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Abstract
The problem of identifying people from their voices has been the subject of increasing research activities.
Interest in this problem is fostered by the important practical applications that voice authentication has.
Many solutions exploit neural networks based on i-vectors and, more recently, on x-vectors, which are
computed from the input audio signal. In this paper we design and implement a novel voice recognition
system based on the fusion of both i-vectors and x-vectors. The recognition is text-independent, that is,
the user is recognized regardless of the actual words that are pronounced. We performed preliminary
experiments to assess the effectiveness of the proposed solution. Results show that the proposed method
achieves performance improvement compared with approaches based on only i-vectors or only x-vectors.

Keywords
Voice authentication, i-vectors, x-vectors, Siamese networks

1. Introduction

Identification of individuals through the voice relies on the existence of strictly personal traits [1]
in the voice. Voice authentication can be useful in a wide range of applications in real-world
scenarios. For example, it can be used for voice-based authentication of personal smart devices,
and for guaranteeing the transaction security of bank trading and remote payment. In digital
forensics, it has been widely applied for investigations [2, 3, 1], or surveillance and automatic
identity tagging [4]. The research on this field dates back to at least 1960s [5]. During the years,
a number of acoustic features, such as the mel-frequency cepstral coefficients, and template
models have been applied [1]. Early approaches to the problem can be found in [6, 7, 8].

The development of i-vectors as fixed dimensional front-end features for speaker recognition
tasks was introduced in [9, 8], and has provided the state-of-the-art performance for several
years, until the era of Deep Learning. Approaches based on deep learning [10, 11, 12, 13] have
significantly increased the performance, especially in noisy environments [14, 15], and are based
on x-vectors [11, 12]. Systems based on x-vectors improve over those based on i-vectors [16].
Both i-vectors and x-vectors are a numerical representation, in the form of a fixed size array of
numbers, of a voice audio signal.
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Voice authentication can be classified into text-dependent and text-independent. Text-
dependent voice authentication involves the use of a fixed sentence. The sentence doesn’t
need to be secret since the recognition is based on the voice and not on the sentence. The
system is called text-dependent because the user is required to pronounce the fixed sentence
in order to be recognized. With text-independent voice authentication, the user is recognized
regardless of the actual words pronounced and thus there is no need to fix a text.

Contribution of this work. In this paper, we propose a novel text-independent voice recogni-
tion system. The novelty is in the combined use of i-vectors and x-vectors. The proposed system
is based on a fusion embedding vector, obtained as a combination of i-vectors and x-vectors. For
brevity, we will refer to fusion embedding vectors just as fusion embeddings. The motivation
behind the use of fusion embeddings is that of bringing together the potential of both represen-
tations. Indeed, although x-vectors have better recognition performance especially on short
spechees and an intrinsic ability to discriminate by definition, i-vectors seem to provide better
results in recognizing the same speaker that records from different devices. Moreover, the idea of
combining such embeddings is also motivated by the results obtained in [11], where the authors
shown that the combined use of both approaches can lead to better performances. However,
in [11] no vectorial combination has been investigated, but, instead two separate recognitions,
one based only on i-vectors and the other based only on x-vectors, are first computed and a
final one is obtained by averaging the scores. In our approach we first average the vectors and
then apply the recognition. This is a fundamental difference.

The system uses a Siamese network which is trained on fusion embedding vectors from a
database of recorded voice audio signals (recorded speeches). The Siamese network is then able
to take as input two fusion embedding vectors and tell whether they are derived from speeches
of the same person. The use of a Siamese network increases the discrimination strength because
such category of Deep Learning Neural Networks are particularly suitable for the computation
of similarity measures or determining relationships/discriminations between two comparable
subjects [17].

Paper organization. The rest of the paper is organized as follows. In Section 2, we discuss
some relevant works. In Section 3, we provide the needed background about i-vectors, x-vectors,
and Siamese networks. In Section 4, we describe the proposed system. In Section 5, we report
the results obtained from experiments carried out to assess the effectiveness of the proposed
system. Finally, in Section 6 we provide conclusions and directions for future research.

2. Related Work

For several years, most voice recognition systems have been based on the i-vector and the
Probabilistic Linear Discriminant Analysis (PLDA) [18]. With the advent of Deep Learning,
deep speaker embedding has led to significant performance improvements [12, 19, 20, 21].
Deep speaker embedding uses a speaker identification network to create a speaker-embedding
space. In [22], the i-vector extraction and the PLDA scoring have been jointly derived using
a single deep neural network and the model is trained using a binary cross entropy criterion.



