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Abstract
Despite their widespread application in modern systems, container composition is often complex and
error-prone. In this work, we present DBCChecker, a tool aiming to verify security properties of systems
obtained by composition of containers. From the configuration of a container-based system and an
abstract description of the interface behaviour of each container, the tool builds a formal model of the
overall system, which can be verified in ProVerif (an automatic symbolic protocol verifier), to check
that the overall system satisfies the required properties. The system can be described in a specification
language capable to express at once the interfaces and connections of containers and the relevant
behavioural aspects of their interfaces, called JSON Bigraph Format (JBF), and inspired by previous
formal models, based on bigraphs, for containerized architectures.
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1. Introduction

Nowadays, containers are increasingly adopted in the design and implementation of complex
software systems. The flexibility of containerized architectures support easier integration,
scalability, dynamic deployment and reconfiguration. However, connecting and coordinating
containers into a complete working system, using tools like docker compose, is not an
easy task: a misconfiguration can easily yield unexpected behaviours or allow for dangerous
communications between containers, violating security goals and policies. Sometimes these
problems may be caught at the system’s start-up, but often they arise suddenly at any time
during the system lifetime, causing service malfunctions or interruptions, information leakages,
vulnerabilites, etc. Clearly, this situation can benefit from methodologies and tools for checking
and verifying systems configuration before they are put in production.
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In this work, we present the design and prototype implementation of such a tool, called
DBCChecker, whose aim is to verify security properties of systems obtained by the composition
of containers. More precisely, given a configuration of a container-based system and for each
container an abstract description of the interaction on its interface (i.e., a contract), the tool
assembles these information into a formal model of the overall system. Then, this model is
fed to a verification backend (in our case, ProVerif [1], a state-of-the-art automatic symbolic
protocol verifier), to check that the overall system satisfies the required properties.

This work leverages previous results on formal models for containerized architectures based
on bigraphs [2, 3, 4]. Bigraphs are graph-like data structures capable to describe at once both
the locations and the logical connections of (possibly nested) components; as such, they have
successfully been applied to the formalization of a broad variety of domain-specific models,
including context-aware systems and web-service orchestration languages [5, 6, 7, 8]. Moreover,
several tools and libraries have been implemented for bigraph manipulation, such as [9, 10, 11]
and in particular JLibBig [12], which is the basis of the current work.

However, interfacing these libraries with containers configurations on one hand, and with
protocol verifiers on the other, requires some ingenuity; in particular, we have to introduce a
specification language capable to express at once the interfaces and connections of containers
(like in bigraphical model) and their contracts; from these specifications DBCChecker can build
the input model to be fed to the backend verifier (i.e., ProVerif). This language is called JSON
Bigraph Format (JBF), and it is based on JGF, the standard JSON Graph Format.

This paper is structured as follows. In Section 2 we recall the bigraphical models of containers.
Based on it, in Section 3 we introduce the specification language JBF. These specifications
are the inputs of DBCChecker, which is presented in Section 4. In Section 5 we provide two
examples of verification of security properties of systems obtained by container compositions.
Finally, in Section 6 we draw some conclusions and sketch directions for further work.

DBCChecker is open source and available at https://github.com/cysecud/DBCChecker.

2. Bigraphical models of containers

The formal model for containter-based systems is based on local directed bigraphs [2], a variant
of directed bigraphs [4, 13] which allows us to deal with localized resources. Here we briefly
recall the basic definitions, referring to [2, 12, 13, 14] for more details.
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A signature defines the basic building blocks of a bigraph; in our case, these will represent
processes, containers, networks, etc.. Formally, a signature 𝒦 is a set of elements 𝑐 ∈ 𝒦, called
controls, each with a polarized arity 𝑐 = ⟨𝑛+,𝑚−⟩; intuitively, these represent the input and
output ports of the control, respectively.

https://github.com/bigraphs/jlibbig/
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Figure 1: Signature for container bigraphs.

