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Abstract

The emergence of large-language models (LLMs) that excel at code generation and commercial products
such as GitHub’s Copilot has sparked interest in human-AI pair programming (referred to as “pAlr
programming”) where an Al system collaborates with a human programmer. While traditional pair
programming between humans has been extensively studied in both industry and education, it remains
uncertain whether its findings can be applied to human-Al pair programming. We compare interaction,
measures, benefits, and challenges of human-human and human-AI pair programming. We find that the
effectiveness of both approaches is mixed in the literature (the measures used for pAlr programming
are not as comprehensive). We summarize moderating factors on the success of human-human pair
programming, which provide opportunities for pAlr programming. For example, mismatched expertise
makes pair programming less productive, therefore well-designed Al programming assistants may adapt
to differences in expertise levels. Finally, we discuss the potential of using LLMs to provide effective
pAlr programming learning for students at scale.
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1. Introduction

Pair programming describes the practice of two programmers working together on the same
task using a single computer, keyboard, and mouse. One programmer in the pair, the “driver,”
performs the coding (typing) and implements the task, while the other programmer, the “navi-
gator,” aids in planning, reviewing, debugging, and suggesting improvements and alternatives.
Now, pair programming is used in a wide range of settings, including education, industry,
and open-source software development [1, 2]. For example, in education, human-human pair
programming has been adopted from K12 [3], CS1 [4] to higher-level project-based courses [5].

Recent advances in code-generating large-language models (LLMs) have led to the widespread
popularity of commercial Al-powered programming assistance tools such as GitHub Copilot
[6], which advertises itself as “your Al pair programmer.” Instead of two humans working on a
single computer, it is the programmer and the LLM-based Al that work together on the same
task. The shift in the paradigm raises the questions: Is the Al programming partner comparable
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to a human pair programmer? Can they achieve similar or better performance, and should people
interact with them in the same way?

The question of whether Al can serve as a better programming partner is crucial. Under-
standing the comparative performance of Al and human programmers in a pair programming
context can guide developers and educators in utilizing the most effective collaboration methods.
Understanding the potential role and design of Al in pair programming can help educators
design more scalable pedagogical approaches to promote student learning and engagement
in programming. Furthermore, identifying the strengths and weaknesses of human and Al
programming partners may in turn contribute to the refinement and development of better AI
programming tools that augment human programmers’ capabilities.

Based on our readings of four existing meta-analysis papers on human-human pair program-
ming and over 50 studies on the topic of pair programming or Al-assisted programming, we
dive into comparisons of measurements of success (Section 2), as well as moderators, e.g., pair
compatibility factors like expertise (Section 3). We find that (1) prior work on both pair pro-
gramming paradigms has observed mixed results in quality, productivity, satisfaction, learning,
and cost, (2) human-AlI pair programming has yet to develop comprehensive measurements, and
(3) key factors to pAlr’s success have been largely unexplored.

Building on our exploration, we elaborate on future opportunities for developing best practices
and guidelines for pAlr programming (Section 4). First, we argue that moderating factors that
bring challenges to human-human pair programming (e.g., compatibility and communication)
unveil opportunities to improve human-Al pair programming. It can be promising to exploit
the differences between a human and an Al partner (e.g., more customizable expertise level
and more adaptable communication styles) to design for more successful pAlr programming
experiences. Second, we encourage future research to explore the best deployment environment
for pAlr programming, such as education. We hope this paper can inspire better evaluations
and designs of code-generating LLMs as a pAlr programmer, especially for students.

2. Mixed Outcomes

Literature reviews have suggested various benefits as well as mixed effects of human-human pair
programming [29, 1, 2]. According to Alves De Lima Salge and Berente [1], pair programming
improves code quality, productivity, and learning outcomes. However, according to Hannay
et al. [29], pair programming improves quality and shortens duration, but it increases effort,
higher quality comes at the expense of considerably greater effort, and reduced completion time
comes with lower quality. In the education context, pair programming brings benefits including
higher quality software, student confidence in solutions, increased assignment grades, exam
scores, success/passing rates in introductory courses, and retention [2, 30, 19]. All the reviews
acknowledged that even though meta-analyses can show a significant effect size, individual
studies could report contradictory outcomes (see examples in Table 1).

