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Abstract
We formalise certificateless public-key updatable encryption (CLUE), a primitive that has yet to be defined
in the public-key updatable encryption (PKUE) literature. Traditionally, PKUE allows outsourcing
ciphertext key rotation to an untrusted host using a special token such that the ciphertext is updated
to a distinct period known as an epoch. Key to security, the host does not learn anything about the
underlying plaintext. In practice, applying PKUE in a public key infrastructure (PKI) requires trust in a
third party producing the epoch public and secret keys, which is a clear violation of privacy if the key
generator behaves maliciously or is corrupted. In this paper, we are concerned with reducing the trust in
the PKI key generator and our chosen solution is to formalise our novel CLUE primitive, from PKUE
and certificateless public key encryption (CL-PKE) primitives, as well as a security framework for CLUE.
Moreover, we modify the certificateless encryption scheme proposed by Libert et al. (PKC 2006) and
demonstrate the provable security of our CLUE scheme. To do so, we follow the modular approach given
by Klooß et al. (EUROCRYPT’19) to reduce the security analysis to the standard setting.
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1. Introduction

Introduced by [1], public-key updatable encryption (PKUE) is a primitive used by a data owner
for the long-term storage of encrypted data. For security purposes, the primitive is designed
with timely updates of ciphertexts using a key rotation element (token) such that the update
process is outsourced to an untrusted server. Crucial to security, the server learns no information
regarding the underlying data when equipped with these tokens.

In practice, the public-key infrastructure (PKI) in which PKUE will be used as a building
block is a lot more involved than simply considering a data owner and a server. Traditionally,
digital certificates are associated with the public and secret key pairs to authenticate the
data owner (individual/organisation) in a public-key encryption scheme. An approach to
simplifying the public key and certificate management in a PKI is identity-based encryption
(IBE), a primitive introduced by [2], in which a unique identifier is attached to the cryptographic
key(s). Realistically, in the IBE setting a data owner cannot generate the secret key associated
with their unique identifier. Instead, they need to place trust in a key generation centre (KGC) to
compute the secret key. Herein lies a problem if we were to use IBE to support a PKUE scheme,
namely, security is no longer guaranteed if the KGC becomes corrupted or behaves dishonestly.
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In more words, traditional IBE schemes rely on an arrangement in which the key needed to
decrypt a ciphertext is held in escrow so that under certain circumstances, an authorised third
party (KGC), can gain access to the secret keys of all users. Thus, if the KGC is corrupt, they can
forge signatures on any message and decrypt the ciphertext without the consent of the users,
which is a clear privacy issue. We observe that a corrupt KGC has even more power in a PKUE
scheme since the epoch secret keys are incorporated into update tokens, meaning the KGC
would be able to maliciously update ciphertexts as well as learn the underlying information.
Therefore, we must consider a solution to the key escrow problem regarding PKUE, such that
an identifier is associated with an epoch instead of a user. This is especially important given the
sensitive nature of information encrypted in applications of a PKUE scheme.

Our chosen solution is to formalise a novel certificateless PKUE primitive that we dub CLUE.
Intuitively, our new definition is a PKUE scheme such that the underlying standard encryption
scheme is the certificateless public-key encryption (CL-PKE) primitive. First introduced by
[3], CL-PKE is an alternative primitive to PKI-supported IBE used to remove the need for
certificate management and tackle the key escrow problem inherent in traditional identity-based
encryption (IBE) schemes [4, 2, 5], whilst continuing to benefit from the advantages of identity-
based cryptography. In more detail, the KGC in a CL-PKE scheme generates a partial secret key
that is distributed to the corresponding data owner who combines this cryptographic element
with their own, randomly chosen secret value to generate the secret and public keys associated
with their identity. In this way, the KGC does not learn the actual value of the secret key, which
resolves the key escrow problem and is crucial to the security of a CL-PKE scheme. We defer to
a discussion on related work in Appendix A.

