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Abstract

Trigger-Action Platforms (TAPs) enable users to define rules that trigger device operations automatically.

However, the execution of these rules can potentially create security risks for users. This paper presents

a user study conducted to assess the validity of a classification model, which used Natural Language

Processing (NLP) techniques to automatically classify Event-Condition-Action (ECA) rules according to

security and privacy risks in TAPs, e.g., IFTTT. The study asked each user to evaluate 50 different IFTTT

rules, named applets, classified as risky by the proposed model and provide answers to two specific

questions designed to assess risk perception. The results confirmed that the proposed classification

model offers an assessment of the risk associated with a rule in line with user opinion. Furthermore,

highlighting the presence of security or privacy-related risk positively impacted users’ willingness to

avoid using risky applets.
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1. Introduction

The vast spread of the Internet of Things (IoT) [1] has revolutionized the way we live our daily

lives, turning home appliances, speakers, thermostats, and other devices into their smart variants,

equipped with an Internet connection that enables them to collect and share information with

other devices, leading the creation of factual ecosystems [2]. In an effort to enable all categories

of users, including those with no technical knowledge, to take full advantage of the use of

IoT devices, a number of platforms have emerged in recent years that make it easy for users

to configure smart devices and define automation [3, 4]. The use of these platforms, named

Trigger-Action Platforms (TAPs), allows the definition of interoperability behaviors between

IoT devices through the creation of simple rules based on the Event-Condition Action (ECA)

paradigm [5], i.e., specifying the event that triggers the automatism when a certain condition

is met and the subsequent action that will be taken. Among TAPs, If-This-Then-That (IFTTT)

affirmed itself in the last years as one of the most used ones, mainly thanks to the vast catalog
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of rules (a.k.a. applets) that are available to the users and also for the considerable amount of

services and devices that IFTTT supports.

Unfortunately, the IoT domain as well as technology in general can be characterized by several

vulnerabilities which, if exploited by malicious individuals, can cause serious risks to the security

of the IoT ecosystem and the privacy of users interacting with it [6, 7]. Sometimes, it may be

the user who, inexperienced on security and privacy topics, introduces vulnerabilities himself

through ECA rules [8, 9]. For instance, the rule in Figure 1 allows the user to automatically

tweets anytime s/he enters a certain area. The user can decide to use this rule to notify his/her

followers that s/he just arrived at the gym. However, this rule could pose an important security

risk, as thieves can gain awareness concerning the users’ absence by monitoring his/her routine

through the tweets, helping them plan a break-in.

      You enter an area

Trigger

    Post a new tweet

Action

Figure 1: An example of ECA rule

In a previous publication, we addressed the problem of identifying security and privacy risks

underlying the definition of ECA rules [10]. In particular, we proposed the application of Natural

Language Processing (NLP) techniques to automatically classify ECA rules according to security

and privacy risks. The application of NLP techniques allowed us to semantically analyze the

triggers, actions, and natural language textual descriptions provided by the rule. The best model

we considered, based on the Bidirectional Encoder Representations from Transformers (BERT)

by Google achieved very high accuracy scores, with an average of 88%.

In addition to the empirical evaluations we have already conducted, we sought to ascertain

whether the risks we identified could also be recognized and confirmed by the end-users who

are the primary audience for our initial proposal. Thus, in this paper, we present a user study

involving a group of 30 individuals. Specifically, we asked each user to evaluate 50 different

IFTTT applets classified by our model proposed in [10]. For each applet, the user was asked to



provide the answer to two specific questions designed to assess risk perception in view of the

classification performed. The collected responses served a dual purpose of evaluating users’

perception of the identified risk type as plausible and examining if reporting the risk could

influence their decision to use or avoid the risky applets. The study findings were consistent

with the empirical evaluations, indicating that our classification model accurately assesses

applet-associated risks according to user perspectives. Moreover, bringing attention to potential

security or privacy risks had a positive effect on users’ willingness to avoid using unsafe applets.

