
Formal Analysis of Security Protocols with Movement
Andrew Cook, Luca Viganò*

Department of Informatics, King’s College London, London, UK

Abstract
Standard approaches to the formal and automated analysis of security protocols typically do not consider
explicitly the fact that certain protocols require the agents to move to specific locations in order to send
or receive particular messages. In this paper, we formalise a formal and automated approach in which
security protocols with explicit agent movement are analysed in the presence of a Dolev-Yao attacker.
We define movements as timed processes in an applied pi-calculus that allows us to build traces that
show how the location and the movements of the agents and of the attacker significantly affect the
execution of a protocol as well as the execution of possible attacks. We have automated our approach
by using the UPPAAL tool. As proof-of-concept, we show our approach in action by analysing several
security properties of a concrete case study, the SegCom protocol for vehicular ad-hoc networks.

Keywords
Security protocols, Formal methods, Movement, UPPAAL

1. Introduction

A security protocol is an exchange of messages between two or more agents, where the messages
may contain information encrypted with pre-shared keys to achieve confidentiality, signed with
privately kept keys for purposes of proof of origin of the message and authentication, or hashed
to prevent message tampering. A number of techniques and tools have been developed to carry
out symbolic analyses of the actual security of the proposed protocols in the presence of an
active attacker, such as [1, 2, 3, 4, 5] to name just a few. The model proposed by Dolev and Yao
in [6] has become the standard attacker model in symbolic analysis of security protocols, i.e.,
when one wants to consider a dishonest agent that can do anything except break cryptography,
which is assumed to be perfect. However, the models adopted for honest and dishonest agents
in these approaches do not consider explicitly the fact that certain protocols require the agents
to move to specific locations in order to send or receive particular messages. In other words, an
agent may only be able to send or receive a message if it has moved in a specific and correct
way, otherwise the protocol is un-executable. This suggests that location and movement of
the agents should not only be included in the protocol specification but also be formalised in
much the same way that sending and receiving messages is formalised. If we wish to consider
movement and location to be a fundamental aspect of a protocol, then we must consider how
an attack can be influenced by its inclusion.

The main contribution of this paper is the development of a formal and automated approach

ITASEC 2023: The Italian Conference on CyberSecurity, May 03–05, 2023, Bari, Italy
*Corresponding author.
$ andrew.cook@kcl.ac.uk (A. Cook); luca.vigano@kcl.ac.uk (L. Viganò)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:andrew.cook@kcl.ac.uk
mailto:luca.vigano@kcl.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

in which security protocols with explicit agent movement are analysed in the presence of a
Dolev-Yao attacker. We define a two-dimensional environment consisting of both static and
mobile agents, with a specific range of communication, which means, for instance, that a mobile
agent must move into the communication range of a static agent in order for them to be able to
exchange messages. We define movements as timed processes in an applied pi-calculus that
allows us to build traces that show how the location and the movements of the agents and of
the attacker significantly affect not only the execution of a protocol but also the execution of
the attacks the protocol suffers from (if any, of course). We have automated our approach by
using UPPAAL, a tool for the modelling, validation, and verification of inter-communicating
systems. As proof-of-concept, we show our calculus and its UPPAAL implementation in action
by analysing security properties of the SegCom protocol [7] for vehicular ad-hoc networks,
which involves mutual authentication between mobile vehicles and static road-side units.

We proceed as follows. The calculus that we give in § 2 refines and extends the preliminary
version that we gave in [8]. In particular, we strengthen the attacker model. In § 3, we implement
the calculus in UPPAAL and describe how we capture message passing, movement, cryptography,
and the attacker. In § 4, we show our approach in action, illustrating how it allows us to search
for and find attacks in our case study. In § 5, we discuss related work. We conclude in § 6 by
discussing the power and limitations of our approach, as well as future work.

2. A Calculus of Movement

In this section, we refine and extend the preliminary calculus that we gave in [8]. For the sake
of space, we only summarise the main points and highlight the extensions this paper provides.
We do not give the full details of the calculus, but only the rules that are relevant in this paper;
the full calculus, along with detailed explanations, can be found in [9]. For brevity, we also omit
standard applied-pi calculus rules for synchronisation and parallel composition of processes.

Our approach is independent of the specific language of messages, but for concreteness we
consider the standard operators for: message pairing (𝑚1,𝑚2), or simply 𝑚1,𝑚2; symmetric
encryption {|𝑚1|}𝑚2

; and asymmetric encryption {𝑚1}𝑚2 . Other operators (e.g., hashing) can
be added easily. We use the standard message manipulation rules given below, where 𝒟𝒴(𝑀)
is the set of terms that a Dolev-Yao attacker [6] can construct out of the knowledge 𝑀 .

