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Abstract  
Artificial Intelligence (AI) and Large Language Models (LLMs) have gained prominence in the 
educational context, revolutionizing various aspects of teaching and learning. This study focuses on the 
feasibility of integrating LLMs into the Taiwan Adaptive Learning Platform (TALP) to improve its 
current adaptive mechanism and enhance the learning experience of students. Through an in-depth 
exploration, the study identifies several potential benefits of incorporating LLMs into TALP. Firstly, by 
harnessing the power of LLMs and combining them with the existing knowledge structure in TALP, 
qualitative responses from open-ended questions can be analyzed more effectively. This enables a more 
precise assessment of students' understanding and significantly reduces the number of unnecessary 
testing items, saving valuable time and resources. Additionally, the integration of a chatbot into TALP's 
diagnostic report provides an innovative approach for scaffolding during remediation. The chatbot can 
engage in Socratic interactions with students, guiding them through the learning process and addressing 
misconceptions in real-time. This personalized support fosters a deeper understanding of the material 
and facilitates more effective remediation. Furthermore, the study highlights the potential of LLMs in 
detecting and addressing individual learning weaknesses. By leveraging the deep interaction 
capabilities of LLMs, TALP can analyze student responses and identify cross-grade misconceptions more 
efficiently. This study also provides examples of how GPT-3.5 can be applied for the above purposes. 
Finally, the implementation of LLMs in TALP also presents challenges, which are discussed. In 
conclusion, integrating LLMs into TALP holds great potential to enhance its adaptive mechanism, 
provide personalized learning experiences, and address individual learning weaknesses.  
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1. Introduction 

With the introduction of Large Language Models (LLMs), particularly ChatGPT, Artificial 
Intelligence (AI) has become increasingly involved in the educational context. Several studies 
have sought to apply LLMs in education for various purposes, including tutoring, homework 
assistance, language learning, writing aid, personalized learning, and interactive learning [1, 2, 3]. 
Currently, it is difficult to predict whether LLMs like ChatGPT, or their future iterations, will fully 
replace teachers. However, we are more interested in exploring how the application of LLMs can 
enhance the effectiveness of current educational tools. Serving 2.8 million registered users from 
grades 1 to 12, the Taiwan Adaptive Learning Platform (TALP) is the official learning platform of 
the Ministry of Education (MOE) in Taiwan. A unique feature of TALP is its use of AI to provide 
individual learning paths for personalized learning. According to a large-scale survey conducted 
by the MOE of Taiwan, this platform has been highly effective in enhancing students' academic 
achievement and promoting self-regulated learning [4]. In this study, we aim to explore the 
feasibility of introducing LLMs to TALP and investigate if such implementation can enhance 
TALP's existing adaptive mechanism.  
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2. The application of LLMs in TALP 

In the following four sections, our study will delve into the existing adaptive mechanism of TALP. 
Subsequently, we will propose the implementation of LLM technology to augment the efficacy of 
adaptive testing and learning within TALP. We will also present some examples of how LLMs 
could be applied in TALP to facilitate learning. Finally, we will discuss potential obstacles that 
might arise during the integration of LLMs into TALP.   

2.1 . The Current adaptive mechanism in TALP 

The conceptual framework of the adaptive mechanism in TALP involves two main steps: applying 
adaptive tests to diagnose learning weaknesses, and offering an individual learning path based 
on the diagnosis to remedy learning mistakes. The current adaptive testing in TALP applies rule-
based AI technology, which is guided by the responses of test-takers in multiple-choice items. For 
example, as shown in Figure 1(a), the testing system will select a question related to the highest-
level concept (A) from the question database for the test taker to answer. If the test taker answers 
question A incorrectly, the testing system, based on the rule-base, will then select questions 
related to the lower-level concepts (B and C) for further testing. If the test taker answers question 
B correctly, it is then predicted that they would answer the sub-concepts of B (D and E) correctly 
as well, so there is no need for them to answer these questions. However, if the test taker answers 
question C incorrectly, the system will subsequently present questions related to the sub-
concepts of C (F, G, and H) for the test taker to answer. 

As highlighted by Wu, Kuo, & Yang (2012), employing AI algorithms that incorporate 
knowledge structure with ordering theory in diagnostic tests offers several advantages, 
including: 1. tracing learning paths across students, 2. visualizing learning paths, and 3. 
eliminating unnecessary test items during diagnosis. Wu, Kuo & Wang (2017) have demonstrated 
that the high effectiveness and efficiency of knowledge structure can increase the accuracy of 
identifying learning weaknesses by up to 90%, while simultaneously reducing up to 80% of 
unnecessary items during testing. 