To summarise, we deem CL-PKE to be a suitable candidate for a revised version of the PKUE
primitive formally called certificateless public-key updatable encryption (CLUE). We do so with
care considering both the security requirements of traditional CL-PKE (including inside and
outside adversaries) and the intricacies of security modelling in PKUE arising from information
inferred from corrupted tokens and epoch keys. We stress the CLUE primitive applies to any
setting in which KGC generating cryptographic keys and the server performing updates are
separate entities that cannot be trusted or instances where individuals want to reduce trust in
the KGC. Therefore, our main motivation in defining CLUE is to support long-term outsourced
storage in an environment with reduced trust, with the intent to preserve privacy on behalf of
the data owner.

Contributions Our contributions are threefold: first, we introduce and formalise CLUE, a
certificateless public-key updatable encryption primitive, in Section 2. Secondly, we define
and model a new security notion (CLUE-IND-RCCA security) in Section 3 which captures the
indistinguishability of freshly generated and updated ciphertexts. Next, we propose a concrete
CLUE scheme in Section 4 which is an adaptation of the pairing-based CL-PKE scheme given
in [6] to the updatable setting. Note, in Appendix C we present a sketch analysis that our
construction provably satisfies CLUE-IND-RCCA security. We highlight that the long version
of this work contains greater detail, including an efficiency analysis of our construction and full
security proofs which we have omitted due to lack of space.
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2. Certificateless Updatable Encryption

Notation In the following, we define a certificateless public-key updatable encryption primitive.
The scheme is defined by epochs of time in which the keys, token and ciphertext are associated
with a given epoch in time and the ciphertext update algorithm rotates the ciphertext to
encryption under a new epoch key using the token. In line with the literature, we denote the
current epoch as 𝑒, and use the subscript notation 𝑒𝑖 if we define multiple epochs at once with
the range of time 𝑖 = {0, . . . ,max} such that 𝑒max is the last epoch in the scheme. Further,
(𝑒𝑖, 𝑒𝑖+1) are two consecutive epochs for any 𝑖 ∈ N and �̃� represents the challenge epoch in
security games.

Definition 1 (CLUE). Given 𝑛 epochs identified by the space ℐ𝒟𝒮𝒫 , plus the
message space ℳ𝒮𝒫 , and ciphertext space 𝒞𝒮𝒫 , let a certificateless public-
key updatable encryption scheme be a tuple of nine algorithms ΠCLUE =
(Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Set-Token, Enc,Dec,Upd) defined as
follows,

• Setup(1𝜆) $→ (𝑝𝑝,𝑚𝑠𝑘) : The key generation centre (KGC) takes security parameter 1𝜆

as input and outputs public parameters 𝑝𝑝 and master secret key 𝑚𝑠𝑘.
• Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒) → D𝑒 : the KGC takes the public parameters 𝑝𝑝, the

master secret key 𝑚𝑠𝑘 and identity ID𝑒 ∈ ℐ𝒟𝒮𝒫 for epoch 𝑒 as input and outputs partial
secret key D𝑒.1

• Set-Secret-Value(𝑝𝑝, 𝑒) $→ 𝑥𝑒 : the data owner takes the public parameters 𝑝𝑝 and the
current epoch 𝑒 that they are running the algorithm for as inputs and randomly chooses
secret value 𝑥𝑒.

• Set-SK(𝑝𝑝,D𝑒, 𝑥𝑒)→ 𝑠𝑘𝑒 : the data owner takes the public parameters 𝑝𝑝, partial secret
key D𝑒 and secret value 𝑥𝑒 as inputs and computes their secret key 𝑠𝑘𝑒.

• Set-PK(𝑝𝑝, 𝑥𝑒)→ 𝑝𝑘𝑒 : the data owner takes the public parameters 𝑝𝑝 and secret value
𝑥𝑒 as inputs and computes their public key 𝑝𝑘𝑒.

