665. doi:10.1145/3491101.3519665.

[13] V. V. K. Padmanabhuni, H. P. Tadiparthi, S. M. Muralidhar Yanamadala, Ef-
fective pair programming practice-an experimental study, Journal of Emerg-
ing Trends in Computing and Information Sciences 3 (2012) 471-479. URL:
http://www.agilemethod.csie.ncu.edu.tw/agileMethod/download/2012papers/2012%


https://doi.org/10.1145/2996201
http://dx.doi.org/10.1145/2996201
https://www.sciencedirect.com/science/article/pii/S0360131520302219?casa_token=BCC-5YvaAgAAAAAA:lIOmfQPTBGpeL296DBtelqwPs7pNeHKuugy8gsVK0Nn6bha9pdJIMm2G3JLUNXTwTUZavVA2Fw
https://www.sciencedirect.com/science/article/pii/S0360131520302219?casa_token=BCC-5YvaAgAAAAAA:lIOmfQPTBGpeL296DBtelqwPs7pNeHKuugy8gsVK0Nn6bha9pdJIMm2G3JLUNXTwTUZavVA2Fw
https://www.sciencedirect.com/science/article/pii/S0360131520302219?casa_token=BCC-5YvaAgAAAAAA:lIOmfQPTBGpeL296DBtelqwPs7pNeHKuugy8gsVK0Nn6bha9pdJIMm2G3JLUNXTwTUZavVA2Fw
http://www.tandfonline.com/doi/abs/10.1076/csed.12.3.197.8618
http://dx.doi.org/10.1076/csed.12.3.197.8618
http://dx.doi.org/10.1076/csed.12.3.197.8618
http://ieeexplore.ieee.org/document/1612027/
http://ieeexplore.ieee.org/document/1612027/
http://dx.doi.org/10.1109/fie.2005.1612027
https://github.com/features/copilot
https://github.com/features/copilot
http://dx.doi.org/10.1109/APSEC.2009.71
http://dx.doi.org/10.1109/APSEC.2009.71
http://dx.doi.org/10.1109/APSEC.2009.71
https://collaboration.csc.ncsu.edu/laurie/Papers/WilliamsUpchurch.pdf
https://collaboration.csc.ncsu.edu/laurie/Papers/WilliamsUpchurch.pdf
http://dx.doi.org/10.1145/364447.364614
http://dx.doi.org/10.1145/3510454.3522684
http://dx.doi.org/10.1145/3510454.3522684
http://dx.doi.org/10.1145/3510454.3522684
http://arxiv.org/abs/2302.07427
http://arxiv.org/abs/2302.07427
http://arxiv.org/abs/2302.06590
http://arxiv.org/abs/2302.06590
https://doi.org/10.1145/3491101.3519665
http://dx.doi.org/10.1145/3491101.3519665
http://www.agilemethod.csie.ncu.edu.tw/agileMethod/download/2012papers/2012%20Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study/Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study.pdf
http://www.agilemethod.csie.ncu.edu.tw/agileMethod/download/2012papers/2012%20Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study/Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study.pdf

20Effective%20Pair%20Programming%20Practice-%20An%20Experimental %20Study/
Effective%20Pair%20Programming%20Practice-%20An%20Experimental %20Study.pdf.

[14] N. Salleh, E. Mendes, J. Grundy, Empirical studies of pair programming for CS/SE teaching
in higher education: A systematic literature review, IEEE Trans. Software Eng. 37 (2011)
509-525. URL: http://dx.doi.org/10.1109/TSE.2010.59. doi:10.1109/TSE. 2010. 59.

[15] L. Thomas, M. Ratcliffe, A. Robertson, Code warriors and code-a-phobes: a study in
attitude and pair programming, SIGCSE Bull. 35 (2003) 363-367. URL: https://doi.org/10.
1145/792548.612007. doi:10.1145/792548.612007.

[16] C.Bird, D.Ford, T. Zimmermann, N. Forsgren, E. Kalliamvakou, T. Lowdermilk, I. Gazit, Tak-
ing flight with copilot: Early insights and opportunities of Al-powered pair-programming
tools, Queueing Syst. 20 (2023) 35-57. URL: https://doi.org/10.1145/3582083. doi:10.1145/
3582083.