For human-AlI pair programming, existing works mainly focus on quality, productivity, and
satisfaction, and already demonstrated mixed results in quality and productivity [9, 31, 12] (see
examples in Table 1). Additionally, some measures are arguably too simplified as evaluation
metrics. For example, Imai [9] used the number of lines of added code as the measure of



Table 1

Comparison of Outcome Variables and Moderators for Human-Human Pair Programming vs. Human-Al

pAlr Program

ming

Outcomes

\ Human-Human vs. Human Solo

Human-Al (Copilot)

Quality

©:ssignificantly lower defect density for complex
code [7]

© no difference for simpler code [7]

© significantly higher percentage of test cases
passed [8]

® vs. Human-Human: more lines of code deleted in next ses-
sion (lower quality) [9]

© vs. Human Solo: significantly improve correctness score
and reduce encountered errors for novice students [10]

© vs. Human Solo: no significant difference in task success
[11] or task success rate in given time [12]

Productivity

@ significantly fewer lines of code per person
hour writing simpler code [7]

© no significant difference writing more com-
plex code [7]

© 29% shorter time to complete task (pair speed
advantage = 1.4) [13]

© vs. Human-Human: more lines of added code [9]

© vs. Human Solo: 55.8% reduction in completion time [11]
© vs. Human Solo: significantly increase task completion and
reduce task completion time for novice students [10]

© vs. Human Solo: no significant difference in the task com-
pletion rate in given time [12]

Satisfaction

© higher self-ratings of satisfaction [14]

@® students with greater self-confidence and
self-efficacy less enjoy the pair programming ex-
perience [15]

© vs. Human Solo: higher self-ratings of satisfaction [12, 16,
17]

Learning © higher grades, exam scores [18], and reten- | © vs. Human Solo: no significant difference in immediate
tion [19] and retention post-test performance of novices, students with
© significantly higher gains in exam perfor- | more prior experiences have more learning gains from Al code
mance in female students than male students | generator [10]

[20]

Cost @® increased management workload to match, | No experiment yet. Vaithilingam et al. [12], Bird et al. [16]
schedule a pair, resolve collaboration conflict, | hypothesized that human-Al may lead to more unnecessary
assess individual contributions, etc. [21] debugging vs. Human Solo
© reduced teaching staff workload (grading one
assignment from a pair) [8]

Moderators ‘ Human-Human vs. Human Solo ‘ Human-Al (Copilot)

Task Types Complex task improve quality, simple one does not [7]; debugging is perceived as less | N/A

& Complexity | enjoyable or effective than comprehension or refactoring [22]

Compatibility | Random pairing led to incompatible partners and conflicts during work [18]. Expertise: | N/A

(E.g., Expertise)| improve quality more effectively if pair is similarly skilled [14]; less-skilled students
learn more and enjoy more [20, 22]; if knowledge gap is large, less-skilled programmers
may tend to be more passive and disengaged [23]

Communica- | Conversations with intermediate-level details contribute to pair programming success | N/A

tion [24]; different types of discourse lead to more attempts or more debug success [25]

Collaboration | Over-reliance leads to conflicts and impedes satisfaction and learning, as work is en- | N/A
tirely burdened on one partner [4, 18]; educators recommend regular role-switching
to ensure equitable learning in collaboration [2]

Logistics Scheduling difficulties [26], teaching & evaluating individual responsibility and ac- | N/A
countability are important to collaboration success [27], but can lead to increased
management costs [21, 28]

productivity; however, the nature of interaction with Copilot (tab to accept suggestions) is
likely to contribute to more added lines in the human-Copilot condition, and how valid would
it represent the notion of productivity is questionable.

