
A Case Study Using Large Language Models to Generate 
Metadata for Math Questions 

Katie Bainbridge1, Candace Walkington2, Armon Ibrahim1, Iris Zhong1, Debshila Basu 
Mallick1, Julianna Washington1, and Rich Baraniuk1 

1 OpenStax, Rice University, Houston, Texas, United States  
2 Southern Methodist University, Dallas, Texas, United States  
 

Abstract 
Creating labels for assessment items, such as concept used, difficulty, or vocabulary used, can improve 
the quality and depth of research insights as well as targeting the right kinds of questions for students 
depending on their needs. However, traditional processes for metadata tagging are resource intensive 
in terms of labor, time, and cost, and these metadata become quickly outdated with any changes to the 
question content. Given thoughtful prompts, Large Language Models (LLMs) like GPT-3.5 and 4 can 
efficiently automate generation of assessment metadata and can help scale the process for larger 
volumes of questions as well as address any updates to question content that would otherwise have 
been tedious to reanalyze. With a human subject matter expert in-the-loop, recall and precision were 
analyzed for LLM generated tags for two metadata variables: problem context and math vocabulary. We 
conclude that LLMs like GPT-3.5 and 4 are highly reliable at generating assessment metadata, and make 
actionable recommendations for others intending to apply the technology to their own assessment 
items. 
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1. Introduction 

Learning Sciences research often requires extensive metadata for assessment items in order to 
make meaningful insights about student learning. For example, if we know what concept each 
question targets, we can track a student’s competency in that concept over the course of the 
school year [1]. We aimed to examine the role reading comprehension plays in math achievement 
[2,3], specifically in middle school algebra. This research direction required that we create a new 
suite of metadata for our assessment bank that gauged the various factors that might affect a 
student’s reading comprehension. Some of these variables, such as word count, are easy to 
automate, but others, such as whether a question is set in a real world context like a baseball 
game, must be done manually. Manual metadata generation poses a number of logistical 
problems; it takes a lot of time and resources, it is tedious, and ones’ efforts are quickly made 
irrelevant once any of the source content is updated or edited. Faced with multiple variables that 
required manual coding, we were motivated to find a way to automate as many as possible. 

One such example is question context. Math problems that are contextualized in a real-world 
context require higher reading comprehension skills than math problems that are purely 
symbolic. A student who struggles with reading is much more likely to have their true 
understanding of the underlying math concepts obscured by their poor reading comprehension 
on a problem (See Table 1). 
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A third category, labeled “School Math”, consists of symbolic math questions that are 

contextualized with a hypothetical student who is trying to solve the math problem. These 

require less reading comprehension than “Real-World” questions, but more reading 

comprehension than “Symbolic” questions. They can be used to assess metacognitive 

knowledge of math procedures or to assess a students’ ability to identify errors or 

misconceptions.  

 

Table 1 

Example math word problems set in real-world vs. symbolic contexts. 
 

Real-world context Symbolic School Math 

“These equations represent the number of 

bacteria in four different dishes as a 

function of time, t , in days. Which 

equation represents the population with the 

greatest growth factor?” 

“What is the 

solution to  

4(y - 3) + 19 

= 8(2y + 3) + 

7?” 

-“Noah is solving an equation, 

and one of his moves is 

unacceptable. Here are the 

moves he made:...” 

-“What should Mai do next?”  

  
 

The real-world context problems require the student to have familiarity with a greater number 

of vocabulary words, both math vocabulary like “function” and “equation”, but also real world 

vocabulary such as “bacteria”[4,5]. It also expects the student to be able to generate an accurate 

problem model of the relationships between the terms [6,7]. If a student struggles to read the 

problem or translate the problem into an accurate problem model [8], or if they are spending 

too much cognitive load deciphering the unfamiliar vocabulary [9], they may not be able to 

demonstrate their true understanding of the underlying concept: growth factors.  

 In order to research the role reading plays in math success, and in order to potentially 

intervene with appropriate support when students are struggling due to reading rather than 

computation, it is helpful to know whether a given question is contextualized in a real-world 

situation or if it is purely symbolic or in-between. Making such a judgment manually is 

relatively easy, but doing so for hundreds of questions takes time.  

 Luckily, LLMs like GPT-3.5 and GPT-4 are well-suited to making judgments like this. 

This paper documents the process we used to generate metadata using GPT-3.5 and GPT-4 for 

two variables: Context and Math Vocabulary. As part of our overall methodology, we include 

the prompts used, the errors generated, revisions to the prompts, our QA process, and accuracy, 

reliability, and precision analyses comparing the AI generated tags to those created by a human 

coder. We conclude with lessons learned and recommendations for others considering the use 

of LLMs to generate metadata for math content as well as other domains. 

