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Abstract
Order Reveling Encryption (ORE) enables efficient range queries on encrypted databases,
but may leak information that could be exploited by inference attacks. State-of-the-art
ORE schemes claim different security guarantees depending on the adversary attack surface.
Intuitively, online adversaries who access the database server at runtime may access information
leakage; offline adversaries who access only a snapshot of the database data should not be
able to gain useful information. We focus on offline security of the ORE scheme proposed
by Lewi and Wu (LW-ORE, CCS 2016), which guarantees semantic security of ciphertexts
stored in the database, but requires that ciphertexts are maintained sorted with regard to
the corresponding plaintexts to support sublinear time queries. The design of LW-ORE
does not discuss how to build indexing data structures to maintain sorting. The risk is that
practitioners consider indexes as a technicality whose design does not affect security. We
show that indexes can affect offline security of LW-ORE because they may leak duplicate
plaintext values, and statistical information on plaintexts distribution and on transactions
history. As a real-world demonstration, we found two open source implementations related to
academic research (JISA 2018, VLDB 2019), and both adopt standard search trees which may
introduce such vulnerabilities. We discuss necessary conditions for indexing data structures to
be secure for ORE databases, and we outline practical solutions. Our analyses could represent
an insightful lesson in the context of security failures due to gaps between theoretical modeling
and actual implementation, and may also apply to other cryptographic techniques for securing
outsourced databases.
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1. Introduction
Standard encryption solutions for databases protect data at rest [1], but require database
servers to decrypt data at runtime to execute queries. Two decades ago, research began
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investigating how to encrypt data in use to execute database queries without decrypting
data at the server side, such that only (trusted) clients which possess secret keys only
decrypt queries results [2]. First motivated by the advent of database outsourcing and
then by public Cloud computing services, encryption of data in use would increase data
privacy against potentially curious service providers [3]. Nowadays, encryption of data in
use is also relevant for improving security of on-premise solutions in case of data breaches
caused by cyber attacks that subvert the database systems or software applications
running on top of them [4].

Research efforts for encryption of data in use include multifold approaches [5], such as
new cryptographic primitives and schemes [6, 7, 8], techniques for aggregating and index-
ing encrypted data for efficient confidential retrieval [2, 9, 10], key management strategies
to support cryptographic access control [11, 12], and data distribution strategies based
on secret sharing techniques [13]. Practitioners, including researchers and companies,
are proposing implementations which combine a mixture of techniques and additional
specialized strategies for supporting specific database environments and improving per-
formance for popular workloads [14, 15, 16]. Parallel research efforts focus on analyzing
security, and include novel attack techniques such as inference of statistical information,
correlation among multiple data, and analyses of query patterns [17, 18, 19, 20, 21, 22, 23].
Alternative proposals rely on trusted enclave technologies for fully fledged computation,
which theoretically achieve better performance and flexibility [24], but in practice showed
to suffer from side-channel attacks [25].

We are interested in Property Preserving Encryption (PPE) [26], which is a family
of cryptographic schemes where ciphertexts support the evaluation of some properties
related to their corresponding plaintexts, at the cost of exposing “limited” information
leakage, such as the result of the evaluation and potentially additional information that
is specific for each scheme. The advantage over homomorphic encryption [6], which
produces ciphertexts supporting the execution of computation while guaranteeing at least
semantic (IND-CPA) security, is enabling practical performance even for quite complex
properties. The disadvantage is that information leakage may allow practical attacks on
encrypted data, which may also depend on the characteristics of the datasets [19, 20]
and on query workloads [18, 23]. Thus, PPE should be carefully adopted or considered
as a hardening technique that should not be relied upon as a first defense layer.