Since there is not enough research for a comprehensive review of human-Al pair programming,
we cannot reach any conclusion on pAlr effectiveness yet. It is also hard to compare the
human-human and human-Al pair programming literature, as they differ in what outcomes and
measurements they adopt. Therefore, in the top rows of Table 1, we listed the most common



outcome variables in both literature (quality, productivity, satisfaction, learning, and cost) and
some sample works to demonstrate mixed outcomes and example measures that operationally
define the outcomes. For more details, please refer to our more elaborated work [32].

Note that researchers can use different words to characterize similar constructs. For example,
duration, effort, and productivity are all types of “efficiency” outcomes that involve time and
accomplishment. Productivity can be measured in terms of the number of completed tasks in
a fixed unit of time, duration can be measured as the amount of elapsed or total time used to
complete a fixed number of tasks to a certain standard, and effort can be measured as twice the
duration, the person-hours required, etc. [1]. We use productivity as an aggregated outcome
variable of different measures, for consistency with the human-AlI literature.

3. Moderators

In search of the explanations of the cost-benefit of human-human pair programming experiences,
researchers have found moderators such as task type & complexity [29], compatibility factors
like expertise [27, 33], communication [34, 24, 23], collaboration factors like over-reliance and
role-switching [4, 35, 14], and logistics difficulties including scheduling and training [26, 29] (as
shown in the bottom rows of Table 1). For human-Al pair programming’s moderators, much
was unexplored — we do not know what could make human-AI pair programming more or less
effective. Therefore, in this section, we discuss the key moderators that are examined in the
human-human pair programming literature, and individual examples of moderating effects are
provided in Table 1.

3.1. Task Types & Complexity

For task type and task complexity, Chaparro et al. [22] found that debugging tasks lead to less
satisfaction and perceived efficacy compared to comprehension and refactoring tasks. Hannay
et al. [29] found that the duration is shorter for low complexity tasks, at the expense of lower
quality results, and quality is higher when complexity is higher, but it requires considerably
greater effort. Arisholm et al. [33] found that the moderating effect of complexity also depends
on the expertise of the pair, where “benefits of correctness on complex system apply mainly to
juniors, whereas the reductions in duration to perform the tasks correctly on the simple system
apply mainly to intermediates and seniors”

3.2. Compatibility

Salleh et al. [14] listed multiple factors for pair compatibility, such as personality, perceived
skills, actual skills (expertise), self-esteem, gender, and work ethic. Thomas et al. [15] found that
paired students with similar self-confidence levels produce their best work. Hannay et al. [35]
found that Big Five personality traits only have modest predictive value on pair programming
performance, in comparison to expertise, task complexity, and country. There also seems to be
evidence that women benefit from pair programming more than men [27, 30].

Expertise as a compatibility factor has been extensively studied. For example, researchers
found that a student pair performs the best when their expertise is similar [14] and students



preferred to be paired with similarly skilled partners [22]. However, in industry, Jensen [36]
reported that when both members were near the same capability level and strongly opinionated,
the collaboration was counter-productive and troublesome.

In the introductory programming context, Lui and Chan [37] found that pairing up novices
results in a larger improvement in productivity than pairing up experts. However, there are
concerns about “the blind leading the blind” if they don’t have an expert to consult with [21].
Researchers also found that less-skilled students learn and enjoy more than more-skilled students
in pair programming [22, 20]. However, when the knowledge gap is too large, students can be
less satisfied and the benefits of quality may be smaller [13]. Chong and Hurlbutt [23] reported
that a novice programmer collaborating with an expert may become disengaged, have lower
self-esteem, and be afraid of slowing down or annoying their more-skilled partner [21].