[17] E.  Kalliamvakou, Research: quantifying ~ GitHub  copilot’s  im-
pact on  developer productivity and  happiness, https://github.blog/
2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/,
2022. URL: https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-producti
accessed: 2022-10-13.

[18] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe, K. Yang, C. Miller, S. Balik, Improving the
CS1 experience with pair programming, in: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, ACM, New York, NY, USA, 2003. URL: https:
//dl.acm.org/doi/10.1145/611892.612006. doi:10.1145/611892.612006.

[19] C. McDowell, L. Werner, H. E. Bullock, J. Fernald, Pair programming improves student
retention, confidence, and program quality, Commun. ACM 49 (2006) 90-95. URL: https:
//dl.acm.org/doi/lo.l145/1145287.1145293. doi:10.1145/1145287.1145293.

[20] P. Maguire, R. Maguire, P. Hyland, P. Marshall, Enhancing collaborative learning using
pair programming: Who benefits?, AISHE-J 6 (2014). URL: https://ojs.aishe.org/index.php/
aishe-j/article/view/141.

[21] M. Ally, F. Darroch, M. Toleman, A framework for understanding the factors influ-
encing pair programming success, in: Extreme Programming and Agile Processes in
Software Engineering, Lecture notes in computer science, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, pp. 82-91. URL: http://link.springer.com/10.1007/11499053_10.
doi:10.1007/11499053\_10.

[22] E. A. Chaparro, A. Yuksel, P. Romero, S. Bryant, Factors affecting the perceived effec-
tiveness of pair programming in higher education, Annual Workshop of the Psychology
of Programming Interest Group (2005). URL: https://www.semanticscholar.org/paper/
c095f0d9b17¢d9c2851000534740e7cc087253fa.

[23] J. Chong, T. Hurlbutt, The social dynamics of pair programming, in: 29th International
Conference on Software Engineering (ICSE’07), ieeexplore.ieee.org, 2007, pp. 354-363.
URL: http://dx.doi.org/10.1109/ICSE.2007.87. doi:10.1109/ICSE. 2007 . 87.

[24] S. Freudenberg, P. Romero, B. Du Boulay, Talking the talk: Is intermediate-level conversa-
tion the key to the pair programming success story?, in: AGILE 2007, unknown, 2007,
pp- 84-91. URL: https://www.researchgate.net/publication/4270516_Talking_the_talk
Is_intermediate-level_conversation_the_key_to_the_pair_programming_success_story.
doi:10.1109/AGILE. 2007 . 1.


http://www.agilemethod.csie.ncu.edu.tw/agileMethod/download/2012papers/2012%20Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study/Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study.pdf
http://www.agilemethod.csie.ncu.edu.tw/agileMethod/download/2012papers/2012%20Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study/Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study.pdf
http://www.agilemethod.csie.ncu.edu.tw/agileMethod/download/2012papers/2012%20Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study/Effective%20Pair%20Programming%20Practice-%20An%20Experimental%20Study.pdf
http://dx.doi.org/10.1109/TSE.2010.59
http://dx.doi.org/10.1109/TSE.2010.59
https://doi.org/10.1145/792548.612007
https://doi.org/10.1145/792548.612007
http://dx.doi.org/10.1145/792548.612007
https://doi.org/10.1145/3582083
http://dx.doi.org/10.1145/3582083
http://dx.doi.org/10.1145/3582083
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://dl.acm.org/doi/10.1145/611892.612006
https://dl.acm.org/doi/10.1145/611892.612006
http://dx.doi.org/10.1145/611892.612006
https://dl.acm.org/doi/10.1145/1145287.1145293
https://dl.acm.org/doi/10.1145/1145287.1145293
http://dx.doi.org/10.1145/1145287.1145293
https://ojs.aishe.org/index.php/aishe-j/article/view/141
https://ojs.aishe.org/index.php/aishe-j/article/view/141
http://link.springer.com/10.1007/11499053_10
http://dx.doi.org/10.1007/11499053_10
https://www.semanticscholar.org/paper/c095f0d9b17cd9c2851000534740e7cc087253fa
https://www.semanticscholar.org/paper/c095f0d9b17cd9c2851000534740e7cc087253fa
http://dx.doi.org/10.1109/ICSE.2007.87
http://dx.doi.org/10.1109/ICSE.2007.87
https://www.researchgate.net/publication/4270516_Talking_the_talk_Is_intermediate-level_conversation_the_key_to_the_pair_programming_success_story
https://www.researchgate.net/publication/4270516_Talking_the_talk_Is_intermediate-level_conversation_the_key_to_the_pair_programming_success_story
http://dx.doi.org/10.1109/AGILE.2007.1