The rest of the paper is organized as follows: Section 2 presents the main studies published in

the literature assessing users’ perceptions regarding security and privacy risks in IoT environ-

ments. Section 3 briefly summarizes the contribution related to the definition of the BERT-based

classification model for identifying risks related to ECA rules. Section 4 presents the user study,

discussing the evaluation setup and the obtained results. Finally, in Section 5, conclusions and

planned future developments are drawn.

2. Related Work

The interaction with TAPs can sometimes pose serious risks both for the privacy of the user

and/or the security of the smart environment [9]. In fact, rules created through such platforms

define automatisms hiding unexpected behaviors that may go unnoticed by users. This becomes

particularly evident if we consider the lack of technical knowledge the end-users have [7, 11].

The perception of users with respect to the privacy and security risks arising from rules

defined through TAPs is a crucial aspect that needs to be considered. Various studies have

been conducted to investigate this topic, aiming to understand how users perceive the potential

risks of granting third-party access to their personal data and devices, as well as the measures

they take to protect their privacy and security. Saeidi et al. conducted a study to investigate

the implicit risks of using trigger-action platforms such as IFTTT in connecting smart-home

devices and services [12]. They surveyed 386 participants on 49 smart-home IFTTT applets

using a Mechanical Turk survey and found that users were generally not very concerned about

using the rules, with the lowest level of concern being the most frequently selected answer.

The study also identified the types of rules that elicited more concerns from users, which were

those that involved acquiring, processing, or sharing location data. The authors suggest that

nudging participants to think about different usage contexts led them to raise their concern

scores. The study presented in [7] aimed to investigate the rationales behind smart home device

purchases, homeowners’ perceptions of privacy risks, and the measures taken to protect privacy

from external entities such as device manufacturers, governments, Internet Service Providers,

and advertisers. The study involved 11 semi-structured interviews with smart homeowners,

and the analysis identified recurring themes. First, users’ preferences for convenience and

connectedness influenced their privacy-related behaviors in dealing with external entities.

Second, users’ opinions about external entities collecting smart home data were based on the

perceived benefits of these entities. Third, users trusted IoT device manufacturers to protect

their privacy but did not verify the implementation of such safeguards. Finally, users were

unaware of the privacy risks from inference algorithms operating on data from non-audio/visual

devices. The study’s results suggest recommendations for device designers, researchers, and



industry standards to match device privacy features with the expectations and preferences of

smart homeowners. In [9], the authors analyzed 732 applets installed by 28 participants and

their responses to survey questions to study the risks of real-world use of IFTTT. The study

found that although public applets on IFTTT present a potential attack vector, most participants

preferred creating their own applets. While participants did not express significant concerns

about security and privacy risks from their use of IFTTT, they were aware of the possibility of

such risks. Additionally, four participants reported experiencing applet-related harms or applets

that did not function as expected. Overall, participants stressed the importance of security

and privacy for their applets, and expressed concerns about applets triggering unintentionally,

posting private information, spreading malware, or damaging smart-home devices.

The results suggest that TAPs should offer support to end-users in effectively managing and

comprehending the security and privacy risks associated with creating trigger-action rules. To

address this issue, specific efforts have been dedicated to developing ad-hoc solutions that enable

end-users to identify and mitigate these risks [10, 13]. Moreover, it is crucial to ensure that users

can fully comprehend the identified risks in order to make informed decisions. Consequently,

various studies have proposed approaches for generating explanations that describe the causes

of system instability [14, 15]. Such explanations aim to provide a clear and understandable

account of the underlying technical concepts, as well as the potential consequences of certain

trigger-action rules. These explanations may also help users to understand the trade-offs

between privacy and functionality, and to make more informed decisions about whether or

not to grant access to their personal data and devices. However, further research is needed to

evaluate the effectiveness of these approaches, and to determine how they can be integrated

into existing trigger-action programming tools.

3. Methodology

This section presents a comprehensive description of the sequential steps undertaken to produce

a fully labeled dataset that encompasses ECA rules, followed by the process of training and

evaluating a classification model that targets the identification of harmful rules. The proposed

methodology was applied to a case study concerning the IFTTT platform.