• Set-Token(𝑝𝑝, (𝑝𝑘𝑒, 𝑠𝑘𝑒))→ Δ𝑒+1 : the data owner takes the public parameters 𝑝𝑝 plus
the current epoch public key and secret keys (𝑝𝑘𝑒, 𝑠𝑘𝑒) as inputs and computes (for epoch
identifier ID𝑒) the update token Δ𝑒+1 to epoch (𝑒+ 1) which is sent to the server.

• Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒)
$→ {𝐶𝑒,⊥} : the data owner takes the public parameters 𝑝𝑝, mes-

sage 𝑀 ∈ ℳ𝒮𝒫 , public key 𝑝𝑘𝑒 and identity ID𝑒 as inputs and outputs the ciphertext
𝐶 ∈ 𝒞𝒮𝒫 for epoch 𝑒 or failure symbol ⊥ if public key 𝑝𝑘𝑒 does not have the correct
form.

• Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒)→ {𝑀,⊥} : the data owner takes the public parameters 𝑝𝑝, ciphertext
𝐶 and secret key 𝑠𝑘𝑒 as inputs and outputs the message 𝑀 or failure symbol ⊥.

• Upd(𝑝𝑝, 𝐶𝑒,Δ𝑒+1)→ {𝐶𝑒+1,⊥} : the server takes the public parameters 𝑝𝑝, ciphertext
𝐶𝑒 and update token Δ𝑒+1 as inputs and outputs the updates ciphertext 𝐶𝑒+1 for epoch
(𝑒+ 1) or failure symbol ⊥.

1This algorithm is run once for each epoch and the KGC distributes the partial secret keys to the data owner in a
secure manner [7].
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Informally, for a CLUE scheme to satisfy the property of correctness, we require that fresh and
updated ciphertexts decrypt to the corresponding plaintext given the appropriate epoch key.
The formal definition of CLUE correctness follows.

Definition 2 (Correctness). Given security parameter 𝜆 ∈ N, a certificateless updatable en-
cryption scheme (ΠCLUE) formalised in Definition 1 is correct if, for any message 𝑀 ∈ℳ𝒮𝒫 and
for any 𝑗 ∈ {1, . . . ,max}, 𝑖 ∈ {0, . . . ,max} with max > 𝑖, there exists a negligible function negl
such that the following holds with overwhelming probability.

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝑝𝑝,𝑚𝑠𝑘)
$← Setup(1𝜆);

D𝑒 ← Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒);

𝑥𝑒
$← Set-Secret-Value(𝑝𝑝, 𝑒); 𝑠𝑘𝑒←Set-SK(𝑝𝑝,D𝑒, 𝑥𝑒);

𝑝𝑘𝑒←Set-PK(𝑝𝑝, 𝑥𝑒);Δ𝑒𝑗←Set-Token(𝑝𝑝, 𝑠𝑘𝑒, 𝑥𝑒+1);

𝐶𝑒𝑖
$← Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒𝑖 , ID𝑒);

{𝐶𝑒𝑗 ← Upd(𝑝𝑝, 𝐶𝑒𝑗−1 ,Δ𝑒𝑗 ) : 𝑗 ∈ {𝑖+ 1, . . . ,max}};
Dec(𝑝𝑝, 𝐶𝑒max , 𝑠𝑘max) = 𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 1− negl(1𝜆).

3. Security Modelling for CLUE

Defining the security of a cryptographic primitive is often a complex process. For CLUE we
want to combine the approach to security taken in CL-PKE with the intricacies of UE security
modelling to capture the indistinguishability of ciphertexts deriving from fresh encryption and
updates. The notion of security we settle on is CLUE-IND-RCCA (Definition 4) and we give an
intuition of this notion in the full version of our work. Next, we provide an overview of the
security experiment in which the adversary has access to oracles and the challenger records
essential lists, both of which are key to capturing security given the challenging nuances of the
update functionality in CLUE.