[25]

[26]

[30]

[34]

[35]

[36]

[37]

[38]

L. Murphy, S. Fitzgerald, B. Hanks, R. McCauley, Pair debugging: a transactive discourse
analysis, in: Proceedings of the Sixth international workshop on Computing education
research, ICER ’10, Association for Computing Machinery, New York, NY, USA, 2010, pp.
51-58. URL: httpS://dOi.Org/l().l145/1839594.1839604. doi:10.1145/1839594.1839604.

A. Begel, N. Nagappan, Pair programming: what’s in it for me?, in: Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering and mea-
surement, ACM, New York, NY, USA, 2008. URL: https://dl.acm.org/doi/10.1145/1414004.
1414026. doi:10.1145/1414004.1414026.

D. Preston, Using collaborative learning research to enhance pair programming pedagogy,
SIGITE Newsl. 3 (2006) 16-21. URL: https://doi.org/10.1145/1113378.1113381. doi:10.1145/
1113378.1113381.

W. Sun, G. Marakas, The true cost of pair programming: Development of a comprehensive
model and test, Americas Conference on Information Systems (2009). URL: https://www.
semanticscholar.org/paper/647fc48650e4f19962c8a6feb87f3bdedde9ddo4.

J. E. Hannay, T. Dyba, E. Arisholm, D. I. K. Sjeberg, The effectiveness of pair program-
ming: A meta-analysis, Information and Software Technology 51 (2009) 1110-1122.
URL: https://www.sciencedirect.com/science/article/pii/S0950584909000123. doi:10.1016/
j.infsof.2009.02.001.

B. Hanks, S. Fitzgerald, R. McCauley, L. Murphy, C. Zander, Pair programming in education:
a literature review, Comput. Sci. Educ. 21 (2011) 135-173. URL: https://www.tandfonline.
com/doi/full/10.1080/08993408.2011.579808. doi:10.1080/08993408.2011.579808.

S. Barke, M. B. James, N. Polikarpova, Grounded copilot: How programmers interact with
Code-Generating models (2022). URL: http://arxiv.org/abs/2206.15000. arXiv:2206.15000.
Q. Ma, T. Wu, K. Koedinger, Is Al the better programming partner? Human-Human pair
programming vs. Human-Al pAlr programming (2023). URL: http://arxiv.org/abs/2306.
05153. arXiv:2306.05153.

E. Arisholm, H. Gallis, T. Dyba, D. I. K. Sjoberg, Evaluating pair programming with respect
to system complexity and programmer expertise, IEEE Trans. Software Eng. 33 (2007)
65-86. URL: http://dx.doi.org/10.1109/TSE.2007.17. doi:10.1109/TSE. 2007 . 17.

L. Plonka, J. Segal, H. Sharp, J. van der Linden, Collaboration in pair programming: Driving
and switching, in: Agile Processes in Software Engineering and Extreme Programming
- 12th International Conference, XP 2011, Madrid, Spain, May 10-13, 2011. Proceedings,
volume 77, unknown, 2011, pp. 43-59. URL: https://www.researchgate.net/publication/
221592723_Collaboration_in_Pair Programming_Driving_and_Switching. doi:10.1007/
978-3-642-20677-1\_4.

J. E. Hannay, E. Arisholm, H. Engvik, D. I. K. Sjoberg, Effects of personality on pair
programming, IEEE Trans. Software Eng. 36 (2010) 61-80. URL: http://dx.doi.org/10.1109/
TSE.2009.41. doi:10.1109/TSE. 2009. 41.

R. W. Jensen, A pair programming experience, ACCU - professionalism in programming
Overload 13 (2005). URL: https://accu.org/journals/overload/13/65/jensen_254/.