3.1. System Overview

There are three fundamental phases involved in the process of constructing a classifier to

identify harmful ECA rules:

• The first phase, named “Data Labeling”, is designed to create labeled datasets for classifi-

cation models. This is accomplished by defining the possible classes of risk for ECA rules,

and their corresponding labels. Each ECA rule in the input dataset is then annotated with

a suitable label using a semi-automatic labeling strategy that partitions the dataset into

a small manually labeled subset and a larger subset that is automatically labeled using

semi-supervised classification models.

• The second phase, named “Model Training”, focuses on training the classification models

using the labeled ECA rules dataset. NLP techniques are used to extract semantic infor-



mation from the textual components of the ECA rules, and a weighted loss function is

applied to deal with the imbalanced nature of the training set.

• The last phase, named “Model testing”, involves evaluating the performance of the classi-

fication models by inputting a set of manually labeled ECA rules and measuring their

precision, recall, F1-score, and accuracy.

3.2. Data Labeling

This section introduces the dataset employed in training the classifier for identifying harmful

applets and the process by which the applets were labeled. The applet labeling process comprised

a dual approach of manual and automatic labeling, involving semi-supervised models and an

ensemble strategy.

IFTTT Applet Dataset. The study was based on the dataset proposed by Mi et al. [16]. It was

generated by researchers from Indiana University Bloomington, who conducted a web crawl of

the IFTTT.com site over a period of six months, from November 2016 to May 2017. During this

time, they collected a “snapshot” of the available applets each week, resulting in a dataset of

over 300,000 unique applets, which totaled approximately 200 GB of data. The dataset contains

essential information, including the applet name, description, trigger, trigger channel, action,

action channel, and the number of users who have installed each applet.

The dataset underwent a data cleaning process to obtain a uniform dataset in language, and

the langdetect Python library was used to filter out applets not written in English. Applets

without a name or description, or containing only numbers for these features, were discarded.

After the data cleaning process, the resulting dataset contained 116,825 applets.

Categorization of IFTTT Applets According to Security and Privacy Risks. To catego-

rize the potential damages that could be inflicted by an applet on the user, we referred to the

work presented in [17], where potential damages were classified into four macro-categories.

The first category, referred to as Innocuous, comprises applets that do not pose any harm or

risks. The second category, labeled as Personal, includes applets that may result in the loss or

compromise of sensitive data, which is solely due to the user’s behavior. The third category,

named Physical, involves applets that may cause physical harm or damage to goods, and the

harm is external, i.e., inflicted by third parties. The fourth category, denoted as Cybersecurity,

encompasses applets that may disrupt online services or distribute malware, and the harm is

external as well.

We used the following classes for applet labeling, based on the considered macro-categories

of risk: class 0 corresponds to Innocuous applets, class 1 to Personal damages, class 2 to Physical

damages, and class 3 to Cybersecurity damages.

Manual Applet Labeling. The process of manually labeling the IFTTT dataset involved

applying the majority method, whereby the first and second authors were responsible for the

labeling process, and the third author mediated in cases of disagreement. This approach resulted

in the labeling of 1,000 applets.



To increase the number of labeled applets, we developed a process for selecting additional

applets to be manually labeled. This process involved creating a spreadsheet for each labeled

applet, and sorting all unlabeled applets by their similarity to the labeled applet, using a

combination of vector semantics and similarity functions. Specifically, we used SentenceBERT

[18] to compute sentence embeddings for each applet and cosine similarity to compare the

embeddings. We then manually reviewed each spreadsheet to identify and label applets that

exhibited similar characteristics to those previously labeled, but differed in the triggers, actions,

and/or channels involved. This process resulted in an augmented dataset consisting of 2,473

labeled applets.