Given a signature, we can consider bigraphs built using these basic blocks. A local directed
bigraph (ldb) 𝐵 : 𝐼 → 𝑂 is a tuple 𝐵 = (𝑉,𝐸, 𝑐𝑡𝑟𝑙, 𝑝𝑟𝑛𝑡, 𝑙𝑖𝑛𝑘), where

• 𝐼 and 𝑂 are the inner and outer interfaces respectively;
• 𝑉 and 𝐸 are the sets of nodes and edges respectively;
• 𝑐𝑡𝑟𝑙 : 𝑉 → 𝒦 is the control map, assigning a control type to each node of the bigraph;
• 𝑝𝑟𝑛𝑡 : 𝑤𝑖𝑑𝑡ℎ(𝐼) ⊎ 𝑉 → 𝑉 ⊎ 𝑤𝑖𝑑𝑡ℎ(𝑂) is the parent map, representing the hierarchy

between nodes and their position in the external interface;
• 𝑙𝑖𝑛𝑘 : 𝑃𝑛𝑡(𝐵) → 𝐿𝑛𝑘(𝐵) is the link map, connecting points (i.e., positive ports on nodes

and inward names on interfaces) to links (i.e., negative ports and outward names).

Let 𝐵1 : 𝐼1 → 𝑂1, 𝐵2 : 𝐼2 → 𝑂2 be two ldb. Their juxtaposition 𝐵1⊗𝐵2 : 𝐼1⊗𝐼2 → 𝑂1⊗𝑂2

is defined as 𝐵1 ⊗𝐵2 = (𝑉1 ⊎ 𝑉2, 𝐸1 ⊎ 𝐸2, 𝑐𝑡𝑟𝑙1 ⊎ 𝑐𝑡𝑟𝑙2, 𝑝𝑟𝑛𝑡1 ⊎ 𝑝𝑟𝑛𝑡2, 𝑙𝑖𝑛𝑘1 ⊎ 𝑙𝑖𝑛𝑘2).
Let 𝐵1 : 𝑋 → 𝑌 , 𝐵2 : 𝑌 → 𝑍 be two ldb. Their composition 𝐵2 ∘ 𝐵1 : 𝑋 → 𝑍 is defined

as the bigraph (𝑉1 ⊎ 𝑉2, 𝐸1 ⊎ 𝐸2, 𝑐𝑡𝑟𝑙1 ⊎ 𝑐𝑡𝑟𝑙2, 𝑝𝑟𝑛𝑡, 𝑙𝑖𝑛𝑘), where 𝑝𝑟𝑛𝑡 : 𝑤𝑖𝑑𝑡ℎ(𝑋) ⊎ 𝑉 →
𝑉 ⊎ 𝑤𝑖𝑑𝑡ℎ(𝑍) and 𝑙𝑖𝑛𝑘 : 𝑃𝑛𝑡(𝐵2 ∘𝐵1) → 𝐿𝑛𝑘(𝐵2 ∘𝐵1) are defined as expected.

Thus, (directed) bigraphs can be seen as particular data structures, parametric in the given
signature. Several tools and libraries have been implemented for representing and manipulating
these data structures, see e.g. [9, 11, 10], and in particular JLibBig (https://bigraphs.github.io/
jlibbig/), a Java library for bigraphs which is the basis of the current work [12].

Now that we have defined the algebraic framework of our model, we can introduce a signature
for containers. The signature we consider in this paper is the one presented in [2]:

𝒦 = {𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 : (0, 1), 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑟,𝑠 : (𝑟, 𝑠), 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 : (1, 1), 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 : (2, 0), 𝑣𝑜𝑙𝑢𝑚𝑒 : (2, 0)}