3.3. Communication

According to Freudenberg et al. [24], “the key to the success of pair programming [is] the
proliferation of talk at an intermediate level of detail in pair programmers’ conversations.” Re-
searchers found that pair programming eliminates distracting activity and enables programmers
to focus on productive activity [38], which could be why engaging communications contribute
to successful pair programming. Murphy et al. [25] used transactive analysis to break down
communication by different types of transactions and found that attempting more problems
associated with more completion and debugging success correlated with more critique transac-
tions. Some other works pointed out the social support aspect of communication [23] and an
explanation effect where the verbalization of the thought process makes thinking clearer [16].

In human-human pair programming, programmers spend about 1/3 of the time primarily
focusing on communication [34], which forces them to concentrate, rationalize, and explain
their thoughts [38, 29]. In human-AlI pair programming, Mozannar et al. [39] has shown that
an analogous 1/3 amount of time is spent communicating with Copilot, such as thinking and
verifying (22.4%) Copilot’s suggestion, which may be replicating the self-explanation effects in
some ways, and prompt crafting, which takes 11.56% of the time. These activities are arguably
efforts to understand and communicate with Copilot. However, there is no other human
to co-verify the answers, and there is no study that evaluate the communicative nature of
human-Copilot interaction as human-human pair programming,.

3.4. Collaboration

Collaboration can fail in various ways in a human-human pair. For example, the free-rider
problem, where the entire workload is on one partner while the other remains a marginal player,
can result in less satisfaction and learning [4, 18]. In human-AlI pair programming, educators
are worried that easily available code-generation tools may lead to cheating, and over-reliance
on Al may hinder students learning [40]. However, no study has formally evaluated it yet.
For human-human pair programming, there is a suggested collaboration pattern of role-
switching — two software developers periodically and regularly switch between writing code
(driver) and suggesting code (navigator), aiming to ensure that both are engaged in the task
and alleviate the physical and cognitive load borne by the driver [1, 34]. Some researchers



Freudenberg et al. [24] argue that the success of pair programming should be attributed to com-
munication rather than “the differences in behavior or focus between the driver and navigator,”
as they found both driver and navigator worked on similar levels of abstraction. Neverthe-
less, instructors still recommend drivers and navigators to regularly alternate roles to ensure
equitable learning experiences [2].

In human-AlI interaction, given Copilot’s amazing capability to write code in different lan-
guages, some have argued that Copilot can take on the role of the “driver” in pair programming,
allowing a solo programmer to take on the role of the “navigator” and focus on understanding
the code at a higher level [9]. However, while it is possible for humans to offload some API
lookup and syntax details to Copilot, humans still need to jump back into the driver’s seat
frequently and fluidly switch between the thinking and writing activities [39]. It is ultimately
the human programmer’s sole responsibility to understand the code at the statement level [41].

3.5. Logistics

Logistical challenges, including scheduling difficulties, teaching and evaluating collaboration
for the pair, and figuring out individual accountability and responsibility [26, 27], can add to
the management cost of human-human pair programming [21, 28].

In human-Al pair programming, some may argue that the human is solely responsible in the
human-Al pair [41], but the accountability of these LLM-based generative Al is still under debate
[40]. There may be new logistics issues for the human-Al pair, such as teaching humans how
to best collaborate with Copilot. There could also be unique challenges as in every human-AI
interaction scenario, such as bias, trust, and technical limitations — much to be explored. More
study would be needed to empirically and experimentally verify the moderating effects of
different variables in human-AI pair programming,.

4. Discussion and Future Work

4.1. LLM, A Better pAlr Programmer?

As reviewed in Section 2, previous literature has explored a variety of measures to evaluate
different aspects of human-human pair programming, while the current exploration in human-
Al pair programming is quite limited. Murillo and D’Angelo [42] have proposed evaluation
metrics for LLM-based creative code writing assistants in software engineering. More works
could use more valid measures in the human-human pair programming literature to explore how
to best help humans and LLM-based Al programming assistant collaborate together. It would
also be interesting to have a study setup with three conditions — human-human, human-AI, and
human solo — working on the same task.