We focus on Order Revealing Encryption (ORE) [27, 28, 8], which denotes a family of
PPE schemes specialized on comparison of numerical data (e.g., “greater than” operators),
with consequential support for other derived operations of great interest for many database
workloads, such as sorting and substring prefix/suffix match. We analyze the ORE scheme
proposed by Lewi and Wu (LW-ORE) [8], which is one of the most important schemes
due to good security-performance trade-offs. The peculiar trait of LW-ORE is to include
two types of encryption functions denoted as right encryption and left encryption, each
generating a different type of ciphertext from the same plaintext: semantically-secure right
ciphertexts which are stored in the encrypted database, and deterministic left ciphertexts
which are sent when querying the database. LW-ORE uses an evaluation function that
compares left and right ciphertexts and output the result (e.g., 0 or 1 if the plaintext
used to generate the left ciphertext is equal or greater than that used to generate the



right ciphertext). This approach allows to distinguish information leakage against two
security models: offline security, where adversaries only access a snapshot of the database
including right ciphertexts, and online security, where adversaries also access queries
including left ciphertexts. While an offline attacker should not learn any information
(except for the size of the database and of each plaintext) because right ciphertexts are
semantically (IND-CPA) secure, an online attacker could get more information because
left ciphertexts are deterministic.

In this paper, we reconsider offline security of LW-ORE when deployed in real database
systems. Although right ciphertexts are proved semantically secure, they have to be
maintained sorted to enable sublinear query times via binary search. However, LW-ORE
does not describe indexing data structures or other mechanisms. Thus, the scheme can be
straightforwardly applied only to a handful of use cases or should be adopted with only
support for linear time queries. In any other scenario, LW-ORE must be integrated with
indexing data structures, and the risk is to consider this integration a technicality, that is,
something that cannot affect the original security guarantees of the scheme. As already
experienced many times in applied cryptography and cryptographic engineering, details
left open in theoretical designs may open to security vulnerabilities when implemented in
real systems. We found relevant literature associated with open source implementations
of LW-ORE that indeed adopt standard database indexing techniques based on AVL
trees [29] and B+trees [30]. We also found an additional open implementation of the
client-side LW-ORE, which however do not describe indexing techniques at the server
side [31].

In this paper, we show that using standard indexing techniques for ORE may introduce
at least two classes of vulnerabilities:

• the first class of vulnerability is the simpler but also the most severe, and is related
to the disclosure of duplicate values: standard indexes store pointers to all duplicate
values within the same data structure node, thus offline security guarantees of
the encrypted database fall back to that of a deterministic encryption scheme, re-
enabling powerful inference attacks. This vulnerability thus breaks one of the major
contributions of LW-ORE, that is, of guaranteeing semantic security of ciphertexts.
Ad-hoc variants of standard indexing techniques must be implemented to avoid
storing duplicate value within the same data structure node while maintaining the
data structure efficient.

• the second class of vulnerability is related to the disclosure of information regarding
the history of the transactions executed on the database. This vulnerability may
also cause disclosure of information related to the plaintext distribution if such
distribution is not independent of the insertion order (or on derived information,
such as insertion time). This requirement has been outlined by literature which
denote as history independent the data structure that do not leak any information
about the transactions history that generated the data structure [32, 33]. However,
to the best of our knowledge, it is not considered by literature related to database
outsourcing and PPE.

The two classes of vulnerabilities may not apply depending on the characteristics of



the database and of the query workload, but protecting against both may require the
design of ad-hoc indexing data structures. The last contribution of the paper is to outline
such design, leaving further analyses and evaluations as future work.

The rest of the paper is organized as follows. Section 2 outlines ORE schemes and
databases. Section 3 discusses possible information leakage due indexing data structures.
Section 4 outlines necessary design choices for secure indexes on ORE databases. Section 5
concludes the paper and discusses future work.

2. Analysis of Order Revealing Encryption
The Order Revealing Encryption scheme by Lewi and Wu [8] (LW-ORE) is a symmetric
encryption scheme for supporting comparison between encrypted data. First, we describe
the operations framework of LW-ORE and outline the range query protocol built on top
of it as defined in the original paper [8]. Then, we discuss the limitations of the original
models for real database systems and outline better variants.

LW-ORE scheme operations framework. The LW-ORE scheme includes four algo-
rithms: setup (ORE.Setup), left encrypt (ORE.EncryptL), right encrypt (ORE.EncryptR),
and compare (ORE.Compare):

• sk $←−ORE.Setup(1λ) is a probabilistic algorithm which takes security parameter 1λ

and outputs secret key sk;
• cL ← ORE.EncryptL(sk, p) is a deterministic algorithm which takes key sk and

plaintext p and outputs left ciphertext cL;
• cR $←−ORE.EncryptR(sk, p) is a probabilistic algorithm which takes key sk and plain-

text p and outputs right ciphertext cR;
• {−1, 0, 1} ← ORE.Compare(cL

1, c
R
2 ) is a deterministic algorithm which takes left and

right ciphertexts cL
1 and cR

2 , and outputs −1, 0, 1 if p1 is less then, equal, or greater
than p2, where cL

1 ← ORE.EncryptL(sk, p1) and cR
2

$←−ORE.EncryptR(sk, p2), for any
sk $←−ORE.Setup(1λ).