The use of triplet loss in end-to-end speaker recognition has shown improved performances
for short utterances [23]. Wan et. al. [24] proposed a generalized end-to-end loss function
inspired by minimizing the centroid mean of (same) speaker distances while maximizing the
distances between clusters of different speakers. In this direction, many architectures based
on convolutional neural networks have been used for frame-level processing, such as, x-vectors
using time delay neural networks to extract the frame-level features [12]. Later, more advanced
networks, such as ResNets [19], DenseNets [20], and Res2Nets [21], and different training loss
functions besides the softmax loss function have been used. For example, additive margin
softmax [25] loss and additive angular margin softmax loss [26] have been introduced. Another
category of deep speaker embedding uses metric learning [27, 28, 29], which is characterized
by distance measures used to guide the embedding network so that the speaker embeddings
have simultaneously large inter-class distance and small intra-class distance. For example,
triplet loss [29], prototypical network loss [28], and angular prototypical loss [27] have been
investigated.

In [30], a novel text-independent method able to combine speaker feature extraction and
speaker classification in only one step, was proposed. The two main aspects of such a method
were the use of a speaker representation consisting in the Mel-frequency spectrogram extracted
from the input audio, in order to benefit from the dependency of the adjacent spectro-temporal
features, and the use of a Siamese convolutional network to perform feature extraction and
speaker classification. Results obtained during experiments showed significant improvement
over conventional classical and DL-based algorithms for forensic cross-device voice recognition.

The most interesting aspect that emerges from the literature is that the exclusive use of
x-vectors or i-vectors does have advantages both it has also limitations. As we have already
said in Section 1, in this preliminary work we investigate the combined usage of i-vectors and
x-vectors with the goal of bringing their potential together and thus to build a novel feature
speaker embedding. We show that such a combination can be effectively exploited for training
a Siamese network to calculate a similarity score that can be used to recognize the voice of a
speaker that can pronounce any pass-phrases to authenticate.

3. Background

In this section, we briefly recall the needed background to understand the proposed approach.
Specifically, first we will provide details about i-vectors and x-vectors, by highlighting strengths
and weaknesses, and then we will discuss Siamese networks.

3.1. Speaker feature extraction with i-vector

Joint Factor Analysis [8, 31, 32] has represented the state-of-the-art for text independent speaker
detection tasks for several years, due to its powerful in modeling the inter-speaker variability
and in compensating for channel/session variability in the context of the Gaussian Mixture
Model. The first voice recognition system based on Joint Factor Analysis as a feature extractor
was proposed in [33]. The idea was to represent a speaker utterance as a speaker-dependent
supervector combining factors from two distinct spaces, i.e., the speaker space containing speaker



variabilities, and the channel space containing channel variabilities. Thus, the performance was
essentially affected by the speaker and channel variations of utterances.

In [9], the authors proposed a kind of “speaker embedding”, by defining only a single total
variability space, instead of two separate spaces, which contains the speaker and channel
variabilities simultaneously. Given an utterance, the speaker- and channel-dependent Gaussian
Mixture Model supervector, named i-vector, is defined as 𝑀 = 𝑚+𝑇𝑤 where 𝑚 is the speaker-
and channel-independent supervector, 𝑇 is a rectangular matrix of low rank, and 𝑤 is a random
vector having a standard normal distribution. The components of the vector 𝑤 are the total
factors.

We remark that, the main advantage of the i-vectors is that they are not strictly dependent on
the change of the transmission channel or on the variability of the speaker’s vocal characteristics
(such as cadence or accent), since in the proposed model by Dehak et al. [9] based on the Joint
Factor Analysis, both factors are taken into account as a whole, during the modeling phase.