 

 

1.2 General Methods 
We integrated OpenAI’s GPT-3.5 with Google Sheets using an extension available at 

GPTforWork.com [10]. In a column adjacent to the question text we queried using the formula 

=GPT(quesiton_text, “text of our request to GPT”). The formula could then be quickly repeated 

across rows for the whole column. Initial queries underwent a QA process, comparing a sample 

of GPT tags to the manual tags created by a human subject matter expert (SME). Recurrent 

errors were identified, and the prompts were iteratively refined to address the errors. For 



example, GPT model had a bad habit of trying to answer the math question in addition to 

responding to the prompt, so subsequent queries instructed it not to solve the math problem. 

Once we were satisfied with the prompt, we cleaned the data so that answer formatting 

was consistent. GPT would sporadically put a period at the end of a response, at times it would 

explain its reasoning after giving a response, and despite instructions it would still occasionally 

include the solution to the math problem. These inconsistencies were resolved and unrequested 

additions were removed so that responses could be compared statistically.  

Once responses were cleaned, that LLM generated metadata were compared against the 

SME generated metadata and evaluated on recall and precision.  

 

2. Context Extraction Methods 

Whether a math question is contextualized with a real-world application can greatly increase 

the role that reading plays in a students’ ability to solve a math problem. We labeled questions 

like this “Real-World”. Questions that use purely symbolic math were labeled “Symbolic”.  

We had a total of 339 quetions in our assessment bank. 109 were identified by SME as 

having a real world context, 224 were identified as being purely symbolic, and 6 were identified 

as “School Math”. In our initial experimentation with this idea using the ChatGPT interface, 

we’d already established that GPT-3.5 had trouble distinguishing School Math from Symbolic 

questions. Thus, the first prompt for GPT-3.5 was “Is the math problem set in a real-world 

context, or is it symbolic math? If it is set in a real-world context, say Real-World, if it does 

not have a real world context say Symbolic”. Upon inspection, GPT-3.5 routinely made the 

following errors: 

1.    Solving the math question in addition to answering the prompt. 

2.    Considering a graph to be a real-world context, even if the math was symbolic 

Our prompt was updated to: “Is the math problem set in a real-world context, or is it symbolic 

math? If it is contextualized in a real-world setting, say Real-World, if it is not applying math 

in a real-world environment, say Symbolic. Do not solve the math problem.”. The types of 

errors made by this prompt were artifacts of our question format; question images and answer 

options for multiple choice questions were not included in the question text given to GPT. For 

problems that relied heavily on either images or answer option text (e.g. “What is true about 

the following diagram?” or “Which rule can describe the table below”), GPT-3.5 would either 

respond that the question was in both categories (n=9) or it would say that it needed more 

information (n=11). A total of 20 questions out of 339 questions were removed from the 

analysis for this variable. 

We then created a different prompt on just the symbolic questions to separate the School 

Math questions. This prompt read: “Does the math question contain a person's name? If the 

answer is yes, respond with School Math, if the answer is no respond with Symbolic. Do not 

solve the math problem”. This prompt did not capture our sampled cases, so we revised it to: 

"Is this math question about a hypothetical person trying to solve a symbolic math problem? 

Does the question text  contain a person's name? If the answer to either is yes, respond with 

School Math, if the answer is no respond with Symbolic. Do not solve the math problem". This 

also tapped into the LLM’s named-entity recognition abilities [11]. The “Real-World” labels 

for the remaining questions were combined with the resulting list.  

 

 

2.1. Context Evaluation Results 



Manual Tags and GPT-3.5 tags generated on our 319 items from our assessment bank were 

compared on recall (0.92),  and precision (0.92). Results can be seen in Table 2.  
  
Table 2 
Evaluation results for the GPT-3.5 generated context metadata with the SME created metadata. 

Metric Result 

Recall 0.92 

Precision 0.92 

  

Our results suggest that GPT was highly reliable at distinguishing question context, with a 

recall of 0.92. In 22 out of 25 cases of an incongruity, GPT coded a symbolic problem as a 

real-world problem. Almost all of these made reference to graphs or tables, indicating that, 

while the update to our prompt improved this issue in the sample we reviewed, the error of 

interpreting a graph as a context persisted to some extent. In 2 out of 25 cases, GPT coded a 

Real-World problem as Symbolic. It is a mystery as to why; the first referenced bacteria 

growing in a dish and the second compared three runners in a 400 meter race. In just one 

instance did GPT-3.5 categorize a School Math Question as Symbolic. 
 