K. M. Lui, K. C. C. Chan, Pair programming productivity: Novice—novice vs. expert—
expert, Int. J. Hum. Comput. Stud. 64 (2006) 915-925. URL: https://linkinghub.elsevier.
com/retrieve/pii/S1071581906000644. doi:10.1016/j.1ijhcs.2006.04.010.

A. Sillitti, G. Succi, J. Vlasenko, Understanding the impact of pair programming on


https://doi.org/10.1145/1839594.1839604
http://dx.doi.org/10.1145/1839594.1839604
https://dl.acm.org/doi/10.1145/1414004.1414026
https://dl.acm.org/doi/10.1145/1414004.1414026
http://dx.doi.org/10.1145/1414004.1414026
https://doi.org/10.1145/1113378.1113381
http://dx.doi.org/10.1145/1113378.1113381
http://dx.doi.org/10.1145/1113378.1113381
https://www.semanticscholar.org/paper/647fc48650e4f19962c8a6feb87f3bdedde9dd04
https://www.semanticscholar.org/paper/647fc48650e4f19962c8a6feb87f3bdedde9dd04
https://www.sciencedirect.com/science/article/pii/S0950584909000123
http://dx.doi.org/10.1016/j.infsof.2009.02.001
http://dx.doi.org/10.1016/j.infsof.2009.02.001
https://www.tandfonline.com/doi/full/10.1080/08993408.2011.579808
https://www.tandfonline.com/doi/full/10.1080/08993408.2011.579808
http://dx.doi.org/10.1080/08993408.2011.579808
http://arxiv.org/abs/2206.15000
http://arxiv.org/abs/2206.15000
http://arxiv.org/abs/2306.05153
http://arxiv.org/abs/2306.05153
http://arxiv.org/abs/2306.05153
http://dx.doi.org/10.1109/TSE.2007.17
http://dx.doi.org/10.1109/TSE.2007.17
https://www.researchgate.net/publication/221592723_Collaboration_in_Pair_Programming_Driving_and_Switching
https://www.researchgate.net/publication/221592723_Collaboration_in_Pair_Programming_Driving_and_Switching
http://dx.doi.org/10.1007/978-3-642-20677-1_4
http://dx.doi.org/10.1007/978-3-642-20677-1_4
http://dx.doi.org/10.1109/TSE.2009.41
http://dx.doi.org/10.1109/TSE.2009.41
http://dx.doi.org/10.1109/TSE.2009.41
https://accu.org/journals/overload/13/65/jensen_254/
https://linkinghub.elsevier.com/retrieve/pii/S1071581906000644
https://linkinghub.elsevier.com/retrieve/pii/S1071581906000644
http://dx.doi.org/10.1016/j.ijhcs.2006.04.010

[48]

[49]

developers attention: A case study on a large industrial experimentation, in: 2012 34th
International Conference on Software Engineering (ICSE), IEEE, 2012, pp. 1094-1101. URL:
http://dx.doi.org/10.1109/ICSE.2012.6227110. doi:10.1109/ICSE. 2012.6227110.

H. Mozannar, G. Bansal, A. Fourney, E. Horvitz, Reading between the lines: Modeling user
behavior and costs in Al-assisted programming, ArXiv (2022). URL: http://dx.doi.org/10.
48550/ARXIV.2210.14306. d0i:10.48550/ARXIV.2210.14306.

B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather, E. A. Santos, Pro-
gramming is hard - or at least it used to be: Educational opportunities and challenges
of Al code generation, in: Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1, SIGCSE 2023, Association for Computing Machin-
ery, New York, NY, USA, 2023, pp. 500-506. URL: https://doi.org/10.1145/3545945.3569759.
doi:10.1145/3545945.3569759.

A. Sarkar, A. D. Gordon, C. Negreanu, C. Poelitz, S. S. Ragavan, B. Zorn, What is it
like to program with artificial intelligence? (2022). URL: http://arxiv.org/abs/2208.06213.
arXiv:2208.06213.

A. Murillo, S. D’Angelo, An engineering perspective on writing assistants for productivity
and creative code, The Second Workshop on Intelligent and Interactive Writing Assistants
(2023). URL: https://cdn.glitch.global/d058c114-3406-43be-8a3c-d3afff35eda2/paper1_2023.
pdf.