3.2. Speaker feature extraction with deep embedding: x-vector

Similar to the i-vector, the x-vector is also a kind of speaker embedding, named deep speaker
embedding, but that discriminatively embeds speakers into a vector space by using a Delay
Neural Network trained in a supervised fashion [11]. Such a Delay Neural Network computes
speaker embeddings from variable-length acoustic segments and was implemented using the
nnet3 neural network library in the Kaldi Speech Recognition Toolkit1. The features are 30
dimensional Mel Frequency Cepstral Coefficients with a frame-length of 25ms, mean-normalized
over a sliding window of up to 3 seconds. The Delay Neural Network (see Figure 1), is organized
on 2 levels: frame and segment level. The nonlinearities are rectified linear units (ReLUs). The
frame-level consists of 5 layers, through which the audio frames are taken in input and split with
a sliding window of 3 seconds, and given as input to a Time Delay Neural Network [34] which
enable the network to learn the structural information of the signal and the relationship between
the various frames. The statistics pooling layer receives the output of the final frame-level layer
as input, aggregates over the input segment, and computes its mean and standard deviation.
The segment level statistics are concatenated together, passed to two additional hidden layers
with dimension 512 and 300, and finally the soft max output layer maps the x-vector obtained
to the probability of the speaker.

The goal of the Delay Neural Network is to produce embeddings that capture speaker charac-
teristics over the entire utterance, rather than at the frame-level. Although both layer 𝑎 and 𝑏
after the statistics pooling layer can be used to extract the embedding, usually 𝑎 is used as the
x-vector.

3.3. Siamese networks

Siamese networks were introduced in [35] to solve the problem of matching hand written
signatures, and were subsequently adapted to other domains such as image and video pro-
cessing [36, 37, 38], and Natural Language Processing tasks [39, 40]. A Siamese network is
composed of two identical twins networks that share weights. Such networks pass their output

1https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2

https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v2
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Figure 1: Delay Neural Network used to extract x-vectors. Segment-level embeddings 𝑎 or 𝑏 can be
extracted from any layer of the network after the statistics pooling layer.

to a similarity module, which computes a “distance” between the two inputs. The distance is
compared to the given target (i.e. whether or not the pair are similar), the loss is calculated, and
the weights are then adjusted.

Several loss functions can be used to train Siamese networks. In this work we used the triplet
loss function. During the training, instead of taking two inputs, this function takes three inputs:
the anchor, the positive, and the negative. The anchor is the reference input, the positive is an
input that is in the same class as the anchor, while the negative is an input with a different class
from the anchor. The idea is to maximize (resp. minimize) the distance between the anchor and
the negative (resp. positive). Formally, the triplet loss can be defined as:

𝐿 = 𝑚𝑎𝑥(𝑑(𝑎, 𝑝)− 𝑑(𝑎, 𝑛) +𝑚, 0)

where 𝑑 is some distance function, and 𝑚 is a constant named margin; the constant 𝑚 is used
to decrease the probability that 𝐿 be 0. The details of the architecture and building blocks of
the twins networks used in this work are provided in Section 4.

4. A fusion embedding voice authentication system

4.1. Overview

In order to perform voice authentication, users of the system have to be registered. During the
registration phase, each user is given a unique username and an enrollment audio file 𝑎username
is saved into a database. The enrollment audio file is obtained by recording the voice audio
signal of the user while the user is reading a sufficiently long (random) text. In order to be
recognized a user provides a username, and is asked to speak; the speech is recorded into a
test audio file 𝑎𝑡. The goal of the voice authentication system is that of telling whether 𝑎𝑡 and
𝑎username are from the same speaker. Establishing whether the audio test file comes from the
specified user will be denoted as

𝑎𝑡 ∼ 𝑎username.



In order to solve the problem we compute both the i-vector and the x-vector of the audio file
and from them we build a new vector, that we call fusion embedding vector. Such vector is then
used with a Siamese network to tell whether 𝑎𝑡 ∼ 𝑎username. The Siamese network is trained
on the database of registered user.

Are uusername and utest
from the same speaker?

record voice

insert
«username» save

• username
• flac(uusername)

Registration
uusername

utest Login

enrollment voice signal

test voice signal

find uusername from username

flac(uusername)

fusion embedding for flac(uusername) fe(flac(uusername))

fusion embedding for flac(utest) fe(flac( utest))
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S
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Figure 2: The overall scenario.

Figure 2 summarizes the overall system, which consists of two components: (i) a front-end,
that, given a pair of audio files, the enrollment audio file 𝑎𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒 and the test audio file 𝑎𝑡, for
each of them computes the fusion embeddings fe(𝑎𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒) and fe(𝑎𝑡); (ii) a back-end, which
uses a Siamese Neural Network S to tell whether 𝑎𝑡 ∼ 𝑎username, taking as input fe(𝑎𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒)
and fe(𝑎𝑡). In the following we provide details about how the above is done.