This signature is graphically depicted in Figure 1. These basic elements can be nested and
connected, as defined above, yielding bigraphs such as the one in Figure 2. This bigraph has one
root, represented by the red dotted rectangle. Under this root there is one container node, which
contains three process nodes, one volume node, two network nodes, a request node, and one site
(the gray area). Arrows connect node ports and names, respecting their polarity. The intended
meaning of arrows is that of “resource accesses”, or dependencies. In this example, the container
offers services to (i.e., accepts requests from) the surrounding environment on ports 𝑝1, 𝑝2, 𝑝3,
and needs to access a volume 𝑣 and two networks 𝑛1, 𝑛2. The site is a “hole” that can be filled
by another bigraph which can access to services offered inside the container through 𝑠1, 𝑠2
and provide resources which 𝑝𝑟𝑜𝑐3 can access through 𝑟1. Filling a hole with another bigraph
corresponds to composition, and as such it is subject to precise formal conditions, similar to
composition of typed functions; in particular, a name of one interface can be connected to that
of another interface if their polarity is the same.

https://bigraphs.github.io/jlibbig/
https://bigraphs.github.io/jlibbig/
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Figura 4.3: Un esempio di bigrafo di un Container.
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Figura 4.4: Esempio di bigrafo per composizione.

Figure 2: A bigraph representing a container. Inner interface is ⟨(∅, ∅), ({𝑠1, 𝑠2, 𝑙𝑖𝑛1 , 𝑙𝑖𝑛2 }, {𝑟1})⟩, and
outer interface is ⟨(∅, ∅), ({𝑣, 𝑙𝑜𝑢𝑡1 , 𝑙𝑜𝑢𝑡2 , 𝑛1, 𝑛2}, {𝑝1, 𝑝2, 𝑝3, 𝐶})⟩.

1 version: "2"
2 services:
3 wp:
4 image: wordpress
5 links:
6 - "db"
7 ports:
8 - "8080:80"
9 networks:

10 - front
11 volumes:
12 - datavolume:/var/www/data:ro
13 db:
14 image: mariadb
15 expose:
16 - "3306"
17 networks:
18 - front
19 - back

20 pma:
21 image: phpmyadmin/phpmyadmin
22 links:
23 - "db:mysql"
24 ports:
25 - "8181:80"
26 volumes:
27 - datavolume:/data
28 networks:
29 - back
30 networks:
31 front:
32 driver: bridge
33 back:
34 driver: bridge
35 volumes:
36 datavolume:
37 external: true

Figure 3: Example of docker-compose.yml configuration file.

A relevant example of bigraph composition is given by the composition of containers, as
performed by, e.g., docker compose. In this case, the context bigraph can be obtained
automatically from the docker-compose.yml file. As an example (taken from [2]), let us
consider the docker-compose.yml in Figure 3. Its corresponding “context” bigraph is shown
in Figure 4(a). This bigraph has one root (representing the whole resulting system), as many holes
as components (“services”) to be assembled, the (possibly shared) networks and volumes that
each container requires, and exposes the (possibly renamed) ports to the external environment.
Three bigraphs with the correct interfaces (Figure 4(b)) can be composed into the environment,
yielding the system in Figure 4(c). This resulting system can be seen as a “pod”, and which can
be composed into the site (of the right interface) of other bigraphs, in a modular fashion.
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Figura 4.5: Esempio di composizione.

4.4.2 Condivisione di reti

Altra possibile situazione di errore è quella in cui si e�ettua una links tra due container, ma questi non
condividono nessuna rete. In questo caso dev’essere riportato un errore all’utente. L’esecuzione in questo
caso produrrebbe dei risultati inconsistenti. Docker Compose non e�ettua alcun controllo sulla verifica
di questa condizione.

Tramite bigrafi questa proprietà è verificabile garantendo che ogni container che e�ettua una links
abbia almeno un nome di rete in comune con quelli del controllo a cui si collega. Siano c e d due
controlli relativi a due container connessi da una links, netc e netd gli insiemi dei nomi delle reti di c e d,
rispettivamente. A�nché la proprietà sia garantita deve valere: netc fl netd ”= ?. Nel bigrafo è possibile
costruire questi insiemi a partire dai nodi di tipo container.

4.4.3 Gerarchia delle reti

A fini di sicurezza potrebbe risultare necessario che nel proprio sistema, in presenza di più reti, si voglia
garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.