H. H. Thorp, ChatGPT is fun, but not an author, Science 379 (2023) 313. URL: http:
//dx.doi.org/10.1126/science.adg7879. doi:10.1126/science.adg7879.

Google, Bard, https://bard.google.com/, ???? URL: https://bard.google.com/, accessed:
2023-5-19.

Github, GitHub copilot labs, https://githubnext.com/projects/copilot-labs/, ???? URL:
https://githubnext.com/projects/copilot-labs/, accessed: 2023-5-19.

M. Perscheid, B. Siegmund, M. Taeumel, R. Hirschfeld, Studying the advancement in
debugging practice of professional software developers, Software Quality Journal 25 (2017)
83-110. URL: https://doi.org/10.1007/s11219-015-9294-2. d0i:10.1007/s11219-015-9294- 2.
W. Ahrendt, R. Bubel, R. Hahnle, Integrated and Tool-Supported teaching of testing,
debugging, and verification, in: Teaching Formal Methods, Springer Berlin Heidel-
berg, 2009, pp. 125-143. URL: http://dx.doi.org/10.1007/978-3-642-04912-5_9. doi:10.1007/
978-3-642-04912-5\_09.

J. Smith, J. Tessler, E. Kramer, C. Lin, Using peer review to teach software testing, in:
Proceedings of the ninth annual international conference on International computing
education research, ICER ’12, Association for Computing Machinery, New York, NY,
USA, 2012, pp. 93-98. URL: https://doi.org/10.1145/2361276.2361295. doi:10.1145/2361276.
2361295.

R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon, L. Thomas, C. Zander, De-
bugging: A review of the literature from an educational perspective, Computer Science Edu-
cation 18 (2008) 67—-92. URL: http://www.informaworld.com/openurl?genre=article&id=doi:
10.1080/08993400802114581. doi:10.1080/08993400802114581.

S. Fitzgerald, R. McCauley, B. Hanks, L. Murphy, B. Simon, C. Zander, Debugging from the
student perspective, IEEE Trans. Educ. 53 (2010) 390-396. URL: http://dx.doi.org/10.1109/
TE.2009.2025266. d0i:10.1109/TE. 2009.2025266.


http://dx.doi.org/10.1109/ICSE.2012.6227110
http://dx.doi.org/10.1109/ICSE.2012.6227110
http://dx.doi.org/10.48550/ARXIV.2210.14306
http://dx.doi.org/10.48550/ARXIV.2210.14306
http://dx.doi.org/10.48550/ARXIV.2210.14306
https://doi.org/10.1145/3545945.3569759
http://dx.doi.org/10.1145/3545945.3569759
http://arxiv.org/abs/2208.06213
http://arxiv.org/abs/2208.06213
https://cdn.glitch.global/d058c114-3406-43be-8a3c-d3afff35eda2/paper1_2023.pdf
https://cdn.glitch.global/d058c114-3406-43be-8a3c-d3afff35eda2/paper1_2023.pdf
http://dx.doi.org/10.1126/science.adg7879
http://dx.doi.org/10.1126/science.adg7879
http://dx.doi.org/10.1126/science.adg7879
https://bard.google.com/
https://bard.google.com/
https://githubnext.com/projects/copilot-labs/
https://githubnext.com/projects/copilot-labs/
https://doi.org/10.1007/s11219-015-9294-2
http://dx.doi.org/10.1007/s11219-015-9294-2
http://dx.doi.org/10.1007/978-3-642-04912-5_9
http://dx.doi.org/10.1007/978-3-642-04912-5_9
http://dx.doi.org/10.1007/978-3-642-04912-5_9
https://doi.org/10.1145/2361276.2361295
http://dx.doi.org/10.1145/2361276.2361295
http://dx.doi.org/10.1145/2361276.2361295
http://www.informaworld.com/openurl?genre=article&id=doi:10.1080/08993400802114581
http://www.informaworld.com/openurl?genre=article&id=doi:10.1080/08993400802114581
http://dx.doi.org/10.1080/08993400802114581
http://dx.doi.org/10.1109/TE.2009.2025266
http://dx.doi.org/10.1109/TE.2009.2025266
http://dx.doi.org/10.1109/TE.2009.2025266

[51]

[55]

[56]

[57]

(58]

[59]

K. Holstein, V. Aleven, N. Rummel, A conceptual framework for Human-AI hybrid
adaptivity in education, Artificial Intelligence in Education 12163 (2020) 240. URL: https:
//www.ncbinlm.nih.gov/pmc/articles/PMC7334162/. doi:10.1007/978-3-030-52237-7\_20.
P. Robe, S. K. Kuttal, Designing PairBuddy—A conversational agent for pair programming,
ACM Trans. Comput.-Hum. Interact. 29 (2022) 1-44. URL: https://doi.org/10.1145/3498326.
doi:10.1145/3498326.