Automatic Applet Labeling. After the manual labeling process, we developed a methodology

that combines various semi-supervised learning models with an ensemble strategy. We utilized

three distinct semi-supervised learning techniques, namely Self Learning [19], Label Propagation
[20], and Generative Adversarial Learning [21]. Self Learning is a semi-supervised learning

technique that uses a combination of labeled and unlabeled applets to train a model. This

technique involves making predictions on unlabeled applets and treating those predictions as

additional labeled applets to augment the existing labeled set. In contrast, Label Propagation
propagates labels from a small set of labeled applets to a larger set of unlabeled applets. This is

achieved by constructing a graph where the applets represent the nodes and the edges represent

their similarity. Finally, Generative Adversarial Learning uses a generative model to generate

synthetic applets similar to real ones and a discriminative model that learns to distinguish

between them.

To obtain a single dataset from the three labeled applet datasets generated by the semi-

supervised learning models, we employed an ensemble strategy. It consisted of a majority-vote

scheme among the three semi-supervised models, in which applets were considered for inclusion

in the final dataset with their respective class labels only if at least two models produced the

same prediction. This approach provided us with more consistent labels for the evaluated

applets.

3.3. Model Training

The dataset we constructed was characterized by an imbalance in the number of applets across

classes, which poses a challenge in supervised classification [22]. In such scenarios, models

trained on imbalanced data tend to classify input samples based on the majority class. To

overcome this issue, we employed a weighted loss function that assigns different weights to

each class based on the number of applets in the class. Notably, we assigned the minimum

weight to class 0, which had the highest number of applets in the dataset.

We developed a BERT-based classifier to identify harmful applets by using applet information

as textual features. The BertForSequenceClassification class of the transformers

Python library was employed for training the classifier. This class corresponds to the BERT

model with a single linear layer added for classification. We used the “bert-base-uncased” model,

which is the base version of BERT with 12 transformer blocks, 768 hidden units, 12 self-attention

heads, and lowercase letters.



3.4. Model testing

We conducted a series of experiments aimed at evaluating the effectiveness of the BERT-based

model in classifying the different types of applet damage. To this end, a training dataset of 76,741

applets was assembled by employing the ensemble strategy combining the three sets of labeled

applets generated with the semi-supervised learning models. The efficacy of the proposed

approach and the quality of the labels produced by the ensemble strategy were validated by

evaluating the model’s performance on a test set comprising 2,473 manually labeled applets.

Table 1
Performances of the BERT model on the test set

Metric class 0 class 1 class 2 class 3 WAvg
Precision (%) 89 87 88 87 88
Recall (%) 86 79 97 91 88
F1-score (%) 87 83 92 89 88
Accuracy (%) 88

Table 1 reports the values of accuracy, precision, recall, and F1-score achieved by the BERT

model. Notably, the model attained a weighted average score of 88% across all metrics. Analysis

of the results by class reveals that identifying class 1 applets is the most challenging task for the

model. This difficulty arises from the slight differences in the context of rule execution that can

cause errors by classifying class 1 applets as class 2 or 3. To illustrate, consider the applet “Any
new photo by me uploaded in a specific Google Drive folder, publish it
on Twitter”. This applet falls under class 1 since it can lead to the unintentional sharing of

sensitive or embarrassing photos. On the other hand, the applet “Any new photo uploaded
by anyone in a specific Google Drive folder, publish it on Twitter” should

be classified as class 3 due to the potential privacy risk of publishing a photo on the user’s

Twitter profile without their knowledge of who uploaded it. Similarly, the applet “New tweet
by me with a specific hashtag, turn off lights” may be employed by a user to

turn off lights with a goodnight tweet, but it can also trigger unintentionally in inappropriate

situations, making it a class 1 applet. On the other hand, the applet “New tweet by anyone
in the area with a specific tag, turn on lights” enables a user to determine if

there are people who published a tweet in the zone, but its behavior may be jeopardized by

third parties causing damage to the lights, making it a class 2 applet. These applets have subtle

differences that make it challenging to classify class 1 applets compared to the other classes,

which explains the lower performance of the model in this regard.