Note that in this paper, we mostly covered studies using the VSCode Extension Copilot. Tools
like ChatGPT may support the communication aspect better than Copilot [43], and there are
also Bard developed by Google [44] and an experimental version of Copilot Labs by Github [45],
which support more functionalities such as fix bug, clean, and customizable prompts. Those
tools may already improve the human-AlI pair programming interaction in some ways, so future
studies could also compare across a variety of LLM-based programming tools.



Table 2
Challenges in Human-Human Pair Programming Yield Opportunities for Human-Al pAlr Programming

Moderating Factors | Human-Human Challenges | Human-Al Opportunities

Task Types & Complexity: pair work bet-
ter if the task is not too simple and good for
collaboration [7, 22]

Hard to design suitable tasks
of appropriate complexity
level

Al may be used to generate collab-
oration tasks and adjust tasks com-
plexity

Compatibility: pairs with similar skill lev-
els and compatible working styles work bet-
ter [14, 22]

Hard to find a similarly skilled
or compatible partner

Al partner should adjust to human
skill level and adapt to be compati-
ble with different people

Communication: pairs work better with
productive conversations [24], and critiques
lead to more debugging success [25]

Hard to teach effective com-
munication and constructive
criticism

Al partner should support produc-
tive conversations and provide cri-
tiques

Collaboration: pairs work better with posi-
tive interdependence [27] and clear and bal-
anced responsibilities [18]

Hard to teach collaboration
and prevent free riders

Al should support positive social
interactions and collaboration and
avoid over-assist that eliminates hu-
man’s need to engage

Logistics: pair programming is costly to im-
plement because of management challenges
[21, 28]

Hard to schedule and assess
individual contributions in a
pair

Scheduling is no longer a prob-
lem, but humans should be account-
able and responsible when using Al-

generated code

Previous literature suggested some key factors in the success of human-human pair program-
ming, as summarized in Table 1. These moderators that cause challenges for human-human
pair programming may yield opportunities to explore in human-AI pair programming (Table 2).
For example, self-efficacy can lead to a difference in satisfaction [15] and gender can lead to
a difference in learning [20], do these compatibility moderators influence pAlr too? Can we
improve pAlr outcomes using insights derived from human-human literature (e.g., simulate an
Al partner with similar self-efficacy levels and the same gender)? We discuss more details on
how and why might LLM be used in ways presented in Table 2 in our later work [32].

Therefore, in general, we can ask the following questions for future works: could these
factors be implemented for human-AlI pair programming; would they make human-Al pair
programming more effective, less effective, or have no influence, and why?

4.2. LLM, Students’ pAlr Programmer?

Most current studies that evaluate the efficacy of Copilot are conducted with experienced
software developers. If we estimate Copilot’s problem-solving abilities as an average student
in introductory programming classes, evaluating its performance when pairing up with a
professional software developer with much more expertise may not bring enough benefit to the
professional. Therefore, working with LLM’s current capabilities, it seems like a student-Al
pair programming setup would be the most promising to explore, so the next question is: how
should we best support student-Al pair programming?

Re-prioritize programming skills. First of all, co-working with Al requires a special skill
set, and future work could explore how to support students to better develop these crucial skills.



Bird et al. [16] argued that the popularity of LLM-based programming assistants will result in
the growing importance of reviewing code as a skill for developers. Nonetheless, in Perscheid
et al. [46]’s interview, none of the professional developers remembered training on debugging
at school. There is already rich literature on debugging and testing instructions [47, 48, 49], but
logistical challenges like the lack of instructional time still exist [49, 50], and educators need to
better prepare students with debugging and testing skills needed to work with unreliable AL

Integrate AIEd frameworks. Holstein et al. [51] developed a framework to map ways to
mutually augment humans and Al in education, for example, by augmenting interpretation,
action, scalability, and capacity. Future works can use existing theories in the Al education
space to improve the design of the Al pAlr programming partner, and further investigate if
LLMs bring new focus and affordances to previous human-Al education frameworks.