 

 
Figure 1: Comparison of adaptive testing AI system (a) rule-base (b) LLMs 

 
The knowledge structure in TALP, as shown in Figure 2(a), resembles a sky map composed of 

knowledge nodes. When students complete an adaptive diagnostic test in TALP, the results are 
reflected in the color of the nodes and sub-nodes in the knowledge structure. Nodes colored green 
indicate that students have mastered the skills, while those in orange reveal areas the students 
have yet to master. The individual learning path is plotted by connecting the orange nodes in the 



knowledge structure, as shown in Figure 2(a). Each subskill within TALP includes an instructional 
video, in-video quizzes, exercises, and dynamic assessments aimed at correcting mistakes. Once 
students competently complete watching the videos and pass the tests, the color of the nodes 
turns green. The learning path can also be converted into a diagnostic report as illustrated in 
Figure 2(b). This report not only indicates progress along the learning path but also displays the 
percentage of completion for the instructional video, quizzes, exercises, and dynamic assessment.  

  

 

Figure 2: (a) personalized learning paths in TALP; (b) diagnosis report 

2.2. Elevating the efficiency in diagnosing learning weakness by LLMs 

In the past, multiple-choice items were the preferred format for computer-aided testing due to 
their straightforward nature (right or wrong). Evaluating open-ended questions, which provide 
more qualitative and richly informative responses, posed a significant challenge due to the 
limitations of computer technology [5]. The advantage of LLMs is their ability to offer a service 
for automated response analysis, which can examine and evaluate the responses to open-ended 
questions from test-takers. Open-ended questions can reveal arithmetic processes, providing rich 
information for LLMs to directly identify misconceptions. For example, if concept A in Figure 1 
involves the four arithmetic operations, concept B refers to arithmetic operations involving 
addition and subtraction, and concept C indicates arithmetic operations in multiplication and 
division. In the current TALP system, if the test taker answers a question related to concept A 
incorrectly, the system will provide two items related to concepts B and C, respectively. Due to 
the nature of open-ended questions, the answer includes the calculation process, which can 
effectively demonstrate the level of mastery in arithmetic. However, it's important to consider 
scenarios where a student excels in addition and subtraction but struggles with multiplication 
and division, as illustrated in Figure 1(b). TALP plans to incorporate LLM technology into 
adaptive testing, enabling it to assess students' responses to open-ended questions similarly to 



how a teacher would evaluate them. In the scenario depicted in Figure 1, the utilization of LLMs 
in the TALP adaptive testing system has the potential to save an additional two items.  

3. Better Scaffolding and diagnosis in remediation by LLMs 

Although the current learning resources in TALP are abundant, with instructional videos and the 
assessment module to remediate learning weaknesses in the diagnostic report, the importance of 
social processes in learning should be addressed. As identified in Vygotsky’s sociocultural theory, 
learning is essentially a social process; guidance from teachers or collaboration with peers is vital 
[6,7]. Many researchers have endeavored to simulate tutors using technology, such as Intelligent 
Tutoring Systems (ITS)[8]. However, the level of engagement and feedback provided by these 
systems has remained unsatisfactory. The current diagnostic report of TALP can list the desired 
learning material for an individual, but it cannot provide instant feedback anytime during 
remediation.  

Significant improvements were not realized until the advent of Large Language Models (LLMs). 
Some researchers have utilized BERT to solve mathematical problems and attempted to provide 
students with feedback by assessing their responses. In the realm of automatic item generation, 
researchers historically relied on item templates [10], but with the introduction of LLMs, some 
have begun to generate items based on students’ responses to test questions [11]. While early 
LLMs may have made some progress in these areas, it is noteworthy that no LLMs were able to 
integrate the above tasks, especially in the context of Traditional Chinese. However, with the 
advent of GPT-3.5, it has become feasible to implement a chatbot in TALP's diagnostic report that 
can interact with students while addressing their learning weaknesses.     