4.2. Front-end: fusion speaker embedding generations

In this section, we describe the front-end of the proposed system focusing on computation of
the fusion speaker vectors.

4.2.1. Speaker embeddings: i-vector and x-vector extraction

We used the mnet3 Neural Network library in the Kaldi Speech Recognition Toolkit to extract
from an audio file 𝑎, the corresponding i-vector iv(𝑎) and x-vector xv(𝑎). This library is one
of the most used for the voice recognition problem. The cepstral features for the i-vectors are
extracted using a 25 ms Hamming window; every 10 ms, 24 Mel Frequency Cepstral Coefficients
were calculated; this 24-dimensional features vector was subjected to feature warping [41]
using a 3-second sliding window; delta and delta-delta coefficients were then calculated using
a 5-frame window to produce 60-dimensional features vectors; then, an energy-based speech
activity detection system selects features corresponding to speech frames; finally, using gender-
dependent Universal Background Models containing 2048 Gaussians and two gender-dependent
joint factor analysis configurations the diagonal matrix is added in order to have speaker and
common factors, obtaining one i-vector of 400 total factors. The mnet3 library allows us to use
vectors of size 100, 200 and 400. We experimented will all these 3 sizes and the best results were
obtained with vectors of size 400.



For the x-vectors the features are 23 dimensional filterbanks with frame-length of 25ms, mean-
normalized over a sliding window of up to 3 seconds; the speech activity detection used for the
i-vectors filters out nonspeech frames; the Deep Neural Network configuration is outlined in
Figure 1; it is trained to classify the 𝑁 speakers in the training data; after training, x-vectors of
size 512 are extracted.

4.2.2. Merging i-vector and x-vector: fusion speaker embedding

The proposed voice recognition system is based on a fusion embedding vector fe(𝑎) obtained by
merging the i-vectors with the x-vectors. More in detail, let iv(𝑎) and xv(𝑎) be the i-vector
and x-vector, respectively, for a given audio file 𝑎. By construction, we have |iv(𝑢)| = 400 and
|xv(𝑢)| = 512. The idea is to define a new vector fe(𝑎) obtained as a sort of “mean vector”
between iv(𝑎) and xv(𝑎). However, the difference in the sizes, 400 for the i-vectors and 512 for
the x-vectors, is a problem. There are two natural solutions: adapt the x-vectors to the shape of
the i-vectors cutting 112 entries, or adapt i-vectors to x-vectors, adding somehow 112 entries.
Although the first solution seems more immediate and easy to apply, it actually has two serious
drawbacks: first, it would distort the final mean, given that removing 112 entries would have
roughly meant the loss of 20% of information; second, the Deep Neural Network provided by
Kaldi and used for our experiments is configured for the native x-vector size, i.e., 512 entries,
and so, cutting the x-vectors to obtain vectors of 400 entries would therefore have involved
lengthy and expensive modifications to the entire network structure.

Hence we opt for the second alternative, that is, add 112 entries to the i-vector. The question
that remains is how to add these 112 missing entries. We have tried the following alternatives,
which assign to each new entry: (i) the average value of the i-vector elements, (ii) the most
recurring value within the i-vector, (iii) the value 0 (zero-padding). From empirical observations
during the experiments conducted we have found that zero-padding is the strategy that generally
achieves the best results. We denote with iv(𝑎)𝑧𝑒𝑟𝑜 the vector obtained by zero-padding iv(𝑎)
with additional 112 entries.

Notice that, having added zero entries, when calculating the mean vector fe(𝑎) between
iv(𝑎)𝑧𝑒𝑟𝑜 and xv(𝑎), the first 400 entries correspond to an effective mean between the two
vectors, while the remaining 112 entries are dominated by the value of x-vector. Since by
doing this we somehow give more weight to the x-vector, we use a weighted mean in order to
rebalance the contribution of the i-vector. Formally:

fe(𝑎) = W𝑖𝑣 * iv(𝑎)𝑧𝑒𝑟𝑜 + W𝑥𝑣 * xv(𝑎)

where W𝑖𝑣, W𝑥𝑣 ∈ [0, 1] are the weights for iv(𝑎) and xv(𝑎)𝑧𝑒𝑟𝑜, respectively.
From empirical observations during the experiments carried out we have found that best

results are obtained by setting W𝑖𝑣 = 0.6 and W𝑥𝑣 = 0.4. Thus, we build the fusion embedding
vector as

fe(𝑎)[𝑖] = 0.6 * iv(𝑎)𝑧𝑒𝑟𝑜[𝑖] + 0.4 * xv(𝑎)[𝑖]

for each 𝑖 = 0, . . . , 511.