𝑚 ∈ 𝑀

𝑚 ∈ 𝒟𝒴(𝑀)
𝐺axiom

𝑚1 ∈ 𝒟𝒴(𝑀) 𝑚2 ∈ 𝒟𝒴(𝑀)

(𝑚1,𝑚2) ∈ 𝒟𝒴(𝑀)
𝐺pair

𝑚1 ∈ 𝒟𝒴(𝑀) 𝑚2 ∈ 𝒟𝒴(𝑀)

{|𝑚1|}𝑚2
∈ 𝒟𝒴(𝑀)

𝐺scrypt

𝑚1 ∈ 𝒟𝒴(𝑀) 𝑚2 ∈ 𝒟𝒴(𝑀)

{𝑚1}𝑚2
∈ 𝒟𝒴(𝑀)

𝐺crypt
(𝑚1,𝑚2) ∈ 𝒟𝒴(𝑀)

𝑚𝑖 ∈ 𝒟𝒴(𝑀)
𝐴pairi

{|𝑚1|}𝑚2
∈ 𝒟𝒴(𝑀) 𝑚2 ∈ 𝒟𝒴(𝑀)

𝑚1 ∈ 𝒟𝒴(𝑀)
𝐴scrypt

{𝑚1}𝑚2
∈ 𝒟𝒴(𝑀) inv(𝑚2) ∈ 𝒟𝒴(𝑀)

𝑚1 ∈ 𝒟𝒴(𝑀)
𝐴crypt

{𝑚1}inv(𝑚2) ∈ 𝒟𝒴(𝑀) 𝑚2 ∈ 𝒟𝒴(𝑀)

𝑚1 ∈ 𝒟𝒴(𝑀)
𝐴inv

crypt

The notion of time is formalised by a global, linear clock, which is a global variable 𝑡 that
annotates each process in the calculus, and is incremented by the function inc(𝑡). Sending/re-
ceiving messages takes no time, but movement of the protocol agents does make time pass
(more on this later). The environment in which agents move is modelled as a two-dimensional
affine plane of nodes, which are static agents with a finite circular range of communication that
exchange messages with mobile, point-like entities that are called hubs.

https://uppaal.org

x (𝑚).n𝑡𝑖
x(𝑚)−−−→ n𝑡𝑖

Readn

𝑚 ∈ 𝒟𝒴(𝐾𝑡
x)

x ⟨𝑚⟩.n𝑡𝑖
x⟨𝑚⟩−−−→ n𝑡𝑖

Writen

x ∈ 𝐸𝑡
h𝑖

x (𝑚).h𝑡𝑖
x(𝑚)−−−→ h𝑡𝑖

Readh

𝑚 ∈ 𝒟𝒴(𝐾𝑡
h𝑖
) x ∈ 𝐸𝑡

h𝑖

x ⟨𝑚⟩.h𝑡𝑖
x⟨𝑚⟩−−−→ h𝑡𝑖

Writeh

x (𝑚).p𝑡
x(𝑚)−−−→ p𝑡

{𝑚} ∪ 𝐾𝑡
p

ReadMsg
𝜈(𝑚).p𝑡

𝜈(𝑚)−−−→ p𝑡

{𝑚} ∪ 𝐾𝑡
p

FreshMsg

Figure 1: Message-Passing Rules for Nodes (Readn andWriten) and Hubs (Readh andWriteh), and
Message-Passing Bridge Rules (ReadMsg and FreshMsg)

Nodes in our environment are circles of uniform radius, which are either far apart or overlap-
ping with each other.1 Each node has a name and the radius models the “range of communication”
of the node. Then, an environment Env is a pair (𝜑,O), where 𝜑 is a set of node names and
O is a relation describing the overlaps between nodes. Environments are well formed if for
O ⊆ 𝜑×𝜑 and for all (𝑛1, 𝑛2) ∈ O , 𝑛1 ̸= 𝑛2 and (𝑛2, 𝑛1) ̸∈ O and |O | < 5 and Env is planar.2

A node’s trace is described by the behaviour of a process n. In particular, n𝑖 is a node process,
where 0 ≤ 𝑖 < |𝜑| and |𝜑| is the size of 𝜑. For a finite set of nodes 𝜑, there is a finite set of
processes {n0, n1, . . .}, where |{n0, n1, . . .}| = |𝜑| and 0 ≤ 𝑖, 𝑗 ≤ |{n0, n1, . . .}|, described by
the grammar n𝑖, n𝑗 ::= U (𝑚).n𝑖 | U ⟨𝑉 ⟩.n𝑖 | U ⟨𝑉 ⟩.n𝑖 | n𝑖 ‖ n𝑗 | 𝜏.n𝑖 | 0, which respectively
represent the actions of input, output, composition, internal transition, and halt.

Each protocol agent x possesses a message knowledge set 𝐾𝑡
x that represents what messages

x knows at global time 𝑡 based on the messages that it knows initially, has received, or has
freshly generated. Nodes are able to send/receive messages at will, on their default channel
name. We model this by means of the rules Readn and Writen in Figure 1 (again, we point to
[9] for the full set of the rules of the calculus).

Hubs are point-like entities in the plane that can move in and out of the ranges of nodes. If a
hub is in range of a node 𝑛, then it is able to exchange messages with 𝑛. If a hub is out of range
of 𝑛, then to exchange messages with 𝑛 it must move. If a hub is in the overlapping region of
two nodes, then it is able to exchange messages with both nodes without moving.

A hub’s trace is described by the behaviour of a process h. In particular, h𝑖 is a process of
a hub, where 0 ≤ 𝑖 ≤ |ℋ| with ℋ the set of hub processes. The hub processes follow the
same applied-pi calculus grammar as the one for node processes. In addition to its message
knowledge set, each hub h𝑖 possesses a location set 𝐸𝑡

h𝑖
that describes its location at time 𝑡: if

a hub h enters a node n, the channel name of n is added to h’s location set; upon leaving, the
channel name of n is removed from h’s location set. The following rules for movement define

1We impose some sensible restrictions on a node’s location: a node cannot “contain” another node (i.e., a smaller
node inside a larger node), and only two nodes may mutually overlap (i.e., three or more nodes may not all mutually
overlap, although a node may overlap with more than one other node). Nodes are also restricted from being
positioned directly on top of another, and two nodes may not be just touching at their circumferences.