High-Level Idea We define ciphertext indistinguishability against replayable chosen ciphertext
attacks for the CLUE primitive. This notion is formalised in Definition 1 through the security
experiment ExpCLUE-IND-RCCA

ΠCLUE,𝒜 (1𝜆) given in Figure 2. Informally, the game is between a challenger
and an adversary 𝒜 such that the latter can query the oracles detailed in Figures 1. To win the
experiment, 𝒜 must distinguish the underlying message of the challenge ciphertext without
possession of the corresponding epoch secret key, given only access to the relevant oracles
and a challenge ciphertext. Security is satisfied if the adversary’s advantage in succeeding is
negligible, as detailed in Definition 4.

Lists To initialise the CLUE-IND-RCCA security experiment, the challenger runs Init(1𝜆)
which outputs the global state (GS) oracles have access to throughout. At the start, GS :=
(𝑝𝑝, 𝑠𝑘0, 𝑝𝑘0,Δ0,L, 0) contains the public parameters 𝑝𝑝 generated by the CLUE setup algo-
rithm; epoch secret and public keys (𝑠𝑘0, 𝑝𝑘0) respectively; initial update token ⊥ → Δ0;
set L := {ℒ,ℳ*, 𝒯 ,𝒦, 𝒞*} containing initially empty lists that the challenger is required to
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maintain throughout the experiment in order to prevent𝒜 from trivially winning and setting the
current epoch 0→ 𝑒. List ℒ is maintained to keep a log of updated versions of honestly-generated
ciphertexts, and the corresponding epoch, that the adversary learns through calls to the relevant
oracle. Listℳ* tracks the challenge messages the adversary sends to the challenger. Further,
list 𝒯 records the epoch(s) in which the adversary has obtained an update token and 𝒦 tracks
the epoch(s) in which the adversary has obtained an epoch secret key or epoch partial secret
key. List 𝒞 tracks the epochs in which an adversary obtains an updated version of the challenge-
ciphertext through querying the ciphertext update oracle. We must extend this list to capture
additional information necessary to prevent an adversary from trivially winning in the security
experiment for Definition 4. Following the approach taken in [8] to satisfy RCCA-security, this
extension is recorded in 𝒞* which is a list encapsulating all of the challenge-equal epochs in
which the adversary knows a version of the challenge ciphertext since there are epochs in which
the adversary can infer information independently including epochs belonging to lists 𝒞, 𝒯 .
Challenge-equal ciphertexts are defined by a recursive predicate challenge-equal as follows:

𝒞* ← {𝑒 ∈ {0, . . . , 𝑒max}|challenge-equal(𝑒) = true} and true← challenge-equal(𝑒) iff :
(𝑒 ∈ 𝒞) ∨ (challenge-equal(𝑒− 1) ∧ 𝑒 ∈ 𝒯 ) ∨ (challenge-equal(𝑒+ 1) ∧ (𝑒+ 1) ∈ 𝒯 ).

To illustrate, if an adversary knows a ciphertext �̃�𝑒 from challenge epoch 𝑒 and update token
Δ𝑒+1, then the adversary can manually update the ciphertext to the epoch (𝑒+1) and therefore
infer �̃�𝑒+1 [8]. To re-emphasise the importance of lists, winning conditions in the experiment
from Figure 2 state that the intersection of epochs contained within lists 𝒦 and 𝒞* must be
empty which is crucial in preventing the adversary from winning trivially. That is, the challenge
epoch of the experiment cannot belong to the set of epochs in which an update token has been
learned or inferred, nor can there exist a single epoch where the adversary knows both the
epoch key pair and a version of the challenge-ciphertext.

Oracles Figure 1 provides formal descriptions of the initialisation phase a challenger runs
and the oracles an adversary has access to during the security experiment for Definition 4.
For clarity, we provide intuition and a definition of an important predicate utilised in UE
security modelling to prevent trivial wins. Informally, to prevent the decryption of an updated
challenge ciphertext, irrespective of whether the UE scheme is probabilistic or deterministic, a
useful predicate defined in [8] can be utilised in the running of decryption and update oracles.
Informally, the isChallenge(𝑘𝑒𝑖 , 𝐶) predicate detects any queries to the decryption and update
oracles on challenge ciphertexts (�̃�), or versions (i.e updated) of the challenge ciphertext.