 

3. Math Vocabulary Extraction Methods 

We identified “math vocabulary” as a second variable that would be a good candidate for 

using GPT rather than a human coder. Words like “linear” and “quadratic” are key to 

understanding Algebra questions; if a student needs support on vocabulary, these words pose 

the biggest barrier to their ability to demonstrate understanding. Real-World vocabulary, like 

the “bacteria” example described in the introduction, is a separate variable.  
The first prompt for GPT-3.5 was framed as “List the math vocabulary words in the question 

text. Do not answer the math question.”. The errors that resulted fell into two categories. 

Primarily, GPT-3.5 would sometimes identify the mathematical expressions in the question as 

math vocabulary. For example, for the question text “Which equation is equivalent to the 

equation 6x + 9 = 12?”, it provided “Equation, 6x + 9 = 12” in response to our prompt. 

Secondly, GPT would only sometimes identify “graph” as math vocabulary, whereas the 

human coder always considered “graph” to be math vocabulary. For multi-word phrases, such 

as “linear relationship”, GPT will sometimes return the whole phrase but at other times will 

only return part of the phrase, such as “linear”; however, the human coder could occasionally 

be inconsistent about this as well. 
At times GPT-3.5 could be considered more accurate than the human coder. For example, 

the human coder did not consider “data” to be math vocabulary, whereas GPT did. This can 

be seen as a benefit to using LLMs for this task; the risks of a “false positive” in this case are 

minimal. If GPT identifies additional words for which a student might need support, that is a 

benefit rather than a drawback. 
Our second, revised prompt read “Excluding numbers, variables, mathematical expressions 

and equations, list only the math vocab words/phrases in the question text. Do not answer the 

question”. This phrasing successfully captured multi-word phrases in the sample we reviewed, 



and the instances of numbers and expressions being included were reduced (but not 

eliminated). The new phrasing did not reduce the instances of inconsistently considering words 

like “graph” to be math vocabulary. As we did not know why this inconsistency happened, we 

could not think of a way to address it in our prompt.  
The process was repeated using GPT-4, starting with the prompt “Excluding numbers, 

variables, mathematical expressions and equations, list only the math vocab words/phrases in 

the question text. Do not answer the question”. The resulting errors suggested that GPT-4 was 

much more liberal in what it considered to be “mathematical vocabulary”. It included most of 

the real-world vocabulary (e.g. “softball team” and “landscaping company”) in its response 

to the prompt. We changed the prompt to say “"List the math vocabulary words in the selected 

question text. Only include mathematical vocabulary, do not include vocabulary without a 

mathematical definition. Do not answer the math question.". The removed many cases of 

including real-world context vocabulary, but many still remained. Some, such as “nickles”, one 

could make an argument for having a “mathematical definition”; however for others, such as 

“scarves”, it is harder to make an argument for why GPT-4 considered the term to be 

mathematical vocabulary.  
The problems seen in our previous use of GPT-3.5, such as inconsistent formatting for the 

response, and including expressions and variables in the response, persisted with GPT-4. For 

our cleaning process we made a second column and, referencing the list of vocabulary GPT-4 

had just created, provided this prompt: “Reformat the text in this cell as a list separated by 

commas. Remove all periods, mathematical expressions, solitary letters, and variables 

representing numbers”.  
GPT-4 also introduced a new problem, in that in some cases it considered the text from the 

prompt in its response. This led to the inclusion of the phrase “mathematical vocabulary” in 

dozens of responses, despite the phrase never appearing in the question bank text. Language 

from the prompt was removed manually before analysis.  
 

 

3.1 Math Vocabulary Evaluation Results 
 In cases like this, where the consequences of the AI identifying a case where a human did 

not (false positive) are null, a recall is a more useful indicator of success. Recall was calculated 

by dividing the number of correctly suggested words generated by GPT (true positives) by the 

total number of words identified by the human coder for each question (see Figure 1). This was 

averaged across questions, resulting in a mean recall of 0.75; GPT-3.5 successfully identified 

the vocabulary the human coder did in 75% of cases (See Table 3). 
 
Table 3 
Evaluation results for the GPT 3.5 generated math vocabulary  metadata with the SME created 
metadata. 

Metric Result 

Recall 0.75 

Precision 0.63 

 

Precision (0.63) was calculated  as true positives divided by total words identified by GPT 

for each question, averaged across questions (see Figure 1). Precision was lower than recall, 



suggesting that false positives were numerous enough to negatively impact precision. 

However, as discussed previously, the consequences of false positives are minimal (and may 

even be beneficial), so this result should carry less weight than the rate of recall. Interpreting 

these results is not as straightforward as the interpretation for context, as each question could 

have multiple potential matches. In many ways, if GPT looks at a math question and identifies 

4 out of the 5 vocabulary words a human would identify, that is still a relatively successful 

application of this technology despite the slight decrease in recall it represents. The question is 

now whether 75% recall is high enough to warrant relying on AI-generated tags in place of 

human-generated ones. 
 