2Environments can be thought of as planar graphs, where the graph nodes represent our nodes and edges represent
the overlaps. A simple observation is that a complete graph of five nodes 𝐾5 is non-planar.

how a single hub’s location set is updated when the hub moves into and out of nodes. These

rules are of the form
𝐽1

𝐶 or
𝐽1 𝐽2

𝐶 , where 𝐽1 is a judgement on the location set of a hub 𝐸𝑡
h𝑖

, 𝐽2 is a

judgement about the structure of Env , and the conclusion 𝐶 is an updated location set 𝐸inc(𝑡)
h𝑖

.

𝐸𝑡
h𝑖

= {} 𝑥 ∈ 𝜑

𝐸
inc(𝑡)
h𝑖

= {x}
𝐴single

𝐸𝑡
h𝑖

= {x}

𝐸
inc(𝑡)
h𝑖

= {}
𝐷single

𝐸𝑡
h𝑖

= {} (x , y) ∈ O

𝐸
inc(𝑡)
h𝑖

= {x , y}
𝐴double

𝐸𝑡
h𝑖

= {x , y}

𝐸
inc(𝑡)
h𝑖

= {}
𝐷double

𝐸𝑡
h𝑖

= {x} (x , y) ∈ O

𝐸
inc(𝑡)
h𝑖

= {x , y}
OAsingle

𝐸𝑡
h𝑖

= {x , y} (x , y) ∈ O

𝐸
inc(𝑡)
h𝑖

= {x}
ODsingle

Rule Description
𝐴single / 𝐷single Into a single node / out of a single node.
𝐴double / 𝐷double Into the overlapping region of two nodes / out of overlapping region.
OAsingle When in one node that overlaps with another, moving into the overlap.
ODsingle When in an an overlap of two nodes, moving to be just inside one.

The rules Readh and Writeh in Figure 1 allow a hub to send/receive messages, whereas the
bridge rules allow the processes to traverse from the world of the implicit to the explicit. They
bridge between any node/hub/attacker process denoted generically as p and the Dolev-Yao
knowledge. ReadMsg takes the premise that a process p has read a message 𝑚, and p can then
add 𝑚 to its message knowledge set 𝐾𝑡

p. FreshMsg takes as premise the standard creation of a
fresh 𝑚 using the 𝜈 operator, and concludes by adding 𝑚 to p’s message knowledge set 𝐾𝑡

p.
The attacker 𝑎 is a dishonest agent that can assume the role of a node or a hub at will. It

is a Dolev-Yao attacker that we have extended with movement: it is capable of creating and
sending messages by way of the Dolev-Yao message rules, as well as receiving messages either
directly on its channel name or by eavesdropping messages sent on another channel only if it
has moved within range. The process of the attacker as a inherits all the same capabilities of
honest nodes and hubs, and is in possession of a message knowledge set 𝐾𝑡

a and location set 𝐸𝑡
a.

3. Modelling Security Protocols in UPPAAL

The following techniques capture the capabilities of the agents, and describe the methods in
which the communication rules, cryptography, and movement abilities given by our calculus in
§ 2 are embedded into UPPAAL.

3.1. Message Passing

We begin by embedding in UPPAAL the reading and writing rules from Figure 1. We embed
the FreshMsg rule through a function fresh() that returns a single-use typed integer. We
concatenate message components through bitwise operations as in [10, 11]. Messages, and
components of messages, are conventionally [10, 11] defined as integers of a fixed length of bits
in UPPAAL, as UPPAAL calls for typed models. As such, in order for one agent to send a message
to another agent, the former writes an integer to a global variable named “message”, which
another agent may then read. The maximum length of any message is 15 bits. The way that

we type protocol messages is a novel, admittedly minor, contribution; we define integer ranges
that represent different types of message components in a protocol. To model time-negligible
communication, a sender and receiver synchronise on an UPPAAL channel. Figures 2 and 3
(more details on these models are given in § 4) show an example in which the initiator writes
a signed certificate to the global message on the channel node1 , and the receiver reads this
message by synchronising with the initiator on the same channel at the same time.

3.2. Movement

Movements are simple to model in UPPAAL (which is indeed part of the reason why we have
chosen to use UPPAAL). We create a model that captures the layout of the environment. For all
agents which are hubs, the environment is instantiated with boolean variables that monitor that
specific hub’s location set. These boolean variables are true or false if the hub is in that location
or not. As such, any number of hubs may be instantiated to move around the environment and
can freely move in and out of nodes. Each node in the environment is modelled as an UPPAAL
model state. If a hub is not in any node, it is modelled as being in no man’s land, written in
UPPAAL as NML. An overlapping region of two nodes is itself a unique location and therefore
an UPPAAL state. For instance, if two nodes named 𝑛1 and 𝑛2 overlapped, the overlap region is
a separate state n1 o n2 (𝑛1 overlap 𝑛2), and so on.

3.3. Embedding Cryptography and the Attacker Model in UPPAAL

As in [11], cryptographic operations in UPPAAL are carried out by means of a pair of arrays
that all agents are permitted to read and write to. The arrays allow any number of agents to
perform encryption and decryption, sign messages, and verify signatures. Other cryptographic
operations such as hashing can be added whenever necessary.