LW-ORE does not expose a native decryption routine, but decryption can be implemented
as a binary search over the plaintext domain via encryption and compare (see [8, Remark
2.1]). In the context of encrypted databases, ORE ciphertexts can be associated with
ciphertexts computed with any standard symmetric schemes to enable more efficient
decryption.

LW-ORE range query protocol for encrypted databases. LW-ORE scheme allows
designing a stateless and single round Range Query protocol (RQ) [8, Section 5.2] among
a client and a database server that includes four operations: database setup (RQ.Setup),
range query (RQ.Range), insert (RQ.Insert), and delete (RQ.Delete). Without loss of
generality, in this paper we omit delete to avoid too much verbosity.



• st $←−RQ.Setup(1λ, P ): the client initializes ORE secret key sk $←−ORE.Setup(1λ),
sorts the database P as P̂ = 〈p1, . . . , pN 〉 such that pn ≤ pn+1 ∀n ∈
[N − 1], and encrypts the sorted database P̂ as Ĉ =

〈
cR
1 , . . . , c

R
N

〉
such that

cR
n

$←−ORE.EncryptR(sk, pn) ∀n ∈ [N ]. The client sends Ĉ to the server, which
sets its state information st = Ĉ.

• 〈pi, . . . , pj〉 ← RQ.Range(sk, q = (x, y), st = Ĉ): the client computes the tuple〈
cL
x, c

L
y

〉
such that cL

x ← ORE.EncryptL(sk, x) and cL
y ← ORE.EncryptL(sk, y), and

sends it to the server. The server uses cL
x (cL

y) to find cR
i (cR

j ) within Ĉ such that i (j)
is the smallest (greatest) index of Ĉ =

〈
cR
n

〉
n∈[N ]

such that ORE.Compare(cL
x, c

R
i ) =

−1 (ORE.Compare(cL
y , c

R
j ) = 1). As suggested in the original protocol [8], the server

can use binary search to compute a number of ORE.Compare operations that is
logarithmic in the size of the database N . The server then returns the slice of
values within Ĉ between

〈
cR
i , . . . , c

R
j

〉
, which the client can decrypt to 〈pi, . . . , pj〉.

• st′ $←−RQ.Insert(sk, q = x, st = Ĉ): the client computes the tuple
〈
cL
x, c

R
x

〉
such

that cL
x ← ORE.EncryptL(sk, x) and cR

x
$←−ORE.EncryptR(sk, x), and sends it to the

server. The server uses cL
x to find an insertion position i within Ĉ such that

ORE.Compare(cL
x, c

R
i ) = {−1 ∨ 0} and ORE.Compare(cL

x, c
R
i+1) = {0 ∨ 1} (or i = N).

As for RQ.Range, binary search can be used to compute a logarithmic number
of ORE.Compare operations. Then, the server inserts cR

x at the position i within
the updated database Ĉ ′. The server updates its state to st′ as the new database
Ĉ ′. Clearly, there may be multiple acceptable values of i if the database includes
duplicate values.

Limitations of LW-ORE models. The LW-ORE range query protocol models the
encrypted database as state information st = Ĉ =

〈
cR
1 , . . . , c

R
N

〉
, which represents the

list of right ciphertexts sorted with regard to their corresponding plaintexts, that is,
pn ≤ pn+1 ∀n ∈ [N − 1]. The LW-ORE query protocol assumes that the database server
maintains the state information sorted throughout insert operations and thus that binary
search can always be executed on st (see [8, Section 5.2]). Moreover, the original paper
claims semantic security against snapshot offline adversaries because right ciphertexts are
semantically secure (see [8, Definition 5.2, Theorem 5.5]). We observe that the database
model and security analyses proposed in the original LW-ORE paper have two major
limitations:

• claims about semantic security against snapshot offline adversaries do not take
into account that although right ciphertexts are semantically secure, the encrypted
database also leaks the partial sorting order with regard their corresponding
plaintexts. It is critical to clearly declare this additional leakage because it may
open to known attacks (e.g., correlation attacks on ideal ORE [20]). Offline security
analyses as proposed in the original paper [8] may apply only if right ciphertexts are
maintained unsorted and thus queried in linear time. Although we point out this
gap in the original security claims, in this paper we do not propose improvements



in this regard because we do not focus on theoretical security analyses. We leave
improvements in this regard as future work.