Figure 3 illustrates how the TALP system utilizes GPT, providing it with pertinent remedial 
information. These prompts are critical to successfully diagnosing mathematical problems, 
interacting with students, offering feedback and instructions, as well as generating test items. In 
our design, we employ the framework presented in [10] for our prompts, which encompasses a 
cognitive model, an item model, and an instructional procedure. The cognitive model represents 
the knowledge structure along with its associated notes. Meanwhile, the item model refers to the 
test items, and the instructional procedure outlines how GPT will engage with students. The 
above prompt aims to help GPT understand students more and provide feedback with better 
quality. In the planned diagnostic report of TALP, chatbot for remediation is optional. Once 
students use chatbot for learning, TALP will open a chat box where students can do their quizzes 
or assessment with chatbot. In the settings of instructional procedure, chatbot will intact with 
students by Socratic methods, instead of providing direct answers, the chatbot uses probing 
questions to guide students in discovering knowledge, examining their performance, and 
engaging in logical reasoning. Once students have completed the remedial tasks scaffolded by the 
chatbot, the TALP system collects the dialogue information. This information is then utilized by 
GPT to generate customized assessment items, specifically targeting the individual student's 
learning weaknesses. The purpose is to assess and evaluate whether students have achieved a 
thorough mastery of the required competence. As depicted in Figure 3, when students answer 
correctly, the TALP system will guide them in remediating higher-level misconceptions. When 
students are unable to provide a correct answer, the chatbot guides them towards a more in-
depth remediation at a lower level. While the existing diagnostic system in TALP offers cross-
grade precision with commendable accuracy, we believe integrating it with LLMs could further 
improve the results. By enabling deeper interaction with students, the collaboration of LLMs with 
the current rule-based TALP AI system could offer more nuanced diagnostics of learning 
weaknesses. 

Of the numerous large language models available on the market, GPT-3.5 emerges as our top 
choice, especially due to its efficient and fluent handling of Traditional Chinese content. This 
selection was also necessitated by the current unavailability of GPT-4 for TALP. To assess its 
capabilities, we conducted an initial test using 569 5th-grade test items derived from TALP. The 
mathematical problem-solving accuracy rate was 79% initially, which, while promising, indicated 



potential for further enhancement. By integrating both the cognitive and item model into the 
prompts, the accuracy witnessed a significant rise to 96%. Intriguingly, when we employed GPT-
4 prompting with both the cognitive model and item model, the accuracy impressively peaked at 
100%. The above results suggest that while GPT-4 stands out as the superior engine, GPT-3.5 can 
also deliver comparable outcomes when provided with carefully structured prompts, thereby 
effectively meeting our requirements. 

 
Figure 3: Implementing chatbot in the TALP’s diagnostic report 
 

4. Examples by applying GPT-3.5 

In the following examples, we will illustrate the feasibility of employing GPT-3.5 to enhance 
TALP’s diagnostic reports in mathematics by: (1) pinpointing the students' learning weaknesses 
and saving testing items; (2) scaffolding their learning through interaction with a chatbot; and (3) 
generating assessment items. The domain knowledge pertains to fifth-grade level understanding 
of ratios and their practical applications in everyday life, encompassing concepts such as 
'percentage' and 'discount'.  

To achieve the aforementioned goals, the input of appropriate prompts is crucial for the 
success of our task. Two prompts are required: one for the assessment item and domain 
knowledge, and another for the instructional procedure. Given that our task involves automated 
item generation and automated rating, it is imperative to have well-defined cognitive and item 
models [10], as outlined in Table 1, to clarify the testing domain knowledge. Table 1 also shows 
how indicators of knowledge structure are utilized for the cognitive model. 

In the section related to the item model, we input data as multiple-choice questions, 
comprising stems, options, and answers. This comprehensive information significantly aids GPT-
3.5 in understanding the context of tests. Our initial trials have shown that structuring prompts 
in multiple-choice format can substantially improve the accuracy of the feedback provided. 
Additionally, the distractors included in multiple-choice items serve to effectively illustrate 
common misconceptions to GPT-3.5. 

Lastly, establishing an instructional procedure is essential for the chatbot to effectively guide 
students through the Zone of Proximal Development (ZPD). A Socratic interaction approach is 
applied to scaffold and guide students towards understanding. The prompt for the instructional 
procedure can be found in Table 1.  



 
 
 
 
 
 

Table 1 
Cognitive model and item model for prompts 

Cognitive model 

Knowledge Structure Note 5-n-14 
5-n-14-S01: Understand the concept of ratio as "the amount of a part compared to the total." 
5-n-14-S02: Able to solve problems related to ratios in daily life. 
5-n-14-S03: Understand percentages as a commonly used representation of ratios. 
5-n-14-S04: Able to solve problems related to percentages in daily life. 
5-n-14-S05: Able to solve applied problems related to percentages in daily life (including 
discounts and increases). 
5-n-14-S06: Proficient in converting between commonly used percentages and fractions. 
The hierarchical knowledge structure in 5-n-14 is as follows: At the top is S06, which is 
preceded by S05. S05 then precedes both S04 and S02. Continuing down the hierarchy, S04 is 
above S03, while S03 and S02 are both positioned over S01. 