Definition 3 (isChallenge Predicate [8]). Given challenge epoch �̃� and challenge ciphertext
�̃� , the isChallenge predicate, on inputs of the current epoch key 𝑘𝑒𝑖 and queried ciphertext 𝐶𝑒𝑖 ,
responds in one of three ways:

1. If (𝑒𝑖 = �̃�) ∧ (𝐶𝑒𝑖 = �̃�), return true;
2. If (𝑒𝑖 > �̃�) ∧ (�̃� ̸= ⊥), return true if �̃�𝑒𝑖 = 𝐶𝑒𝑖 in which �̃�𝑒𝑖 is computed iteratively by

running Upd(𝑝𝑝,Δ𝑒𝑙+1
, �̃�𝑒𝑙) for 𝑒𝑙 = {�̃�, . . . , 𝑒𝑖};

3. Otherwise, return false.
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Init(1𝜆)

(𝑝𝑝,𝑚𝑠𝑘)
$← Setup(1𝜆)

ID0 ← Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID0)
for a valid ID0 ∈ ℐ𝒟𝒮𝒫

𝑥0
$← Set-Secret-Value(𝑝𝑝, 0)

𝑠𝑘0 ← Set-SK(𝑝𝑝, ID0, 𝑥0)
𝑝𝑘0 ← Set-PK(𝑝𝑝, 𝑥0)
Δ0 ← ⊥
𝑒← 0
L ∈ ∅ for the set of lists
L := {ℒ,ℳ*, 𝒯 ,𝒦, 𝒞*}
return GS
GS := (𝑝𝑝, 𝑠𝑘0, 𝑝𝑘0,Δ0,L, 0)
𝒪Dec(𝐶𝑒)
𝑀 ← Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒)
if (𝑀 ∈ℳ*)∨ (isChallenge(𝑘𝑒, 𝐶𝑒) = true)
then

return test
else

return 𝑀

𝒪Upd(𝐶𝑒𝑖)

for 𝑒𝑗 = {𝑒𝑖+1, . . . , 𝑒} do
𝐶𝑒𝑗←Upd(𝑝𝑝, 𝐶𝑒𝑖 ,Δ𝑒𝑗 )
𝐶𝑒 ← 𝐶𝑒𝑗

return 𝐶𝑒

ℒ ← ℒ ∪ {(𝑒, 𝐶𝑒)}
if (Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒) = 𝑀 ∈ ℳ*) ∨
(isChallenge(𝑘𝑒, 𝐶𝑒) = true) then
𝒞* ← 𝒞* ∪ {𝑒}

𝒪Next(𝑒)

𝑥𝑒+1
$← Set-Secret-Value(𝑝𝑝, 𝑒+ 1)

𝑠𝑘𝑒+1 ← Set-SK(𝑝𝑝, ID𝑒, 𝑥𝑒+1)
𝑝𝑘𝑒+1 ← Set-PK(𝑝𝑝, 𝑥𝑒+1)
Δ𝑒+1 ← Set-Token(𝑝𝑝, (𝑝𝑘𝑒, 𝑠𝑘𝑒))
Update GS
(𝑝𝑝, 𝑠𝑘𝑒+1, 𝑝𝑘𝑒+1,Δ𝑒+1,L, 𝑒+ 1)
if (𝑒 ∈ 𝒦) ∨ ((𝑒, 𝐶) ∈ ℒ) then

(𝐶 ′, 𝑒+ 1)
$← Upd(𝑝𝑝,Δ𝑒+1, 𝐶)