Docker Compose non o�re nessuno strumento per attuare una simile verifica. Tramite modello
bigrafico è possibile e�ettuare questo controllo. Nella sezione 6.2.2 viene presentato un algoritmo che
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garantire che queste non entrino in contatto, per evitare fughe di informazioni non desiderate. Un
esempio potrebbe essere quello di una scuola. Per esempio dalla rete delle aule usate dai ragazzi non
deve essere consentito accedere alla rete degli u�ci amministrativi, mentre il viceversa è lecito.
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Figura 4.6: Il bigrafo dopo la composizione.

svolge questo tipo di analisi a partire da un bigrafo modellante un file di configurazione di Docker
Compose.

Figure 4: Example of composition: (a) the composition environment (corresponding to the YAML file in
Figure 3); (b) the containers to be assembled; (c) the result of the composition.

3. JBF Specification language

In order to make the whole system scalable, modular and to allow for the conservation of
the single modules, we need a specification language that allows us to keep all the necessary
informations, including those not representable in a bigraph, i.e., the behaviour of a node in a
communication. We want this language to be based on a standard specification language, in
order to improve compatibility. Furthermore we want this language to be expressive enough to
be able to descrive a broad class of behaviours.

We thus introduce the JSON Bigraph Format (JBF). This language is based upon the JSON
Graph Format (JGF) [15], which is a standard format for graph structures: it allows us to describe
nodes, edges and the metadata of graphs. JBF leverages on these metadata objects to describe
the signature and other specific informations of directed bigraphs, while the bare structure of
JBF (Fig. 5a) is the same as JGF’s for compatibility with the standard.



1 {
2 "graph": {
3 "nodes": {},
4 "edges": [],
5 "type": "ldb",
6 "metadata": {
7 "signature": {}
8 }
9 }

10 }

(a) Bare structure

1 "nodeId": {
2 "metadata": {
3 "type": "node",
4 "control": "0on0",
5 "params": [],
6 "behaviour": "",
7 "events": [],
8 "attribute": ""
9 },

10 "label": "nodeId"
11 }

(b) Node structure

1 "root": {
2 "metadata": {
3 "type": "root",
4 "location": 0
5 },
6 "label": "root"
7 }

(c) Root structure

1 "siteId": {
2 "metadata": {
3 "type": "site"
4 },
5 "label": "siteId"
6 }

(d) Site structure

1 "nameId": {
2 "metadata": {
3 "type": "name",
4 "interface": "outer",
5 "locality": 0,
6 "polarity": "+"
7 },
8 "label": "nameId"
9 }

(e) Name structure

1 {
2 "source": "parent",
3 "relation": "place",
4 "target": "son",
5 "metadata": {}
6 }

(f) Place Relationship structure

1 {
2 "source": "parent",
3 "relation": "linkedTo",
4 "target": "son",
5 "metadata": {
6 "portFrom": "0",
7 "portTo": "0"
8 }
9 }

(g) LinkedTo Relationship struc-
ture

1 "controlID": {
2 "active": true,
3 "arityOut": 0,
4 "arityIn": 0
5 }

(h) Control structure

1 {
2 "bigraphInfo": {
3 "id": "bigraphID"
4 },
5 "types": [],
6 "variables": {
7 "public": [],
8 "private": []
9 },

10 "functions": {},
11 "queries": {},
12 "instantiations": {},
13 "prologue": []
14 }

(i) Extension structure

Figure 5: Structures of JBF

In Fig. 5b it is shown the node structure: we use metadata objects to describe the node
properties that are not representable in JGF (e.g. the type of the node, its control and the data
needed for security checks). The label object is used to give a meaningful name to the node.

The root structure is provided in Fig. 5c. The location object must be a progressive integer
from 0 to 𝑁 , where 0 is the global location. Likewise, we describe sites (Fig. 5d).

In Fig. 5e we focus on the name structure. The interface object must be either “outer” or
“inner”. The locality object has the same role it has in the root structure. The polarity object
must be “+” or “-”: a “+” indicates an outgoing edge in an outer interface and an ingoing edge
in an inner interface, while a minus means the opposite.