• the database model does not include indexing data structures, which represent
auxiliary information that is necessary for adopting the scheme in quite any real
database system. As also stated by [19], a snapshot offline adversary that operates
ciphertext-only inference attacks is able to access to the “steady state” of an
encrypted database including all auxiliary information that is needed to perform
encrypted searches efficiently (as also reminded in [8, see Robustness against offline
inference attacks]). Thus, a proper database model should also include indexing
data structures. Indeed, real-world examples of tentative LW-ORE implementations
adopted standard indexing techniques, such as AVL trees [29] and B+trees [30].
However, we show that both implementations leak additional information with
regard to the security claims of the LW-ORE scheme. In the following Section 3,
we show necessary conditions for designing secure indexing data structures for
LW-ORE, that is, that allow to avoid leaking additional information.

3. Information leakage of standard indexes
We analyze indexing solutions for LW-ORE databases. In Section 3.1 we extend notation
proposed by the original LW-ORE paper (see Section 2 and [8]). In Section 3.2 we discuss
information leakage due to duplicate values. In Section 3.3 we discuss information leakage
related to transaction history.

3.1. LW-ORE document databases with indexes
We extend notation of the original LW-ORE range query protocol (see Section 2) to
propose a model that could fit an indexed document-oriented database encrypted with
LW-ORE. To this aim, we model the database state information as st = 〈D, I〉. We denote
as D = {id : did} the set of documents possibly encrypted via a standard symmetric
scheme, where did denotes a document uniquely indexed by an opaque document identifier
id. We denote as I =

〈
δ, {cR}, {id}

〉
the indexing data structure that enables efficient

range queries on documents D. The links of the indexing data structure are denoted as
δ, the keys used to evaluate queries are the right ciphertexts {cR}, and the pointers to
the documents are document identifiers {id}.

We analyze how an adversary may try to obtain information from the state of the
database. Since both documents {did} and right ciphertexts are encrypted with seman-
tically secure schemes, an adversary cannot infer any information except possibly for
their size and number. Moreover, we assume that document identifiers do not reveal
any information (e.g., they are random strings). However, an adversary may try to gain
information from the data structure δ. We note that the original paper of LW-ORE did
not clearly model this information (see Section 2). In the remaining of the section, we
consider different kinds of popular data structures and analyze their security guarantees.
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Figure 1: Example of AVL tree for indexing a LW-ORE database.

3.2. Leakage related to duplicate values
One of the main benefits of LW-ORE is to store semantically secure right ciphertexts
within the database (see Section 2). However, the typical design choice of any indexing
data structure is to store all pointers to duplicate database values within the same node
to improve query performance and to reduce the index size. The result is that applying
standard indexes to LW-ORE leaks duplicate values within the database, and thus the
security guarantees of LW-ORE fall back to those of a deterministic encryption scheme,
possibly re-enabling related inference attacks [19].

To better explain this class of vulnerability, we consider an example based on an AVL
tree used as the indexing data structure for a LW-ORE database, which represents the
implementation of [29]. We remind that each node of an AVL tree includes a key that
is used for traversing the tree, one or multiple pointers to all the documents within the
database associated with the key, and points to a maximum of two children nodes. The
association of multiple pointers to the same key is not an issue for unencrypted databases,
but introduces information leakage about documents sharing the same key values.

A visual example of an AVL tree instantiated for LW-ORE is shown in Figure 1.
Recalling notation described in Section 3.1, the keys are right ciphertexts {cR

1 , . . . , c
R
5 },

and the pointers to documents are identifiers {id1, . . . , id8}. It is clear that snapshot
offline adversaries that access the AVL tree know that documents associated with id2
and id4 (id1, id5 and id8) are associated with the same key, even if they are not able to
compute the ORE.Compare function.