ℒ ← ℒ ∪ {(𝑒+ 1, 𝐶 ′)}
𝒪Corrupt-Token(𝑒

*)

if 𝑒* ≥ 𝑒 then
return ⊥

else
return Δ𝑒*

𝒯 ← 𝒯 ∪ {𝑒*}
𝒪Corrupt-key(𝑒

*)

if 𝑒* ≥ 𝑒 then
return ⊥

else
return 𝑠𝑘𝑒*

𝒦 ← 𝒦 ∪ {𝑒*}
𝒪PSKE(𝑒

*)
if ((𝑒* ≥ 𝑒) ∨ (𝑒* ∈ 𝒦)) then

return ⊥
else

return D𝑒

𝒦 ← 𝒦 ∪ {𝑒*}

Figure 1: Details of the initialisation phase run by the challenger and the oracles adversary 𝒜 has
access to during the security experiment of Definition 4.

Recall that the CL-PKE adversarial model focuses on two types of adversaries, namely, an
outside and inside (honest but curious KGC) attacker. We explicitly define the oracles in
the set 𝒪 that these distinct adversaries possess during our security game. Explicitly, ad-
versary 𝒜𝐼 has no access to the master secret key, however, they have access to all of the
oracles described above. Conversely, adversary 𝒜𝐼𝐼 has implicit access to a master secret key,
which means they can compute partial secret keys for their own use given the master se-
cret key and therefore do not need access to oracle 𝒪PSKE. Thus, 𝒜𝐼𝐼 has access to the set
𝒪 = {𝒪Dec,𝒪Next,𝒪Upd,𝒪Corrupt-Token,𝒪Corrupt-Key}.

Definition 4 (CLUE-IND-RCCA Security). A CLUE scheme following Definition 1 is
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ExpCLUE-IND-RCCA,𝑏
ΠCLUE,𝒜 (1𝜆)

Initialise Global State

GS $← Init(1𝜆); GS = (𝑝𝑝, 𝑠𝑘0, 𝑝𝑘0,Δ0,L, 0);
ID𝑒 ← Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒) for a valid epoch identity ID𝑒 ∈ ℐ𝒟𝒮𝒫
𝑥𝑒

$← Set-Secret-Value(𝑝𝑝, 𝑒)
𝑠𝑘𝑒 ← Set-SK(𝑝𝑝, ID𝑒, 𝑥𝑒)
𝑝𝑘𝑒 ← Set-PK(𝑝𝑝, 𝑥𝑒)
(𝑀0,𝑀1, 𝑠)← 𝒜𝒪(𝑝𝑝, 𝑝𝑘𝑒)
Some state information s
if |𝑀0| ≠ |𝑀1| ∨ {𝑀0,𝑀1} ̸∈ ℳ𝒮𝒫 ∨ (𝑀0 = 𝑀1) then

return ⊥
else

𝑏
$← {0, 1},

𝐶
$← Enc(𝑝𝑝,𝑀𝑏, 𝑝𝑘𝑒, ID𝑒),

ℳ* ←ℳ* ∪ (𝑀0,𝑀1); 𝒞 ← 𝒞 ∪ {𝑒};�̃�← {𝑒}
𝑏′ ← 𝒜𝒪(𝑝𝑝, 𝐶, 𝑠),
if (𝒦 ∩ 𝒞* = ∅) then

return 𝑏′

Else abort.

Figure 2: The security experiment for CLUE-IND-RCCA security of a CLUE scheme, where the set
of lists is L := {ℒ,ℳ*, 𝒯 ,𝒦, 𝒞*} is initially empty, 𝑠 defines some state information output by the
adversary and 𝒪 denotes the oracles an adversary has access to, depending on whether they are a type
I or type II adversary.

CLUE-IND-RCCA secure if an adversary 𝒜 participating in the security game of Figure 2 has a
negligible advantage in 1𝜆, defined as follows:

AdvCLUE-IND-RCCA
ΠCLUE,𝒜 (1𝜆) =|Pr[ExpCLUE-IND-RCCA,1

ΠCLUE,𝒜 (1𝜆) = 1]−

Pr[ExpCLUE-IND-RCCA,0
ΠCLUE,𝒜 (1𝜆) = 1]| ≤ negl(1𝜆).