There are two types of edges in JBF: Place Relationships and LinkedTo Relationships. For the
Place Relationship structure (Fig. 5f) we reuse the JGF default fields. The source and target objects
identify the parent and son IDs. The relation object must be set to “place" to indicate that the
edge we are describing is a place relationship. The metadata object must be empty.

In Fig. 5g we show the LinkedTo Relationship structure: we have to use the metadata object
to describe the information that can not be represented in standard JGF. The relation object
must be of value “linkedTo". The portFrom and portTo objects must be progressive integers
and they represent the ports used by the source and the target for the connection. If a name is
involved in the connection the port must not be specified since names do not have ports.

The Control structure is shown in Fig. 5h: it is part of the signature object inside the metadata
of the bigraph. This allows us to deviate from the standard JGF specification in order to describe
the control of the bigraph. The active object is a boolean that indicates whether the control is
active or not. The arityOut and arityIn objects must be progressive integers and they represent
the cardinality of outgoing and incoming edges of the control.

Protocol specification Since we want to keep the standard provided by JGF unchanged,
we could not express all the properties necessary for the security checks in a single JSON
file. Instead, we create an extension to the JBF specification which allows us to describe the
remaining properties. This extension takes the form of a separate JSON file. If we want to verify
the security properties of a directed bigraph, we need to provide to the system both its JBF
specification and its extension.

The bare structure of this extension is provided in Fig. 5i. The bigraphInfo object is used
to set the unique ID of the bigraph so as to simplify the identification of the bigraph and its
storing in a database. The types object is used to declare the types used in the verification
process. The variables object is used to declare the variables which could be both public and
private. The functions object is used to declare the functions while the queries object is used
to declare the queries which can be of three types: “query”, “attacker” and “equation”. The
instantiations object is used to declare the instantiations of the variables, in order to relate the
abstract variables to the concrete ones. Finally, the prologue object can be used to declare code
that will be executed before the main process in the verification backend.

4. DBCChecker: Tool architecture

As shown in the previous sections, when it comes to representing a container system, bigraphs
are a natural choice. The JLibBig library is the ideal candidate for representing and manipulating
bigraphs due to its flexibility and extensibility. However, to fulfil our specific needs, we have
extended JLibBig by adding new features, including an Import/Export feature and a Verification
feature, which are divided into five modules, as depicted in Fig. 6.

The Import/Export functionality is facilitated by the I/O module, which is one of the most
important components of our system. It is responsible for importing and exporting Bigraphs
in a standard format, specifically the JSON Bigraph Format (JBF) which we have defined in
Section 3. The I/O module is designed to be used independently of the verification functionality.
Furthermore, to make sure that it remains as general as possible and not limited to our specific
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Figure 6: JLibBig module structure. Lines represent inclusions; bold modules have been developed in
this work. GUI Functionality is not described in this paper.

purposes, we have set up extension points, often represented by interfaces, which can be used
to extend the Import/Export functionality to bare bigraphs.

The Networking module is a service component that manages all communications between
the library and external components, including the user. To ensure portability and isolation, all
communications are performed through REST methods.

The Parsing module extends the Import/Export module and is responsible for parsing addi-
tional information from the directed Bigraph necessary for security checks, and represented in
the JBF extension described in Section 3.

The Translation module is responsible for translating the parsed information into a file that
can be processed by ProVerif. This step is critical as it is the connection point between Bigraphs
and ProVerif. Furthermore, our system is modular and can be adapted to different verification
backends. This can be achieved by suitably modifying the Translation module, in order to
produce models for alternative protocol verifiers. Given the relevance of this moduel, in Fig. 7,
we provide an UML describing the flow of the parsing and translation process. When the User
wants to verify a system, he provides the two JBF to the system. The core parsing module
extracts the standard properties of the system and creates a Bigraph Object, while the parsing
module specific for security properties parses the behaviour of every node and all the other
related properties and save them in records. Lastly the Translation module use these records
to create the input file in ProVerif language (.pv). When the file is created the translation is
completed and the tool can call ProVerif and check the security properties of the system.