K.-W. Han, E. Lee, Y. Lee, The impact of a Peer-Learning agent based on pair programming
in a programming course, IEEE Trans. Educ. 53 (2010) 318-327. URL: http://dx.doi.org/10.
1109/TE.2009.2019121. doi:10.1109/TE. 2009.2019121.

S. K. Kuttal, B. Ong, K. Kwasny, P. Robe, Trade-offs for substituting a human with an agent
in a pair programming context: The good, the bad, and the ugly, in: Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems, number Article 243 in
CHI °21, Association for Computing Machinery, New York, NY, USA, 2021, pp. 1-20. URL:
https://doi.org/10.1145/3411764.3445659. doi:10.1145/3411764.3445659.

J. Leinonen, P. Denny, S. MacNeil, S. Sarsa, S. Bernstein, J. Kim, A. Tran, A. Hellas, Com-
paring code explanations created by students and large language models (2023). URL:
http://arxiv.org/abs/2304.03938. arXiv:2304.03938.

J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen, A. Luxton-Reilly, G. Powell,
J. Finnie-Ansley, E. A. Santos, “it’s weird that it knows what I want”: Usability and
interactions with copilot for novice programmers (2023). URL: http://arxiv.org/abs/2304.
02491. arXiv:2304.02491.

B. Puryear, G. Sprint, Github copilot in the classroom: learning to code with Al assistance,
J. Comput. Sci. Coll. 38 (2022) 37-47. URL: https://dl.acm.org/doi/pdf/10.5555/3575618.
3575622.

D. Mhlanga, Open Al in education, the responsible and ethical use of ChatGPT towards
lifelong learning, 2023. URL: https://papers.ssrn.com/abstract=4354422. doi:10.2139/ssrn.
4354422.

T. Y. Zhuo, Y. Huang, C. Chen, Z. Xing, Red teaming ChatGPT via jailbreaking: Bias,
robustness, reliability and toxicity (2023). URL: https://www.researchgate.net/publication/
368476294. doi:10.48550/ARXIV.2301.12867. arXiv:2301.12867.


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334162/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334162/
http://dx.doi.org/10.1007/978-3-030-52237-7_20
https://doi.org/10.1145/3498326
http://dx.doi.org/10.1145/3498326
http://dx.doi.org/10.1109/TE.2009.2019121
http://dx.doi.org/10.1109/TE.2009.2019121
http://dx.doi.org/10.1109/TE.2009.2019121
https://doi.org/10.1145/3411764.3445659
http://dx.doi.org/10.1145/3411764.3445659
http://arxiv.org/abs/2304.03938
http://arxiv.org/abs/2304.03938
http://arxiv.org/abs/2304.02491
http://arxiv.org/abs/2304.02491
http://arxiv.org/abs/2304.02491
https://dl.acm.org/doi/pdf/10.5555/3575618.3575622
https://dl.acm.org/doi/pdf/10.5555/3575618.3575622
https://papers.ssrn.com/abstract=4354422
http://dx.doi.org/10.2139/ssrn.4354422
http://dx.doi.org/10.2139/ssrn.4354422
https://www.researchgate.net/publication/368476294
https://www.researchgate.net/publication/368476294
http://dx.doi.org/10.48550/ARXIV.2301.12867
http://arxiv.org/abs/2301.12867

	1 Introduction
	2 Mixed Outcomes
	3 Moderators
	3.1 Task Types & Complexity
	3.2 Compatibility
	3.3 Communication
	3.4 Collaboration
	3.5 Logistics

	4 Discussion and Future Work
	4.1 LLM, A Better pAIr Programmer?
	4.2 LLM, Students' pAIr Programmer?

	5 Conclusion