The two advantages of embedding cryptography through publicly available functions are:
(1) that an arbitrary number of agents can be given cryptographic functionality (similarly to
movement), (2) that the underlying mathematics of encryption schemes are abstracted away,
which are assumed to be unbreakable by the attacker during analysis and verification regardless.

As mentioned in § 2, the attacker can assume the role of a hub or node at will (inheriting the
capabilities of both). The attacker is made up of any number of collaborating attacking agents
instantiated as hubs, and a singular attacker brain which captures the Dolev-Yao rules. The
attacker brain is based on the attacker model given in [11] combined with elements of [10], with
some further restrictions, optimisations, and modifications of our own. We carefully restrict the
attacker brain in UPPAAL so that the automated analysis of the protocol will terminate:

1. Typing: Every message component is properly typed.
2. Message Length: The maximum length of a message that the attacker brain can construct

for a given protocol is bounded.
3. Shallow Cryptography: The attacker brain is only allowed to perform some cryptographic

technique (e.g., en-/decrypting) each only once, every time it sends a message.
4. Selective Cryptography: The attacker brain should not be able to use cryptographic

techniques that have no relevance to a given protocol.

For each protocol that we wish to analyse in UPPAAL, the attacker brain will need to be
constructed in UPPAAL separately for that protocol, as the data involved vary from protocol to
protocol. The main novelty of our implementation lies in the ability of the attacker to move, by
means of novel attacker agents that all interface with an attacker brain. Additionally, we have
optimised the attacker brain further in the following ways:

• The attacker itself can initiate a protocol with an agent.
• Choosing a key and carrying out encryption is the last thing the attacker brain performs

before a message is sent.
• Creating a nonce is carried out only during message construction.
• Whenever an encrypted block is received it must either be decrypted and analysed straight

away, replayed immediately, or a new message must be constructed.
• “Blocks” are defined to be messages to which no more message components can be added.
• Once message construction has begun, a full block must be built from current knowledge.
• Once a block has been built, it must be sent (encrypted or otherwise). This prevents

wasteful actions of the attacker and cyclical construction and discarding of messages in
the transition system.

Our modifications allow the least amount of branching paths that the attacker brain transition
system is faced with upon receiving a message, to curb the state space explosion. Cycles in the
transition system are avoided wherever possible to give the attacker brain a more systematic
approach to follow, and wherever choices must be made by the attacker brain, these have been
reduced wherever possible in line with the above restrictions.

4. Case Study: The SegCom Protocol

The SegCom protocol proposed by Verma and Huang in [7] is a three-phase security protocol
between mobile vehicles and road-side units (RSUs). The vehicles are mobile agents, whereas the
RSUs are static agents that, critically, have a finite range of communication. Each vehicle and
RSU possess a public-private key pair, allowing asymmetric encryption and signing, as well as
certificates that they acquire beforehand from a trusted third party. Moreover, SegCom calls for
ID-based encryption. In practice, the ID of an RSU, when used as part of ID-based cryptography,
is its public key. This type of network is a Vehicular Ad-Hoc Network (VANET), and movement
of the vehicles is a defining feature of the network. The highly dynamic nature of the network
topology, the short time in which agents may be in range of communication, and the notion of
trajectory in the movement make VANETs an interesting case study.

The SegCom protocol consists of three phases: (1) “Primary Authentication”, (2) “Group
formation for V2V Communication”, (3) “Successive Authentication”. We focus here on the
primary phase of authentication between a mobile vehicle V1 and an RSU1 to establish a
shared symmetric key, for further (more efficient) secure communication. First, V1 must move
in range of RSU1 or no messages can be sent or received, and then:

• RSU1 sends its certificate CertRSU1 in clear-text upon V1 entering the RSU’s range.
• V1 validates CertRSU1 and then sends to RSU1 the message MV1 = {CertV1 ,
SKV1 ,RSU1 , {SKV1 ,RSU1 }SKV1

}IDRSU1
, where CertV1 is V1 ’s certificate, SKV1 ,RSU1

is a freshly generated key shared by V1 and RSU1 , {SKV1 ,RSU1 }SKV1
is the same key

signed by V1 using its secret key, and IDRSU1 is the public key of RSU1 .
• RSU1 verifies the signature on the message using V1 ’s public key (obtained from the

certificate, although for simplicity in our implementation the RSU will know the vehicle’s
public key already). RSU1 can then be sure that the shared key SKV1 ,RSU1 has been
created by V1 and so can be used for subsequent secure communication.

• Finally, as V1 is moving, eventually it leaves the communication range of RSU1 and so
the key SKV1 ,RSU1 is revoked by RSU1 , meaning that V1 will need to re-certify itself
with that RSU if it enters its range again.

Verma and Huang [7] assume that an attacker can deploy adversarial RSUs. In our approach, the
attacker has much more power: it can play the role of a mobile hub or static node, depending
on the scenario. In this sense, in our analysis, vehicles and RSUs can be honest or dishonest.

4.1. The Protocol in Our Calculus

We formalise the specification of SegCom’s primary phase of authentication in our calculus.
The message-sequence chart below shows the steps in the case of ℋ = {V1} and Env =
({RSU1}, {}) and there is one node process RSU1. In the analysis, we will consider more
complex scenarios. We only show the trace of the vehicle V1 in our calculus, as the trace of the
RSU is less interesting. The nodes have default channel names in accordance with the calculus.