The Verification module is the main actor and controller of our system, responsible for the
entire verification process. It uses all the previous modules except the I/O module which is
unrelated to the verification process. In Fig. 8, we provide a sequence diagram of a verification
request. When the User ask for a verification, if the data contain errors, then the system
terminates the operations returning an error. Otherwise, it will process the data, constructs
a complete model of the container system, and sends it to the backend (ProVerif) to start the
security checks. Once the verification is complete, ProVerif sends the result to the system, which
could be either a success or an error. Then the system forward the result to the user.

The verification module calls the Parsing Module to parse the directed bigraph security
properties. If the parsing succeeds, the verification module calls the Translation Module to
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create a file for ProVerif, which is then sent to the backend for verification. Then, once the
Networking Module has received the result of the verification, it sends it back to the Verification
Module, which returns the result to the user.
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Figure 9: Secure handshake: bigraphical model of the client and server containers (left); sequence
diagram of the handshake protocol (right).

5. Examples

To demonstrate the use of the DBCChecker and JBF, in this section we provide two simple
example applications.

5.1. Verification of a cryptographic handshake

In this first example, we deal with a simple handshake protocol between two containers, a client
𝐴 and a server 𝐵, over a shared channel. The bigraphical model of this setting, and a sequence
diagram of the protocol, are shown in Fig. 9. Informally, the protocol proceeds as follows:

1. 𝐴 sends its public key 𝑝𝑘𝐴 to 𝐵.
2. 𝐵 generates a random key 𝑘, and sends it back to 𝐴 signed with his private key 𝑠𝑘𝐵 and

encrypted using the public key received 𝑝𝑘𝐴 received at step 1.
3. 𝐴 decrypts the key 𝑘 using her secret key 𝑠𝑘𝐴, and checks the signature using the (known)

public key 𝑝𝑘𝐵 ; if this succeeds, 𝐴 uses 𝑘 to encrypt and send a secret message 𝑠 to 𝐵.

The security property we want to check is that an attacker (e.g., the host or another container),
observing the traffic between the two containers, cannot obtain 𝑠.

Fig. 10 depicts a portion of the JBF structure. Most of the information conveyed by JBF is
contained within the “metadata" object, as the node is responsible for its own behaviour and
information. In this case, we have a short fragment in applied 𝜋-calculus (the specification
language of ProVerif) abstractly describing the steps that each container will perform.

Fig. 11 shows the complete structure of the JBF Integrative file, which contains all the
information required by ProVerif for verification that is not specific by any node. This separation
facilitates the combination of multiple nodes by simply modifying the JBF Integrating file. In
particular, this file declares also the security property(ies) to be proved (lines 13—15).

To verify this system of containers, the process is straightforward. The user creates two JSON
files needed for the verification: one containing the description of the system (JBF) and one
with the information necessary for the verification with ProVerif (JBF Integrative). These files
can be created from scratch or composed and built upon existing files, since it is the container
itself, within the “behaviour” field, which contains the logic of its behaviour. Subsequently,
the user can submit the files to DBCChecker, which verifies the whole system obtained by the
composition, and provides the user with the result of the ProVerif verification.



1 "clientA": {
2 "metadata": {
3 "type": "node",
4 "control": "1on0",
5 "params": ["pkA:pkey", "skA:skey",

"pkB:spkey"],
6 "behaviour": "!(out (#0+, pkA);

in (#0+, x : bitstring);
let y = adec(x, skA) in
let (=pkB, k : key) = checksign(y,
pkB) in
out (#0+, senc(s, k))).",

7 "attribute": ""
8 },
9 "label": "clientA"

10 }

1 "serverB": {
2 "metadata": {
3 "type": "node",
4 "control": "1on0",
5 "params": ["pkB:spkey", "skB:sskey"],
6 "behaviour": "!(in(#0+, pkX : pkey);

new k : key;
out(#0+, aenc(sign((pkB, k), skB),
pkX));
in(#0+, x : bitstring);
let z = sdec(x, k) in 0 ).",

7 "attribute": ""
8 },
9 "label": "serverB"

10 }

Figure 10: JBF specifications of containers clientA and serverB.