4. User study

This section describes the study we conducted to evaluate the user’s perception of security

and privacy issues related to IFTTT applets. In particular, we examined whether users are

able to perceive the potential risks identified by the proposed BERT model as actual risks, and

then evaluated whether such perception could potentially influence their decision to enable the



Figure 2: An example of how an applet is presented to participants by our dedicated platform

corresponding applets. The research aimed to answer two questions, which were investigated

through our experimental evaluation:

• RQ1. “Do users acknowledge the classification made by our model as an actual risk?”

• RQ2. “Can the identified risks impact on users’ decision to activate the applet?”

To answer the two research questions, we recruited 30 volunteers (12 females) and designed

a dedicated platform in charge of randomly selecting 50 IFTTT applets, contained within the

dataset we released in [10]. Out of the applets selected for each test, 40 were belonging to

one of three risk classes, Personal, Physical, or Cybersecurity, while the remaining 10 applets

had been classified as Harmless. This distribution of applets had two advantages: firstly, it

served as a control to prevent any pattern in user responses by randomly presenting 50 applets,

some harmless and some harmful. Secondly, for harmless applets, open-ended responses were

recorded on whether there was a discrepancy between the user’s evaluation and the model’s

one, i.e., when the user interprets an applet as harmful but the model did not. The participants

were selected from a mixed pool of users, consisting of individuals pursuing bachelor’s and

master’s degrees in computer science as well as those from other academic disciplines, with a

mean age of 28 years. Figure 2 shows an example of how applets are presented to the users and

the related questions asked to them. Each applet was presented to the participants in terms of

its title, description, trigger, and action components. Initially, the box describing the identified

risk (b) for a certain applet is hidden from the user, as well as the second question (c), while the

only operation a participant could perform is answering the first question (a). Once the users

answer the first question, blocks (b) and (c) appear, and users are asked to confirm whether

they would activate the applet in view of the identified risk. The evaluation process lasted on

average 20 minutes per user.



To avoid answers that were biased over personal considerations outside the scope of our

evaluation, we made it clear to the users to provide their answers only according to the risk and

not to their personal needs. This is to avoid, for example, that the applet having the description

“Turn off my Philips Hue light anytime I leave the apartment” would not be

activated by a user, not because of the risk it implies, but because such a user did not have a

Philips Hue light.
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Figure 3: Summary bar plot of the results obtained from the user study

Figure 3 shows the results obtained from the user study, considering only the 40 risky

applets presented to each user. Arranged on the x-axis are the 30 users who were involved in

the experiment, while the y-axis collects the number of responses received for both the first

question, the one about risk perception, and the second question, the one that asked about the

user’s confirmation to activate the applets.

In detail, the top part of the plot compares the responses obtained from the first question.

While the left bar (the one in the light purple) shows the number of negative responses, i.e., the

number of times in the user’s opinion the applet presented did not pose a security or privacy

risk. On the other hand, the bar on the right of each user shows the number of times a given

user considered the type of risk identified by the model to be likely.

As for the lower part of the plot, the number of responses regarding the second question is

reported. In this case, the left bar (the one in the dark purple) reports the number of times that,

at the expense of the highlighted risk, the user would still decide to activate such an applet in

their smart environment. Accordingly, the right bar highlights the number of times when the

presence of an identified security or privacy risk leads the user to decide to avoid activating

such an applet.

The results obtained are very promising and indicative. In fact, even at first glance, it can be

seen that the number of times the risk identified by our model was deemed likely is very high,



with an average of 34.7 out of 40. For many users (U3, U4, U5, U17, U21, U25), the totality of the

applets they were asked to evaluate had security and privacy risks that conformed with what the

model highlighted. In a few cases (U2, U13, U18, U28) it happened that the risk was highly not

recognized by the participants, resulting in more than 10 negative responses. When questioned

about the reason for such a high number of unrecognized risks, all of the above-mentioned

users gave the same answer, namely that in their opinion the highlighted risk was related to

scenarios so remote as to be almost unrealistic, reasoning that such applets would never come

to pose any security or privacy risk.