V1

Vehicle
RSU1

RSU

𝐸1
V1

= {RSU1} by 𝐴single

CertRSU1

Validate Certificate
MV1

Verify {SKV1 ,RSU1 }SKV1

𝐸2
V1

= {} by 𝐷single

msc A Scenario of the SegCom Protocol

V1 := 𝐴single(RSU1).
RSU1 (CertRSU1

).
RSU1 ⟨{CertV1

,SKV1 ,RSU1
,

{SKV1 ,RSU1
}SKV1

}IDRSU1
⟩.

𝐷single(RSU1). 0

4.2. UPPAAL Implementation

4.2.1. The Models

The models consist of one initiator, one responder, one attacker, and the environment. Figure 2
shows the UPPAAL model of an initiator. The initiator sends its certificate to the responder,
and waits to receive MV1 . In the UPPAAL model, the initiator signs the initial certificate. This
is due to the fact that in literature certificates are typically authentic and contain information
regarding who sent the certificate itself. Upon receiving MV1 , the initiator decrypts it and
decomposes it into its constituent parts, storing them locally only if they type check and the
signature is successfully verified with the responder’s public key. If this is all successful, the
initiator then officially certifies the responder.

Figure 3 shows the UPPAAL model for the responder. The responder first receives a mes-
sage and checks that this is a valid and authentic RSU certificate. The responder will have

Figure 2: UPPAAL Model of the Initiator in the SegCom Protocol

Figure 3: UPPAAL Model of the Responder in the SegCom Protocol

to move within range of an initiator in order to receive this message. If it is a valid cer-
tificate, it sets a global variable certifiedRSU to true. The responder at this point is in the
BeginMV1Construction state. The subsequent transition builds the message MV1 . The re-
sponder generates a fresh shared key and signs it with its secret key. The key and the signed
key are both concatenated onto the end of the certificate sent by the initiator, and this is then
encrypted with the ID of the initiator. The responder then sends the encrypted MV1 to the
initiator on its default channel name.

Since message components will need to be concatenated and parsed, we define shift to
perform bit shifts on message components. Bits of one message component are shifted and
a bitwise OR is applied on it and another message component to accomplish concatenation.
In UPPAAL, this is accomplished with the expression (messageComponent << shift) where
messageComponent is a message component, and a bitwise OR is accomplished with the |

Figure 4: Choices of Keys for The Initiator and the Responder

operator. The variable shift is fixed to be the length of each message component. Similarly,
unmask allows us to read each individual message component from a message.

To account for multiple scenarios that could take place with regards to who the agents choose
to talk to (which public key they choose to encrypt messages), we provide separate scenario
choice models. These choices are accounted for in Figure 4.

Figure 5 shows the attacker brain in the case of the SegCom protocol. This attacker brain is
an implementation of the Dolev-Yao rules. The general mode of operation is as follows. The
attacker reads in a message on any of the available channels, which are only available if the
attacker agent has moved to a specific location (governed by boolParam1 and so on, similar to
the initiator and responder). The received message is stored in a variable data . Depending on
what step of the protocol the agents are in, the received message in data can be analysed and
stored in one of the variables rsuCert , MV1 or can be decomposed into signature , SharedKey ,
and CertV1 . The attacker is now in the DYAnalysis state at this point, and can choose to
construct a new message from its existing knowledge, replay a message, or decrypt and analyse
a received/eavesdropped message. If the attacker chooses the latter, it loads the message into
variable block . A “block” is one or more message components that are concatenated together
which are either about to be decrypted and analysed or about to be sent (or encrypted and
sent). The attacker is now in the ChooseKey state and can either choose to “stage” the block
for sending, pick a key to encrypt the loaded block and stage this encrypted block for sending,
or decrypt the block with its private key (other keys that they might know could be added as
necessary). In a scenario where composed keys must be used, the attacker model will need to
be adjusted to account for this, as the current model does not handle composed keys. Returning
to the DYAnalysis state, the attacker could choose to construct a message by transitioning to
the DYConstruction state. The attacker can load a message component from its knowledge
into variable data2 , to be concatenated with whatever is already stored in data . The variable
𝑖 controls the maximum length of a message. The attacker can keep concatenating message
components until 𝑖 == max_op, after which, whatever is stored in data becomes a new block
(as per restriction (2) Message Length) and the attacker returns to the ChooseKey state.

Finally, we give the environment for this scenario in Figure 6. Note that when the vehicle
moves out of the range of the RSU the key is no longer valid and the vehicle and RSU must
carry out the protocol once more. This is justified in [7] by the authors mentioning that “the
key is only valid for the segment (range of communication) for which it has been established.”
In order to capture movement among the agents, all the hubs (including the attacker agent) can
be instantiated from the environment in order to achieve individual movement. The boolean

Figure 5: UPPAAL Model of the Attacker Brain in the SegCom Protocol

Figure 6: The Environment for the Scenario of the SegCom Protocol

parameters boolParam1 , boolParam2 , and boolParam3 are values that monitor the location
of the hub, and the relevant boolean values for the instantiated hub are passed as parameters to
the communication parts of the agents (i.e., initiator and responder) upon instantiation.