1 {
2 "bigraphInfo": { "id": "handshake" },
3 "types": [ "skey", "pkey", "sskey", "spkey", "key"],
4 "variables": {
5 "public": [],
6 "private": ["s:bitstring"]
7 },
8 "functions": {
9 "senc": "fun senc(bitstring, key) : bitstring.

reduc forall m : bitstring, k : key; sdec(senc(m, k), k) = m.",
10 "aenc": "fun pk(skey): pkey.

fun aenc(bitstring, pkey) : bitstring.
reduc forall m : bitstring, k : skey; adec(aenc(m, pk(k)), k) = m.",

11 "sign": "fun spk(sskey) : spkey.
fun sign(bitstring, sskey) : bitstring.
reduc forall m : bitstring, k : sskey; getmess(sign(m, k)) = m.
reduc forall m : bitstring, k : sskey; checksign(sign(m, k), spk(k)) = m."

12 },
13 "queries": {
14 "query1": { "attacker": "s" }
15 },
16 "instantiations": {
17 "clientA": {"pkA": "pkA", "skA": "skA", "pkB": "pkB" },
18 "serverB": {"pkB": "pkB", "skB": "skB" }
19 },
20 "prologue": [
21 "new skA : skey;",
22 "new skB : sskey;",
23 "let pkA = pk(skA) in out(c, pkA);",
24 "let pkB = spk(skB) in out(c, pkB);"
25 ]
26 }

Figure 11: JBF - Integrative configuration.

In this case, ProVerif finds an attack on 𝑠, providing also the execution trace that an attacker
can follow to obtain 𝑠, as shown in Fig. 12. In this attack trace ProVerif shows that the protocol
examinated is vulnerable to Man in the Middle Attacks. The Attacker pretends to be clientA
towards serverB and vice versa, so that, when the serverB sends the session key the attacker
obtain it and, in the next step decrypts the secret message sent by clientA.



A trace has been found.

Honest Process Attacker

{1}new skA_2
{2}new skB_2

~M = pk(skA_2)

~M_1 = spk(skB_2)

! !

Beginning of process serverBBeginning of process clientA

~M_2 = pk(skA_2)

pk(a_1)

{17}new k_2

~M_3 = aenc(sign((spk(skB_2),k_2),skB_2),pk(a_1))

aenc(adec(~M_3,a_1),~M) = aenc(sign((spk(skB_2),
k_2),skB_2),pk(skA_2))

~M_4 = senc(s,k_2)

The attacker has the message sdec(~M_4,2-proj-2-tuple(
getmess(adec(~M_3,a_1)))) = s

Figure 12: Attack trace for the handshake protocol of Fig. 9.

#0

client server

Figure 13: The bigraphical model of the client and server containers with the private (i.e. not exposed
on the interface) communication channel.

5.2. Verification of information leakage between containers

In this example, we consider two containers that communicate over a private shared channel.
The exchange is trivial: the client sends to the server a secret piece of information. The
bigraphical model of this scenario is shown in Fig. 13. We define the containers contracts using
JBF, a partial view of which is given in Fig. 14.

The global property we want to check is that no attacker can obtain the secret 𝑑𝑎𝑡𝑎.



1 "client": {
2 "metadata": {
3 "type": "node",
4 "control": "1on0",
5 "properties": {
6 "params": [],
7 "behaviour": "new data:bitstring;

out(#0-, data).",
8 "events": [],
9 "attribute": ""

10 }
11 },
12 "label": "client"
13 },

1 "server": {
2 "metadata": {
3 "type": "node",
4 "control": "1on0",
5 "properties": {
6 "params": [],
7 "behaviour": "in(#0-,

data_received:bitstring).",
8 "events": [],
9 "attribute": ""

10 }
11 },
12 "label": "server"
13 },

Figure 14: JBF specifications of the client and server containers.