In Section 4.1 we outline how to design data structures that leak no information about
duplicates.

3.3. Leakage related to transactions history
The structure of typical indexing data structure depends on the history of the transactions
executed on the database. As an example, even if two databases store the same values,
the topologies of their indexing data structures may differ if the insertion order of the
values is not the same. Thus, the indexing data structure may leak information about
the transactions history. Literature identified this security risk and denoted as history
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(a) Insertion history SEQA = {3, 2, 4, 0, 1, 5}
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(b) Insertion history SEQB = {0, 1, 2, 3, 4, 5}

Figure 2: Example of two plaintext BSTs with different insertion histories.

independent the data structures whose topology and internal bit representation leak
no information about the transaction history [32, 33]. In particular, we are interested
in weakly history independent data structures, which guarantee history independence
against adversaries which only observe the indexing data structure once [33], thus fitting
the same snapshot offline adversaries considered by offline security guarantees of LW-
ORE. The adversary that obtains a snapshot of a standard (history dependent) data
structure may infer information about the transaction history, potentially also revealing
information about the distribution of plaintexts if such distribution is not independent of
the transaction history.

To clarify the type of information that a history dependent data structure may leak,
we consider the example represented in Figure 2. We consider two Binary Search Trees
(BSTs), both generated by providing the same set of values {0, . . . , 5} in different orders.
The first BST (Figure 2a) is built from the insertion sequence SEQA = {3, 2, 4, 0, 1, 5}.
The second BST (Figure 2b) is built from insertion sequence SEQB = {0, 1, 2, 3, 4, 5}.
The structure of the second BST leaks that data has been inserted within the database
in ascending order.

Re-balancing the BST may help hiding information leakage related to the structure
topology, however frequent re-balancing may critically affect performance and information
may still leak from the internal bit representation [34]. Moreover, although history
independent data structures have been designed for efficient range queries [35], they
cannot be straightforwardly adopted to secure LW-ORE databases because they may
leak duplicate values (see Section 3.2). In Section 4.2 we outline how to design secure
history independent data structures that leak no information about duplicates.

4. Designing secure indexes for ORE
We discuss how to design data structures that do not leak information. In Section 4.1
we describe alternative designs for search trees that avoid leaking information related
to duplicate values, but that are still history dependent. In Section 4.2 we describe a
history independent skip list without duplicates leakage.
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Figure 3: Example of variant AVL tree to avoid duplicates leakage.

4.1. Search tree without duplicates leakage
The duplicates leakage arises when a search tree stores two or more documents that are
associated with same key (we may informally denote them as duplicate documents). As
discussed in Section 3.2, standard search trees index duplicate documents by storing their
identifiers within the same node. Thus, a variant design for search trees that do not leak
information duplicates is to store only one identifier within each node. To this aim, it is
necessary to design variant algorithms for insertion, search and deletion operations. We
propose a candidate design for the AVL tree already considered in Section 3.2. In this
paper, we keep the discussion informal and leave improved analyses as a future work.

When indexing a new document by a certain key, the insertion algorithm proceeds
unmodified until the same key is found. Then, the algorithm creates a new node as a
child of the existing one, deciding whether the new node should be assigned with the
left or the right child position randomly with the same probability. If a node already
exists at the assigned position, the sub-tree starting from that node is assigned as a child
of the new one. When searching for a document, the search algorithm also proceeds
unmodified until the target key is found. However, with regard to the original design,
the search algorithm cannot assume that all pointers to documents are stored within
that node. Instead, the search algorithm must continue descending into left and right
sub-trees, collecting all the pointers stored within nodes associated with the same target
key, and stopping descending a sub-tree when a node with a different key is found.

We propose an example of the algorithm by referring to Figure 3, which modifies the
standard AVL tree described in Section 3.2 (Figure 1).

Although the proposed variant avoids duplicate keys being stored within the same node
of the tree, it increases search complexity and thus may affect performance. Moreover,
we observe that the variant is still history dependent.



4.2. History-independent skip list without duplicates leakage
We outline how to design an indexing data structure to avoid both information leakage
due to duplicates and insertion history. The design is based on skip lists [36], which offer
inherently weakly history-independent topologies [35], and we denote it as doubly-linked
skip list. First, we remind the main design traits of skip lists. Then, we describe the
proposed variant design.