4.3. Back-end

4.3.1. Siamese architecture

The proposed back-end uses a Siamese network S which, given a pair of fusion embeddings
fe(𝑎𝑖) and fe(𝑎𝑗), computes a similarity score S (fe(𝑎𝑖), fe(𝑎𝑗)). Then, to verify whether 𝑎𝑖
and 𝑎𝑗 are from the same speaker, the following rule is used by the system:

S (fe(𝑢𝑖), fe(𝑢𝑗)) ≥ 𝛿 =⇒ 𝑢𝑖 ∼ 𝑢𝑗

where 𝛿 ∈ [0, 1] is the system threshold empirically estimated during the training of the network.
In the following, we will provide details about the architecture and the training of S . We

remark that the architecture has been modified during several experiments carried out to find
the best setting. Figure 3 shows the one achieving the best performances. As explained in
Section 3, a Siamese network consists of two identical subnetworks; in the following we will
discuss the structure of such subnetworks.
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Figure 3: The Siamese network S .

As can be seen in Figure 3, each subnetwork starts with a Linear layer which takes as input
a fusion embedding, applies a linear transformation to the input data and then, through the
application of a ReLU layer, outputs the input directly if it is positive, otherwise, it outputs
zero. Such a technique is used to overcome the vanishing gradient problem, allowing models
to learn faster and perform better. Then, a Dropout layer, during the training phase, randomly
deactivates some of the elements (2% of the data taken as input), providing a series of advantages
especially in the case where the dataset is small [42]. Following, a sequence of three Linear
layers (the first one with ReLU activation function) expands the dimensionality of the initial
fusion embedding until reaching one vector of 2500 features, which represents the peculiarities
of the voice on which the network must learn to calculate the similarity.

One of the most interesting advantages of using Siamese networks is the ability to adopt
the One-Shot Learning strategy, shown to be effective in identifying new classes based on one
(or only a few) examples [43]. The idea is to extract rules on previously seen classes, i.e., to



learn patterns and similarities instead of fitting the ML model to fixed classes, in order to be
able of classifying previously unseen classes using one instance. This strategy is very helpful in
the scenario described in Section 4.1. Indeed, it allows us to define a system “calibrated” on a
significant initial set of speakers, i.e, with a back-end exploiting a Siamese network trained on
an initial set of voices provided by a “representative” sample of speakers; a new speaker can be
added to the system without having to retrain the network, but simply by saving a reference
enrollment audio signal, which will be used every time the user needs to be recognized.

4.3.2. One-Shot Learning.

The network S is trained using One-Shot learning. The performance on verifying a new speaker
without to retrain S is evaluated by considering only the enrollment fusion embedding saved
during the registration phase (see Figure 2). Here, we provide details about the process of
establishing the proposed system based on One-Shot learning and about the methodology of
assessing performance for new speaker classes without retraining S . Let 𝐷 = {𝑠1, . . . , 𝑠𝑁} be
the dataset of voice audio signals provided by 𝑁 speakers (𝑁 classes), where each 𝑠𝑘 is the class
containing voice audio signals by the 𝑘𝑡ℎ user, for 𝑘 = 1, . . . , 𝑁 . In order to train the network
to recognize also speakers that were not included in the training phase, for each 𝑖, we train the
network by excluding the samples from 𝑠𝑖. More in details, each of the remaining 𝑁 − 1 classes
is split into two balanced subsets. Then, the first one is used to generate the training set pairs,
while the second one is used as the evaluation pool of instances. Then, we perform the training
process using the Triplet Loss function (see Section 3).