Support explanation and communication with students. Previous attempts of using
Al agent as pair programming partner have shown some preliminary success in knowledge
transfer and retention [52, 53], and the limitation discussed was the lack of discussion and
explanation [54]. Nowadays, as an LLM-based agent can support more natural interaction and
provide good quality explanations in the introductory programming context [55], it would be
interesting to explore if LLM-based Al could resolve some limitations mentioned in pedagogical
and conversational agent works before. Self-reflection and explanation techniques may also be
adopted to make up for the communication aspect as in human-human pair programming.

Match expertise with students. Furthermore, as discussed in Section 3, matching expertise
is a tricky problem. Lui and Chan [37] found that expert-expert pair may not gain as much of
an advantage over an expert solo programmer, in comparison to novice-novice pair vs. a solo
novice. Meanwhile, pairing two novices together raise concerns of “the blind leading the blind,”
but pairing a novice with an expert may lead to lower self-esteem of the novice [21]. Given
all these complexities, when it comes to a student-Al pair and when we only care about the
student’s learning gains, there are a lot of research questions to ask. If we have full control of
the perceived skill level of the Al partner, should we configure it to be similar to the student,
slightly higher skilled, or a lot better? Would it be beneficial to have both a peer Al agent but
also a tutor Al agent to assist if students get stuck?

Avoid over-helping students. Note that for programming learners, it would be important
to configure the LLM-based programming assistant to avoid over-help. In the few studies that
examined novice interaction with Copilot [56] or a customized programming environment based
on LLM-based code generation model Codex [10]. Prather et al. [56] found that novices do have
unique interaction patterns with Copilot and a tendency to rely on and trust the generated code
too much. Kazemitabaar et al. [10] discussed design implications including control over-use
and support complete novices. There have also been concerns about academic integrity and
changing perception of learning when LLM-based programming tools become easily accessible
to students [40, 57, 56], which are issues to further explore for student-Al pair programming.



Boost students’ self-confidence. Pair programming has been shown to benefit students
with lower self-efficacy and self-confidence levels [15] and women [20] more, which could make
it a pedagogical tool to engage more vulnerable or underrepresented populations in CS. When
an Al is introduced in pair programming, would the same benefits retain? How should we
present the Al differently to make it compatible with students with different confidence levels?
How do we mitigate the risks of unreliable but seemingly authoritative AI?

Address critical risks in using LLM. Last but not least, LLMs may be an opportunity to
address some existing challenges that student-student pair programming has (as summarized in
Table 2), but there are critical risks associated with using generative Al in education, such as bias,
trust, and transparency [58]. Evaluation on existing benchmarks shows that ChatGPT exhibits
ethnically risky behaviors and presents inaccurate information [59]. Therefore, to ethnically
and responsibly use Al as a student’s pair programming partner, besides keep improving model
designs, we also need to keep human instructors’ supervision and education students about
AT’s limitations.

5. Conclusion

This paper has discussed the concept of human-Al pair programming (pAlr programming).
Research has yet to pinpoint which of these supposed advantages of human-Al pair programming
yields the largest benefits in efficiency and learning. Human-human pair programming literature
yield insights on what outcomes and measures should researchers use to evaluate their pAlr
programming work (e.g., use more valid quality and productivity measurements, and further
investigate cost), and what moderators should researchers consider to further analyze and
improve pAlr programming’s process and design (e.g, compatibility, communication, etc.).

In conclusion, more valid and comprehensive measurements are needed to evaluate pAlr
programming, more comparisons can be drawn between human-human vs. human-AI pair
programming, and more works can explore how to best support LLM-assisted programming
with insights from the rich literature on human-human pair programming.
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