A skip list is a hierarchical data structure which includes multiple linked lists. At the
bottom layer is the complete list of all the sorted values stored within the database. Each
higher level consists of a sparse list which includes a subset of the elements of the list at
the level below, and acts as a sort of “fast track” for quicker access. In particular, at
insertion time each element has a probability to be promoted to the higher layer until
promotion fail. Thus, the structure of the sparse list is completely independent of the
contents of the lists or on the transaction history. The promotion probability p, which is
typically set to 1

2 or 1
4 , determines the average size of the sparse lists.

Although the topology of the skip list is weakly history independent, it may still leak
information about duplicates, because each node of the complete list typically stores all
the identifiers associated with the same key, as already observed for search trees (see
Section 3.2). For this reason, we propose a variant that we denote as doubly-linked skip
list. Our design adopts the same unmodified superimposed sparse lists of a standard skip
list. However, we operate two modifications: first, to avoid leaking duplicates we let each
node of the complete list store only one document identifier (as we already detailed for
search trees variants, see Section 4.1); second, to guarantee efficient lookup performance
we design the complete list, which traditionally is a linked list with forward pointers only,
as a doubly-linked list provided with both forward and backward pointers (which gives
the name to our data structure).

We provide a better explanation of our design choices by analyzing how the proposed
doubly-linked skip list evolves throughout insertion operations. To this aim, we consider
the example represented in Figure 4, where we show three versions associated with
an increasing number of inserted elements. Within the figure we slightly modify our
notations and denote as cvn a right ciphertext cR

n included within the data structure
at “version” v, and idt the document identifier inserted via the tth operation. We also
denote as L0 the complete list and as L1, . . . , L3 the sparse lists. At the beginning (v = 1,
Figure 4a), we consider a dataset without duplicate values (e.g., corresponding plaintext
values are P̂ 1 = 〈1, 2, 4〉) which can be built by using an unmodified skip list insertion
algorithm with the only difference that the complete list

〈
c11, c

1
2, c

1
3

〉
is a doubly-linked list.

When a duplicate key is inserted into the data structure (see Figure 4b, where document
identifier id4 is associated with right ciphertext c23 corresponding to plaintext p = 2),
the insertion algorithm uses the sparse lists to access the complete list at the latest
position that includes a key that is smaller or equal than the given insertion key, as the
original skip list insertion algorithm. If a duplicate key is found, the new encrypted key
is inserted after its position in the complete list. At insertion, the promotion algorithm is
executed to decide whether new encrypted key should be added to upper layer sparse
lists. In the example, c23 is inserted after c22 and is promoted to sparse list L1. Similarly,



L3

L2

L1

L0

END
2018

(a) Initial index without duplicates (v = 1)
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(c) Index with all the values (v = 3)

Figure 4: Sequence of insertions within our doubly-linked skip list for indexing LW-ORE.

in Figure 4c (v = 3) we also insert values 〈4, 3, 5, 4〉 in this order. Now we consider
searching value p = 4 within the index at version v = 3. The search algorithm finds the
value within L2, and thus access the complete list at position 6 (c36). Now, it operates
linear searches over the complete list both backward and forward until different values
are found. Backward search finds c35 and stops at c34, and forward search finds c37 and
stops at c38. The search operation would not be able to efficiently find backward duplicate
values without adopting a doubly-linked list as complete list.

The proposed doubly-linked list outlines the main ideas for a secure indexing data
structure for LW-ORE databases. Clearly, further analyses and improvements should be
considered for obtaining good performance in real database systems, which we plan as
future work.

5. Conclusions
We analyzed the security guarantees of a state-of-the-art order revealing encryption
scheme when deployed in real database systems, and found issues related to information
leakage due to gaps within the original security models and analyses. The most severe
security issues are related to information leakage due to indexing data structures, including
disclosure of duplicate values within the database and context information related to
transactions history. These vulnerabilities may allow adversaries accessing a snapshot of
the database to break semantic security guarantees claimed by the encryption scheme or,
in certain scenarios, to infer information related to the order of the operations executed
on the database and related statistical distributions. We described how variant indexing
data structures may be modified to prevent both security issues, and outlined a candidate
design based on skip lists. We leave a more formal treatment of the proposed analyses



and the design of a complete proof of concept as future work.
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