Figure 1. 
Illustration of how Recall and Precision are calculated. 

 
 

We repeated our math vocabulary tagging process using GPT-4 to see if it improved recall 

(see Table 4). GPT-4 was indeed better at identifying vocabulary, with a recall 0.82, indicating 

that GPT-4 agreed with the human coder on 82% of the identified vocabulary words. Precision 

only moderately increased (from 0.63 to 0.66), indicating that false positives are still high.  
 
Table 4. 
Evaluation results for the GPT 4  generated math vocabulary metadata with the SME created 
metadata. 

Metric Result 

Recall 0.82 

Precision 0.66 

 



These results (82% recall) get closer to the margin of error we would expect between two 

human coders, especially for a subjective, multi-class labeling task [12,13].  
Inspection of the most common (i.e., identified more than once) false positives made 

by GPT-4 reveal four categories (2x2) of error varying along the dimensions of whether or not 

the words had a mathematical definition and constituted challenging vocabulary (Table 4).  
 
Table 5. 
Features of the typical errors made by GPT-4 in identifying math vocabulary words  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Challenging 
Vocabulary 

 
Mathematical Definition 

Yes No 

Yes Cases where the word does have a 

mathematical definition and may be 

challenging vocabulary for some students. 

This includes things like “represent” and 

“completing the square”, as well as things 

like a greater-than-or-less-than symbol 

(≥), which is indeed a type of math 

vocabulary for which a student may need 

support. This represented 88 of the 273 

false positive cases analyzed. 

Cases where the word does not 

have a mathematical definition, 

but may still be challenging 

vocabulary, e.g. “bacteria”, 

“automatic feeder”. This 

represented 14 of the 273 false 

positive cases analyzed. 

No Cases where the word does have a 

mathematical definition, but is not the kind 

of word that would increase the difficulty 

of the problem for an Algebra I student, 

e.g. “time”, “dollar”, and “number”. This 

represented 121 of the 273 false positive 

cases analyzed. 

Cases where the word does 

not have a mathematical 

definition, and is a word an 

Algebra I student is likely to 

already know, e.g. “swimming 

pool” and “ticket”. This 

represented 50 of the 273 false 

positive cases analyzed. 

 

When viewed another way, 209 of the false positives made by GPT were successful 

identifications of math vocabulary, and 102 of the false positives made by GPT were successful 

identifications of words that might be challenging for a middle-school student. Only 50 of the 

273 words were truly inaccurate. Seen through this lens, the risks of false positives seem 

minimal, and lower precision seems to come with benefits.   
We intend to expand our metadata tags to include real-world vocabulary like “bacteria” 

as a separate variable. As many of the false positives are cases of real-world context vocabulary 

being included despite our attempts to remove them with our prompt experimentation, a 

promising next step would be to repeat this process for the real-world vocabulary, then undergo 

a cleaning process that removes redundant words from the math vocabulary generated by GPT-

4.  
 

4 Discussion 
In the comparison between GPT-3.5 and a human coder on creating metadata for 

math, specifically algebra questions, the results were mixed. Context was a success, with 

GPT correctly labeling the problems with 92% recall and precision. Vocabulary was less 

successful, with 75%  recall. GPT-4 was more successful at the vocabulary task, raising the 



recall to 82%. Overall we conclude that using AI to generate metadata for algebra questions 

shows promise and should be explored further. For many applications, the time, cost, and 

labor saved is worth the modest decreases to accuracy, particularly for cases where false 

positives carry few consequences. 

 

4.1 Recommendations 
We learned much in the process of automating the metadata generation of math assessments 

and wanted to share our learnings with other researchers, publishers, and/or edtech 

developers who are in the process of leveraging LLMs for similar use cases. Based on our 

experience, we recommend the following strategies:   
1. GPT will try to give a narrative response explaining the answer it provides. You should 

set creativity to “precise” and max response size to “short” in the settings for the GPT Sheets 

API integration, and you should specify the format in which you want the responses (e.g. 

what labels to use, how to deliminate terms in a list). 
2. You must prompt GPT to not solve the assessment item in your prompt. It will naturally 

want to consider the answer to the question in its response. 
3. You will likely need to go through a manual cleaning process to remove predictable errors 

such as inconsistent use of periods or elaborations on/justifications for the response. 
4.  If a single prompt does not produce satisfactory results, a two-step prompt may provide 

a solution. In the case of context, we were able to distinguish School Math and Symbolic 

math with a second, unrelated prompt focusing on different problem features.  
 
There are a number of creative ways in which LLMs can augment or improve educational 

research and impact student learning outcomes. Applications such as the one described in this 

paper represent a fruitful direction for such exploration with minimal risk. 
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