For the evaluation, the instances of the excluded set 𝑠𝑖 are split in two balanced subsets 𝑠𝑙𝑖
and 𝑠𝑢𝑖 where 𝑠𝑙𝑖 represents the “labelled” samples for user 𝑖, while 𝑠𝑢 represents the “unlabelled”
samples for user 𝑖, i.e., recognition attempts by user 𝑖. A set of evaluation pairs 𝑃𝑖 is generated
as follows. Let 𝐷′ = {𝑠1, . . ., 𝑠𝑖−1, 𝑠𝑙𝑖, 𝑠𝑖+1, . . ., 𝑠𝑁} be the evaluation set. For each �̄�𝑖 ∈ 𝑠𝑢𝑖
one element 𝑒𝑗 is randomly chosen from each 𝑠𝑗 ∈ 𝐷′, obtaining the 𝑁 pairs 𝐸𝑖 = {(𝑒�̄�, 𝑒1),
. . ., (𝑒�̄�, 𝑒𝑖−1), (𝑒�̄�, 𝑒𝑖), (𝑒�̄�, 𝑒𝑖+1), . . ., (𝑒�̄�, 𝑒𝑁 )}. Then, we set 𝑃𝑖 =

⋃︀
𝑒�̄�∈𝑠𝑢𝑖

𝐸𝑖. Observe that
|𝑃𝑖| = 𝑁 × |𝑠𝑢𝑖 |. The similarity is calculated for the pairs in 𝑃𝑖 and the classification is based on
the pair with the highest similarity (i.e. least distance). To determine the trade-off between the
number of labelled instances of the new speaker class and accuracy, the process is repeated |𝑃𝑖|
times, i.e., for each instance in 𝑃𝑖. Majority voting is then applied to deduce the instance label;
the class that has been recognized more often, is used as instance label. Algorithm 1 reports the
pseudo-code for the training and evaluation of S described above.

5. Preliminary experiments

Data collection. To assess the performance of the proposed voice recognition system, we
collected voice samples from 100 speakers. Specifically, we have recruited 100 students at
the University of Salerno. The sample was 65% male and 35% female, with a mean age of 22.
Participants were informed that the information provided remain confidential. To collect data,
each student was led to a room dedicated to the registration phase. Each speaker was asked to
read one short text for a recording duration of 30 seconds. Then, we split the recorded audio in
several overlapping 10-second fragments using a sliding window of 2 seconds, for a total of



Algorithm 1: Siamese NN S One-Shot Learning

Input : 𝐷 = {𝑠1, . . . , 𝑠𝑁}, threshold
Output : ⟨ S ,one-shot-accuracy⟩

1 S ← InitializeSiamese( S );
2 one-shot-accuracy ← [];
3 for i = 1 to 𝑁 do
4 /* Select “new” speaker 𝑠𝑖

5 ⟨𝑠𝑙𝑖, 𝑠𝑢𝑖 ⟩ ← SplitUtterancesBySpeaker(𝑠𝑖,0.5);
6 training_set𝑖 ← ∅;
7 testing_set𝑖 ← ∅;
8 /* Build training/testing sets without 𝑠𝑖
9 for j = 1 to 𝑁 do
10 if 𝑗 ̸= 𝑖 then
11 ⟨𝑠𝑙𝑗 , 𝑠𝑢𝑗 ⟩ ← SplitUtterancesBySpeaker(𝑠𝑗,0.5);

12 training_set𝑖 ← training_set𝑖 ∪ 𝑠𝑙𝑗;
13 testing_set𝑖 ← testing_set𝑖 ∪ 𝑠𝑢𝑗 ;

14 𝑃𝑠 ← GetSimilarPairs(training_set𝑖);
15 𝑃𝑑 ← GetDissimilarPairs(training_set𝑖);
16 /* Train and Test Siamese NN
17 S ← Train( S ,𝑃𝑠,𝑃𝑑,threshold,“Triplet Loss”);
18 accuracy ← Test( S ,testing_set𝑖,SV_threshold);
19 /* One-Shot Evaluation

20 𝑃𝑖 ← GetPairsFromOtherSpeakers(𝑠𝑢𝑖 ,{𝑠1, . . . , 𝑠𝑖−1, 𝑠
𝑙
𝑖, 𝑠𝑖+1, . . . , 𝑠𝑁};

21 correct ← 0;
22 for k = 1 to |𝑃𝑖| do
23 𝑥 ← Voting(𝑃𝑖[𝑘], S );
24 if 𝑥 == 𝑖 then
25 /* Correct classification
26 correct ← correct +1;

27 accuracy𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
100

;
28 one-shot-accuracy.append(accuracy𝑖);

29 return ⟨ S ,Average(one-shot-accuracy)⟩;

11 10-second fragments. The voices were registered in wav format then compressed using the
flac compression algorithm to save space on the server.