1 Process 0(that is, the initial process):
2 (
3 {1}in(privateNetwork, data_received: bitstring)
4 ) | (
5 {2}new data: bitstring;
6 {3}out(privateNetwork, data)
7 )
8

9 -- Query not attacker(data[]) in process 0.
10 Translating the process into Horn clauses...
11 Completing...
12 Starting query not attacker(data[])
13 RESULT not attacker(data[]) is true.
14 --------------------------------------------------------------
15 Verification summary:
16 Query not attacker(data[]) is true.
17 --------------------------------------------------------------

Figure 15: Proverif Verification Results for the system of Fig. 13.

Since the channel is private (i.e. not exposed to any attacker), the property is trivially verified,
as confirmed also by DBCChecker: the query is verified by Proverif, as shown in Fig. 15.

Let us suppose we want to add another functionality to the system, e.g., we want to log the
requests from the client to the server for legal compliance reasons. This can be accomplished
by adding a new container that listens on the same network where the client-server exchanges
are made and publishes, on another network, a log entry for each request. The new bigraphical
model is shown in Fig. 16. The actual logger implementation is not fixed: different contracts
can lead to different system behaviour, some of which may prove problematic.

Let us suppose the contract specification of the logger we want to introduce is the one in
Fig. 17. Since this implementation writes the entire request to the public channel, the secret 𝑑𝑎𝑡𝑎
is leaked. This can be seen by the attack trace in Fig. 18. To solve this problem it is necessary
to choose another logger that, e.g., does not leak the entire request. This is well-known in the
industry; for example the standard logger for GitHub Actions scans the log message body for
GitHub Secrets and removes them from the final output.



#0

client server logger#1

Figure 16: The bigraphical model of the client-server system, extended with the logger container.

1 "logger": {
2 "metadata": {
3 "type": "node",
4 "control": "2on0",
5 "properties": {
6 "params": [],
7 "behaviour": "in(#0-,data_toLog:bitstring); out(#0-,data_toLog); out(#1+,data_toLog).",
8 "events": [],
9 "attribute": ""

10 }
11 },
12 "label": "logger"
13 }

Figure 17: JBF specification of the logger container.

This example shows that composing containers is a complex and dangerous operation: we
started with a secure container system and we added another container, which is not malicious
per se. While apparently the composition is safe, DBCChecker proves that it is not: the extended
system violates the security property that the original one satisfies.

6. Conclusions

In this work, we have presented DBCChecker, a prototype tool for verifying security properties of
systems obtained by composition of containers. To this end, we have introduced a specification
language, called JSON Bigraph Format (JBF), inspired by formal models for containerized
architectures based on bigraphs. This formalism is capable to express at once the interfaces and
connections of containers and the relevant behavioural aspects of their interfaces. From these
specifications, the DBCChecker tool builds a model of the overall system, which can be verified
in ProVerif, to check that the overall system satisfies the required properties.

Future work. We are currently working on adding support for other kinds of bigraphs using
the extension point and the interfaces we have prepared in this work. Another possibility is to
add support for quantitative aspects, taking advantage of stochastic semantics and the algorithm
for computing optimal embeddings implemented in jLibBig [12, 16, 17].

Another important goal is simplifying the user interaction with the tool and help the modeli-
sation of the container network. At the moment DBCChecker does not offer an easy way to



A trace has been found.

Honest Process Attacker

Beginning of process behaviour_logger
Beginning of process behaviour_client

{4}new data_1
Beginning of process behaviour_server

data_1

data_1

~M = data_1

The attacker has the message ~M = data_1

Figure 18: Attack trace for the leaking container systems.

model complex systems: the implementation of a GUI could be a major step towards a complete
and user-friendly toolkit. Along this line, another improvement would be to integrate the system
with a network discovery tool, in order to simplify the process of modelling and verifying large
and dynamic containers based systems. This would result in a semi-automatic bigraph creation,
allowing the user to concentrate upon formalizing the security properties to be verified.
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