4.3. Instantiating the Scenarios

As an example of our approach in action, we focus on a simple environment where Env =
({RSU1}, {}). RSU1 has an accompanying node process RSU1 and a single hub V1 starts
outside the communication range of RSU1 and moves freely around the environment. Our
scenario follows the typical execution of SegCom given in the message-sequence chart above,
where we have instantiated a single vehicle which executes the protocol with RSU1 only.
The reason is that we are looking for attacks on a single execution of the protocol, but the
environment is still instantiated so that the tool can also search for attacks relating to movement
and location. The RSU is the initiator of the protocol and the vehicle acts as the responder. The
attacker we instantiate moves as a hub, and has no prior knowledge other than public keys of
all the other agents. The attacker is instantiated in no man’s land similar to the honest vehicle.

By reference to the protocol in our calculus (see § 4.1), a maximum of three message com-

ponents can be concatenated together before encryption so we have chosen each message
component to be 5 bits to avoid integer overflow. Ciphertexts are themselves message compo-
nents, therefore an encryption of two message components is indeed one message component.
There are four message / message component types to consider; the ciphertexts, the signatures,
the certificates, and the symmetric keys. Since there are 5 bits per message component, we
assign the following integer ranges to each type of message component: 1 ≤ Ciphertext ≤ 6,
7 ≤ signatures ≤ 12, and 13 ≤ certificates ≤ 18, and 19 ≤ keys ≤ 31. The ranges themselves
are not special in any way, as long as there are enough integers left reserved for use by the
protocol agents. For example, an integer range of 1 for the keys type is useless, as this means
there is only one key that every agent would be forced to use. The value 0 also cannot be used,
since we reserve 0 to represent null , or the absence of a message or message component.

4.4. Analysis

We use the UPPAAL verifier with its requirement language to specify security properties, and
check that they hold for a given scenario. We report here on the analysis of relevant security
properties. The SegCom protocol aims to establish mutual authentication between a vehicle
and an RSU, so we analyse if security properties relating to authentication hold for the protocol.

4.4.1. Aliveness

In this case, we define the vehicle as being alive to the RSU if, when the RSU has certified the
vehicle, it is true that the vehicle entered the communication range of the RSU and certified the
RSU, which is formalised as follows:

Security Property 4.1 (Aliveness of Vehicle). certifiedvehicle ‧‧➡ certifiedRSU

The UPPAAL verifier finds Security Property 4.1 to hold, but it finds an attack in the scenario
where the attacker has obtained the certificate of a vehicle via a side-channel (see the attack
trace in Figure 7). This attack is unsurprising as the attacker knows the certificate of an honest
vehicle already. The RSU simply chooses to talk to the attacker when they move within range,
and the attacker can use this certificate in the MV1 message that they send to the RSU.

As an aliveness property of the RSU, we define that the RSU is alive to a vehicle if, when the
vehicle sends message MV1 , the RSU had previously sent its certificate:

Security Property 4.2 (Aliveness of RSU). VehicleBrain.End ‧‧➡ RSU1 .sentCertificate

Security Property 4.2 is found to hold for this scenario. Unlike for Security Property 4.1, a
separate scenario in which the attacker has been able to obtain the certificate of the RSU1

via some side-channel attack does not yield an attack either. This is due to the fact that the
certificates sent by RSU are signed.

4.4.2. Shared Key Agreement

The vehicle and RSU1 should agree on the shared key that is established in a single protocol
execution, immediately after MV1 is received, decrypted, and the signature verified by RSU1 .

Figure 7: Trace of an Attack on Security Property 4.1

Security Property 4.3 (Shared Key Agreement). certifiedvehicle and RSU1 .Idling
and certifiedRSU and VehicleBrain.End ‧‧➡ VehicleBrain.SharedKey =
RSU1 .receivedSharedKey

UPPAAL finds this strong key agreement to hold. If the initial certificate sent by the RSU is not
signed, then UPPAAL finds the expected attack (the attacker impersonates the RSU).

4.4.3. Location Verification

Finally, if RSU1 certifies the vehicle, then the vehicle must be situated in range of RSU1 .

Figure 8: Trace of an Attack on Security Property 4.4

Security Property 4.4 (Location Verification). certifiedvehicle and certifiedRSU ‧‧➡
VehicleAgent .Node1

For this property, UPPAAL finds an attack (Figure 8): the attacker intercepts the message MV1
and holds this message until the vehicle has left the communication range of the RSU. The
attacker then finally sends the message MV1 to the RSU so that the RSU certifies a vehicle that
is now far away. It is thus too late to have any subsequent communication with this vehicle.

5. Related Work

This is not the first time that location and movement have been considered in protocol analysis,
so let us very briefly discuss how our approach is different from what has been done so far.

Mobile Ad-Hoc Networks (MANETs) that use cryptography are a hot research area (see, e.g.,
[12]) and some attacker models have been developed for MANETs (e.g., [13]), but, to the best of
our knowledge, there does not exist a full-fledged, moving Dolev-Yao attacker for MANETs.

Distance-bounding protocols establish an upper bound on the physical distance between the
participating agents [14], and are useful for proximity-dependent services such as contactless

payments or authorised entry to a space by scanning an ID card. Security protocol analysis
approaches have been extended to consider, e.g., timestamps and the location of agents [15, 16,
17]. While there are some connections with this work, the attacker movement that we consider
is quite different from that usually considered for distance-bounding protocols.

Applied pi-calculi such as [18] capture the movement of defined boundaries of computation
known as ambients between administrative domains, and works like [19] added notions of
security to express permission for an ambient to cross into another administrative domain.
In our calculus, a location represents a physical finite range over which computation and
communication can happen, and our notion of security comes from a protocol specification
that exists between (mobile) agents that can communicate when they are in the same location.