4. Construction

In this Section, we present a concrete pairing-based CLUE scheme (ΠCLUE). Primarily, we chose
to present a concrete CLUE scheme to demonstrate that ΠCLUE is comparably efficient to other
certificateless updatable PKE schemes such as the CL-PRE scheme from [9]. Informally, our
choice of the underlying certificateless PKE scheme is a modified version of the pairing-based
NewFullCLE scheme proposed by [6]. Firstly, we deemed the construction from [6] to be a
worthy candidate for the underlying CL-PKE scheme used in our construction due to the level
of security satisfied. Secondly, we chose a pairing-based CL-PKE scheme for the same reasons as
[6]. Namely, regarding CL-PKE literature all concrete schemes generated without pairings are
supported by weaker security assumptions in the random oracle model. Whilst schemes without
pairings are typically more efficient computationally speaking, the authors of [6] demonstrated

7
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that their NewFullCLE scheme attained comparable efficiency to some non-pairing schemes.
We discuss efficiency in greater detail in the full version of this work.

Our choice for the update mechanism is a key-homomorphic pseudorandom function (KH-PRF)
FDDH. We chose this KH-PRF, not only for its desired homomorphic properties but also for its
use in previous UE schemes [10, 11, 12]. To be clear, we necessitate the use of a KH-PRF building
block (FDDH) to support the update functionality in our CLUE construction and we note that the
use of this mechanism is a key differentiator of our construction concerning that of [6]. Necessary
to security, we require that the KH-PRF is proven secure in the random oracle model, assuming
the hardness of the decisional Diffie-Hellman problem in some finite cyclic group. We defer the
reader to the formal definition of a KH-PRF and security of FDDH in Appendix B. Concretely,
we denote the KH-PRF as FDDH : Z𝑞 ×G2 → G1 whereby 𝒦 = (Z𝑞,⊕) and 𝒳 = (G2,⊗) are
additive and multiplicative groups respectively. Note that (G1,G2) are cyclic (multiplicative)
groups of prime order q. Evaluation of the KH-PRF is FDDH(𝑘, 𝑥) = ℋ2(𝑥)

𝑘 (see Definition 8) for
cryptographic hash functionℋ2 : G2 → G1, and FDDH(𝑘1+𝑘2, 𝑥) = FDDH(𝑘1, 𝑥) ·FDDH(𝑘1, 𝑥)
holds. Now we present the formal definition of our concrete CLUE scheme.

Definition 5 (CLUE Construction). Given security parameter 𝜆 ∈ N, 𝑛 epochs,
identity space ℐ𝒟𝒮𝒫 = {0, 1}*, message space ℳ𝒮𝒫 = G1 and cipher-
text space 𝒞𝒮𝒫 = G1 × G1, let groups (G1,G2) be cyclic (multiplicative)
groups of prime order q (a 1𝜆-bit prime). We define the CLUE scheme ΠCLUE =
(Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Set-Token, Enc,Dec,Upd) as fol-
lows,

• Setup(1𝜆) $→ (𝑝𝑝,𝑚𝑠𝑘) : Given the security parameter 𝜆 as input, the setup algorithm
defines a symmetric bilinear map �̂� : (G1 × G1) → G2 which is a Type 𝐼 pairing in
Definition 6, Appendix B. The following choices are made.

1. Choose an arbitrary value 𝑃 ∈ G1 to be the generator of G1 such that we have the
element 𝑔 = �̂�(𝑃, 𝑃 ) ∈ G2.

2. Given 𝑠
$← Z*

𝑞 chosen uniformly at random, set the master secret key 𝑚𝑠𝑘 = 𝑠 and
set 𝑃 ′ = 𝑠𝑃 ∈ G1.