Item model 

Stem:”15/16=(   )%，(   )的答案應該是多少呢？”  

Option: (1) 93.75 (2) 9375 (3) 0.9375 (4) 9.375  
Answer: (1) 

Instructional procedure 

Prompts to GPT3.5: 
Analyze students' mistakes using indicators of knowledge structure, and pinpoint which area 
they are struggling with. Subsequently, employ scaffolding. Rather than directly providing the 
correct answer, use the Socratic method to guide students in thinking and explaining. Based on 
the students’ responses, offer explanations and guidance. Depending on the student's response, 
generate a testing item similar to the one in the item model to assess the level of learning. If the 
answer is correct, it is assumed that the student has grasped the material; if the answer is 
incorrect, continue providing guidance until the correct answer is given. 

 
In Figure 4(a), the chatbot displays a question labeled as 5-n-14-S06 (shown in Figure 4(b)) in 
the knowledge structure for the student to solve. Based on the students' responses, the chatbot 
identifies that their learning weakness, attributed to failing 5-n-14-S06, is rooted in 5-n-14-S03. 
In the knowledge structure, 5-n-14-S03 is the competence of understanding percentages as a 
commonly used representation of ratios. In the other word, it refers to convert a decimal into a 
percentage. In contrast, the previous TALP AI rule-based diagnostic system would require testing 
the students on 5-n-14-S05, 5-n-14-S04, and 5-n-14-S02 to pinpoint the actual learning deficiency 
located in 5-n-14-S03. Employing GPT-3.5 as an automated rater streamlines the diagnostic 
process by reducing the number of test items needed. 

 
 



 
Figure 4 (a): Implementing chatbot as automated rater in Diagnostic report 
 

 
Figure 4(b): The knowledge structure of 5-n-14 (understanding of ratios and their practical 
applications in everyday life) 
 
  In the chatbox (as depicted in Figure 5), the chatbot interacts with students by providing 
instructions for remediation. In this instance, the student was identified as having difficulty 
converting a decimal to a percentage. The chatbot sought to teach the student how to convert a 
decimal into a percentage. It demonstrated this by showing that multiplying a decimal by 100 and 
appending the percentage symbol to the result accomplishes the conversion. As shown in Figure 
5, though the chatbot demonstrated the method of converting a decimal into a percentage, the 
student still had doubts regarding this demonstration. To address these doubts, the chatbot, 
within the chatbox, used the Socratic method to guide the student towards understanding the 
concept. This was achieved by providing additional explanations and posing simple questions for 
the student to answer. After completing the instruction, the chatbot generates a testing item 
similar to the original one in Figure 4(a) to assess whether the student has mastered the concept 
(as seen in Figure 6). This process aims to test whether students can complete tasks 
independently without assistance from the chatbot.  
 



 

 

 
Figure 5: The interaction between student and chatbot in the chatbox 
 



 
Figure 6: the chatbot generating test items to assess students 
 
 

5. The challenges in implementing LLMs in TALP 

As the previous discussion shown, LLMs is so potential to improve the current adaptive 
mechanism in TALP. Combining with the knowledge structure, TALP equipped with LLMs 
technology may save more unnecessary items than before. Integrating a chatbot into the 
diagnostic report can create an improved scaffold for remediation, facilitated by Socratic 
interactions. Additionally, the chatbot's deep interaction capabilities can enable further diagnosis 
of the student's understanding. To accomplish the aforementioned objectives, the achievement 
relies on the accuracy and precision of GPT in interpreting and providing answers to the learning 
content and testing items, especially in mathematics and science. Evidently, the API of GPT-3.5 is 
accessible for constructing chatbots within the platform. However, its precision and accuracy in 
problem-solving and interpretation of mathematical symbols are areas that still require 
improvement [9]. Even if GPT-4 were currently available, its superior accuracy and precision in 
5th-grade mathematics, as shown in our initial test, do not guarantee equivalent performance at 
the high school level. The problem-solving capabilities of GPT-4 would still need to be 
demonstrated and validated in this more advanced context. The cost associated with GPT-4 poses 
a significant challenge that needs to be addressed, particularly for operating a learning platform 
like TALP, which is fully funded by the Ministry of Education (MOE) and renowned for providing 
free usage to grade 1-12 students. 
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