Regarding the users’ responses on whether they planned to activate the applets, this study

revealed some variability in the responses, in fact it was observed that none of the users chose

to refrain from activating all 40 applets that were presented for evaluation. It is worth noting,

however, that even for this type of evaluation, users almost always opted not to activate the

applets highlighted as risky. The only exception is user U21, for whom the number of applets

he would not activate (15), turns out to be lower than the number of applets he would activate

anyway (25). This result is even more surprising in light of the fact that U21 belongs to that

group of users who instead indicated that all the applets that were submitted to him were likely

to be risky. When questioned about this ambivalence in the answers, the participant responded

as follows: “I agree that all applets are in some way risky, however, in my opinion, having them

available would still be convenient. But now, knowing that they are risky, I would perhaps be

more careful to avoid falling into problems (of security or privacy)”.

On the other hand, with regard to users U2, U13, U18, and U28, who had been the ones

who had most indicated the identified risk as “unlikely”, the responses collected to this second

question confirm their thinking. These users, in fact, are among those who would activate most

of the applets presented to them. This result should not be surprising since in view of the fact

that they do not consider many applets as risky, it is reasonable to assume that such applets can

(and should) be activated either way.

As for the results concerning the 300 harmless applets we submitted to the users as a control,

our results highlighted that 39 (13%) of them were instead judged as harmful by the participants.

As mentioned above, for such applets we asked the participants to provide us with an open-ended

answer, explaining why, in their own view, such an applet would be capable of causing a danger

to the user. Table 2 shows some of the most relevant answers we received from participants

and a short summary of the considered applet. In particular, some users e.g. U3, highlighted

that the overuse of certain automation could lead to concerns since some services might not be

capable of keep functioning as intended when involved in applets, such as the Evernote cloud

space that could be filled up if provided with multiple notes. On the other hand, users such as

U12 and U34 suggested that certain applets should be considered as harmful whether certain

conditions apply, like when minors are involved or when there is a risk of fueling the spread of

malicious software.

In conclusion, the experimental evaluations provided interesting insights concerning the 2 RQs

posed upstream of this study. In fact, with respect to RQ1, the BERT-based harm classification

model we presented in [10] provided risk classifications of IFTTT applets that were highly

compatible with the thought of the users involved in the experiment, further demonstrating

its reliability, already highlighted by empirical evaluations. Regarding RQ2, on the other hand,

the results show that highlighting the presence of security and privacy risks related to IFTTT



Table 2
Opinions of users regarding certain applets categorized as harmful.
USER ID APPLET SUMMARY OPEN ANSWER

U3
Applet designed to create a new note in Evernote
each time you add an item to the To Do List

May cause the cloud space provided by Evernote to fill up

U12
Applet with the title “Kids Education” designed
to create a link post on Tumblr when a new post
on Blogger

I think there are always serious risks when there are videos involving minors

U34
Applet designed to automatically create a link post
on a Facebook Page when a top-rated app has gone
free in the Apple App Store

Because if the top-rated app is a malicious app, you may be posting a dangerous
app publicly on your profile, favoring its spread

applets positively influenced users not to activate the applets, or at least to weigh their use

to avoid the occurrence of those risk scenarios. Finally, some harmless applets were instead

identified as harmful by some participants, and some of their suggestions stressed the need to

take a broader view with respect to how to assess risk.

5. Conclusions

In this study, we investigated the privacy and security concerns associated with applets activated

through the IFTTT platform. We recruited 30 users to evaluate applets classified as risky

by our previously proposed BERT-based classification model [10]. The results demonstrate

the effectiveness of the model in ranking risky applets in accordance with user opinions.

Furthermore, our analysis reveals that users can perform accurate risk assessments when

provided with appropriate warnings. Specifically, we found that participants demonstrated

a greater level of consideration towards specific applets, often opting to use the applet more

consciously or not activate it to prevent potential risks. These findings suggest that risk

assessment and management should be incorporated into the design and implementation of

TAPs, with adequate warning mechanisms being provided to users. Future research could

also investigate the effectiveness of additional strategies for enhancing user awareness and

understanding of privacy and security risks associated with automated platforms.
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