Other works have used UPPAAL for security protocol analysis. In [10], Corin et al. carry out
an analysis of protocols that involve timing aspects, exploiting the fact that UPPAAL allows
clocks to be defined over models to monitor the passage of time as the system evolves. Our
calculus of mobile agents models a notion of discrete time but we do not use clocks as we
are not concerned with timing attacks. Corin et al. consider a Dolev-Yao-style intruder, but
they do not include many message manipulation rules. They implement cryptography by way
of a “cryptographic device”, but we instead opt for the cryptography implementation in [11],
where Koltuksuz et al. adopt an attacker model that is more powerful than that of [10] and
use UPPAAL for the analysis of time-sensitive security properties on protocols, such as not
receiving certain messages before they were sent and so on.

Our UPPAAL model of the attacker is based on the attacker “brain” featured in [11] combined
with elements of [10], with some improvements and modifications of our own. The main
novelty lies in the definition of an attacker model that consists of two parts: a novel attacker
agent that formalises movement, and that interfaces with an attacker brain to send and receive
cryptographic messages. For example, a message can only be received by the attacker brain if
the attacker agent has moved to the required location. The second novelty is that the attacker
can act as a agent of communication itself, rather than simply as a medium through which all
communication passes. Our attacker can assume the role of a node or hub depending on the
scenario considered, allowing for discovering new attacks either with movement or without.
More modifications and improvements are described in § 3.3.

In this paper, we have shown that UPPAAL can be used to analyse protocols in the context of
moving agents, and it comes as naturally as a timing-based analysis as in [10, 11]. However,
UPPAAL is a generic tool in contrast to tools that have been designed specifically to analyse
security protocols. For instance, many large-scale protocols have been analysed with Tamarin [5],
e.g., [2] and [20] to name just a couple. Tamarin obviously fares much better at security protocol
analysis than UPPAAL as it has been designed and further tailored to that purpose. However, to
carry out the analysis that we want to with movement would involve extending the Tamarin
tool itself or capturing movement semantics in a fairly non-trivial way. With UPPAAL, instead,
capturing movement is much simpler and more flexible for our needs. This convenience is
the reason why we chose to use UPPAAL, as a proof-of-concept, even though there is nothing
in my approach that would prevent its use with Tamarin or one of the other more efficient
security protocol analysis tools. In fact, we plan to do so in future work to analyse protocols
with movement more complex than those considered here.

6. Conclusions and Future Work

Our calculus allows us to consider explicitly security protocols that require the agents to move
to specific locations in order to exchange particular messages, along with a Dolev-Yao attacker
who is able to move at will. With UPPAAL’s support, we have automatically analysed some
properties of the SegCom protocol, discovering attacks that rely explicitly on movement. These
attacks result from our notion of an attacker which can be instantiated as a vehicle, whose
movement and location are considered as a part of the analysis.

While this paper provides solid foundations, much work is left to be done, as have already
mentioned in different places in the paper. In particular, we are working at extending the
expressivity of our calculus to formalise movement in an even more granular way, and at
improving our UPPAAL implementation to tackle its common termination issues. Since UPPAAL
is convenient but not the main focus of our work, we will also consider using other tools. Still, we
expect that we can improve UPPAAL’s performance by extending the preliminary normalisation
results given in [8]. We can make the attacker (and thus search) more effective by focussing
only on attacks that are minimal, i.e., that consist of the fewest possible number of movements
to carry out the attack with respect to a given environment. We are also working at automating
the creation of environments and scenarios to widen the analysis capabilities.

References

[1] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai, R. Carbone, Y. Cheva-
lier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau, M. Minea, S. Mödersheim, D. von Oheimb,
G. Pellegrino, S. E. Ponta, M. Rocchetto, M. Rusinowitch, M. Torabi Dashti, M. Turuani,
L. Viganò, The AVANTSSAR Platform for the Automated Validation of Trust and Security
of Service-Oriented Architectures, in: Proceedings of TACAS, LNCS 7214, Springer, 2012,
pp. 267–282. doi:10.1007/978-3-642-28756-5_19.

[2] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, V. Stettler, A formal analysis of 5G
authentication, in: Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, 2018, pp. 1383–1396. doi:10.1145/3243734.3243846.

[3] C. J. F. Cremers, The Scyther Tool: Verification, Falsification, and Analysis of Security
Protocols, in: Proceedings CAV, LNCS 5123, Springer, 2008, pp. 414–418. doi:10.1007/
978-3-540-70545-1_38.

[4] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic Protocol Analy-
sis Modulo Equational Properties, in: Foundations of Security Analysis and Design
V: FOSAD 2007/2008/2009 Tutorial Lectures, Springer, 2009, pp. 1–50. doi:10.1007/
978-3-642-03829-7_1.

[5] S. Meier, B. Schmidt, C. Cremers, D. Basin, The TAMARIN prover for the symbolic analysis
of security protocols, in: Proceedings of CAV, LNCS 8044, Springer, 2013, pp. 696–701.
doi:10.1007/978-3-642-39799-8_48.

[6] D. Dolev, A. Yao, On the security of public key protocols, IEEE Transactions on information
theory 29 (1983) 198–208. doi:10.1109/TIT.1983.1056650.