At the end of the registration phase, we have collected 11×100 = 1100 voice audio files lasting
each 10 seconds. Then, for each of them we used the Kaldi library to extract the corresponding
i-vector and x-vector. Finally, for each audio file we generated the fusion embedding as described
in Section 4.2.

Training and test results. We have trained the network S , with several configurations
for the parameters. Specifically, we tried batchsize ∈ {16, 32, 64, 128}, learning_rate
∈ {0.1, 0.001, 0.0001}, #_epochs ∈ {2, 4, 6, . . ., 18, 20}, and threshold ∈ {0.10, 0.15,
0.20, . . ., 0.90, 0.95, 1.00}. The best result, that is 99% of accuracy, was obtained by setting
batchsize= 32, learning_rate = 0.001, #_epochs= 4, and threshold= 0.15. Thus,
the network S trained with such a configuration has been used the following Testing Phase.
For the Testing phase, we have recruited 20 people not involved in the data collection phase.



The sample was 55% male and 45% female, with a mean age of 21. As done during the data
collection phase, participants were informed that the information provided remain confidential.
Each speaker was asked to provide a username and to read a text for a duration of 10 seconds.
The server registered the voice in wav format, and compressed it using the flac compression
algorithm.

Several experiments have been conducted in order to evaluate the recognition performance of
the system in three different scenarios:

• same-device-scenario: the speaker uses the same device both for the registration
and for the recognition.

• different-device-scenario: registration is made with a device, while recognition
is attempted with a different device.

• attack-scenario: Let 𝑖 be different from 𝑗; a speaker 𝑠𝑖 claims to be 𝑠𝑗 (that is, provides
username𝑗 as username).

The evaluation has been carried out as follows. Each speaker 𝑖 was requested to try 10 times
each of the three scenarios defined above. That is, the user attempts 10 times the recognition
using his own username and recording the voice with the same device that has been used in the
registration phase; 10 times with his own username but recording the voice through a different
device and finally 10 times with the username of another user, without restriction on the device.

In addition to the similarity computed using S , we have computed the similarity using the
PLDA approach and the cosine distance. Table 1 reports the results obtained. For compactness,
we indicate with S1 the same-device-scenario, S2 the different-device-scenario,
and S3 the attack-scenario. In general, as we can see, when the speaker attempts a recog-
nition through the same device used during the registration phase (same-device-scenario),
the use of the x-vectors tends to give better results than using i-vectors. Instead, when
the speaker attempts a recognition through using a device other than the one used during
the registration (different-device-scenario), or tries to be recognized as another user
(attack-scenario), the use of the i-vectors tends to give better results than using x-vectors.
The results obtained using fusion embeddings with Siamese networks are better than those
obtained with the other configurations.

Back-end
Speaker embedding

i-vector x-vector fusion
S1 S2 S3 S1 S2 S3 S1 S2 S3

cosine 0.80 0.44 0.30 0.78 0.30 0.28 0.86 0.42 0.49
PLDA 0.82 0.64 0.53 0.86 0.41 0.61 0.86 0.64 0.52
Siamese 0.84 0.78 0.70 0.98 0.41 0.60 0.98 0.81 0.89

Table 1
Comparison of accuracy reached in the testing phase for each back-end (cosine, PLDA, and Siamese)
model and speaker embedding (i-vector, x-vector, and fusion embedding).

6. Conclusion

In this paper we have described a study whose goal is that of investigating the advantages
deriving from the combination of i-vectors and x-vectors. The results obtained show that the



approach combining the two types of embedding provide better recognition accuracy. The study
is only a preliminary investigation and research in this direction can be extended in several
ways. First, other more complex embedding merging techniques, for example based on DL
models, can be investigated. Second, the size of the dataset used to train the Siamese network
and to carry out our experiments is small; increasing the size of the dataset, and diversifying
the type of speakers, would provide a better evaluation of the performance, also in terms of
scalability in real-world scenarios. Finally, it is worth to investigate improvements of the model
used in the back-end. For example, define an image-based combination of embeddings and
explore the potential of a Siamese network based on convolution neural networks.
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