[7] M. Verma, D. Huang, SeGCom: secure group communication in VANETs, in: Proceedings

http://dx.doi.org/10.1007/978-3-642-28756-5_19
http://dx.doi.org/10.1145/3243734.3243846
http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1109/TIT.1983.1056650

of the 6th IEEE Consumer Communications and Networking Conference, IEEE, 2009, pp.
1–5. doi:10.1109/CCNC.2009.4784943.

[8] A. Cook, L. Viganò, A Game Of Drones: Extending the Dolev-Yao Attacker Model With
Movement, in: 6th Workshop on Hot Issues in Security Principles and Trust (HotSpot 2020).
Proceedings of the 2020 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW), IEEE, 2020, pp. 280–292. doi:10.1109/EuroSPW51379.2020.00044.

[9] A. Cook, Automated Analysis of Security Protocols with Movement in UPPAAL, Ph.D.
thesis, Department of Informatics, King’s College London, London, UK, 2023. URL: https:
//archive.org/details/thesis_202305.

[10] R. Corin, S. Etalle, P. H. Hartel, A. Mader, Timed analysis of security protocols, Journal of
Computer Security 15 (2007) 619–645. doi:10.3233/jcs-2007-15603.

[11] A. Koltuksuz, B. Kulahcioglu, M. Ozkan, Utilization of timed automata as a verification
tool for security protocols, in: 2010 Fourth International Conference on Secure Software
Integration and Reliability Improvement Companion, IEEE, 2010, pp. 86–93. doi:10.1109/
SSIRI-C.2010.27.

[12] A. Hinds, M. Ngulube, S. Zhu, H. Al-Aqrabi, A Review of Routing Protocols for Mobile Ad-
Hoc NETworks (MANET), International journal of information and education technology
3 (2013) 1. doi:10.7763/IJIET.2013.V3.223.

[13] J. Cordasco, S. Wetzel, An attacker model for MANET routing security, in: 2nd ACM
conference on Wireless network security, ACM, 2009, pp. 87–94. doi:10.1145/1514274.
1514288.

[14] S. Brands, D. Chaum, Distance-Bounding Protocols, in: Workshop on the Theory and
Application of of Cryptographic Techniques, LNCS 765, Springer, 1993, pp. 344–359.
doi:10.1007/3-540-48285-7_30.

[15] C. Cremers, K. B. Rasmussen, B. Schmidt, S. Capkun, Distance Hijacking Attacks on
Distance Bounding Protocols, in: IEEE Symposium on Security and Privacy, IEEE, 2012,
pp. 113–127. doi:10.1109/SP.2012.17.

[16] S. Mauw, Z. Smith, J. Toro-Pozo, R. Trujillo-Rasua, Distance-Bounding Protocols: Verifica-
tion without Time and Location, in: IEEE Symposium on Security and Privacy, IEEE, 2018,
pp. 549–566. doi:10.1109/SP.2018.00001.

[17] D. Singelee, B. Preneel, Location verification using secure distance bounding protocols, in:
IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, IEEE,
2005. doi:10.1109/MAHSS.2005.1542879.

[18] L. Cardelli, A. D. Gordon, Mobile ambients, in: M. Nivat (Ed.), Foundations of Software
Science and Computation Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998,
pp. 140–155. doi:10.1007/BFb0053547.

[19] M. Bugliesi, G. Castagna, S. Crafa, Reasoning about security in mobile ambients,
in: Proceedings of CONCUR, LNCS 2154, Springer, 2001, pp. 102–120. doi:10.1007/
3-540-44685-0_8.

[20] T. Chothia, M. D. Ryan, Modelling of 802.11 4-Way Handshake Attacks and Analysis of
Security Properties, in: STM 2020: Security and Trust Management, LNCS 12386, Springer,
2020, pp. 3–22. doi:10.1007/978-3-030-59817-4_1.

http://dx.doi.org/10.1109/CCNC.2009.4784943
http://dx.doi.org/10.1109/EuroSPW51379.2020.00044
https://archive.org/details/thesis_202305
https://archive.org/details/thesis_202305
http://dx.doi.org/10.3233/jcs-2007-15603
http://dx.doi.org/10.1109/SSIRI-C.2010.27
http://dx.doi.org/10.1109/SSIRI-C.2010.27
http://dx.doi.org/10.7763/IJIET.2013.V3.223
http://dx.doi.org/10.1145/1514274.1514288
http://dx.doi.org/10.1145/1514274.1514288
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1109/SP.2012.17
http://dx.doi.org/10.1109/SP.2018.00001
http://dx.doi.org/10.1109/MAHSS.2005.1542879
http://dx.doi.org/10.1007/BFb0053547
http://dx.doi.org/10.1007/3-540-44685-0_8
http://dx.doi.org/10.1007/3-540-44685-0_8
http://dx.doi.org/10.1007/978-3-030-59817-4_1

	1 Introduction
	2 A Calculus of Movement
	3 Modelling Security Protocols in UPPAAL
	3.1 Message Passing
	3.2 Movement
	3.3 Embedding Cryptography and the Attacker Model in UPPAAL

	4 Case Study: The SegCom Protocol
	4.1 The Protocol in Our Calculus
	4.2 UPPAAL Implementation
	4.2.1 The Models

	4.3 Instantiating the Scenarios
	4.4 Analysis
	4.4.1 Aliveness
	4.4.2 Shared Key Agreement
	4.4.3 Location Verification

	5 Related Work
	6 Conclusions and Future Work