3. Choose three cryptographic hash functions used as follows2: ℋ1 : {0, 1}* → Z*
𝑞 ;

ℋ2 : G2 → G1;ℋ3 : {0, 1}* → Z*
𝑞 .

Set 𝑝𝑝 = (𝑞, 1𝜆,G1,G2, 𝑃, 𝑃
′, �̂�,ℋ1,ℋ2,ℋ3, 𝑛,ℳ𝒮𝒫, 𝒞𝒮𝒫) to be the public parame-

ters and master secret key 𝑚𝑠𝑘 = 𝑠 ∈ Z*
𝑞 .

• Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒)→ ID𝑒 : Given ID𝑒 ∈ {0, 1}* input as the identifier for
epoch 𝑒, set the partial secret key as D𝑒 = ((𝑠 +ℋ1(ID𝑒))

−1 · 𝑃 ) ∈ G1. Secretly send
ID𝑒 to the server over a secure broadcast channel.3

2Importantly, hash function ℋ2 differs from the CL-PKE scheme in [6] to suit the needs of our construction. That is,
we require the homomorphic property from the KH-PRF to satisfy updatability, and ℋ2 is used in the definition of
FDDH.

3Note that a server possessing partial secret key ID𝑒 and update token Δ𝑒+1 is incapable of decrypting the ciphertext
without corrupting either of the secret keys (𝑠𝑘𝑒+1,𝑠𝑘𝑒), which we assume impossible in our security model.
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• Set-Secret-Value(𝑝𝑝, 𝑒) $→ 𝑥𝑒 ∈ Z𝑞 : the data owner randomly selects set secret value 𝑥𝑒
for epoch e.

• Set-SK(𝑝𝑝,D𝑒, 𝑥𝑒)→ sk𝑒 : for epoch 𝑒 the data owner sets secret key sk𝑒 := (𝑥𝑒,D𝑒) ∈
(Z𝑞 ×G1).

• Set-PK(𝑝𝑝, 𝑥𝑒)→ pk𝑒 : for epoch 𝑒 the data owner computes the public key pk𝑒 := 𝑦𝑒 =
𝑔𝑥𝑒 ∈ G2.

• Set-Token(𝑝𝑝, 𝑠𝑘𝑒, 𝑥𝑒+1)→ Δ𝑒+1 : Using 𝑠𝑘𝑒 := (𝑥𝑒, ID𝑒) and new epoch secret value
𝑥𝑒+1, we set the token Δ′

𝑒+1 := (−𝑥𝑒 +𝑥𝑒+1) ∈ Z𝑞 ; secret key 𝑠𝑘𝑒+1 = (𝑥𝑒+1, ID𝑒) and
compute 𝑝𝑘𝑒+1 = 𝑔𝑥𝑒+1 . Set Δ𝑒+1 := (Δ′

𝑒+1, 𝑝𝑘𝑒+1) ∈ (Z𝑞 ×G2).

• Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒)
$→ {𝐶𝑒,⊥} : the data owner performs the following three steps.

1. Select uniform randomness 𝜎 $← Z*
𝑞 .

2. Set 𝑟 = ℋ3(< 𝑀𝜎||𝑝𝑘𝑒||ID𝑒 >) ∈ Z*
𝑞 .4

3. Set 𝐶𝑒 = (𝑐1𝑒, 𝑐
2
𝑒) = (𝑟ℋ1(ID𝑒)𝑃 + 𝑟𝑃 ′,𝑀𝜎 · FDDH(𝑥𝑒, 𝑔

𝑟)).

• Dec(𝑝𝑝, 𝐶𝑒, sk𝑒) → {𝑀,⊥} : parse ciphertext 𝐶𝑒 = (𝑐1𝑒, 𝑐
2
𝑒) and secret key 𝑠𝑘𝑒 =

(𝑥𝑒, ID𝑒) and go through the following steps,

1. Compute 𝜔 = �̂�(𝑐1𝑒, ID𝑒) such that 𝜔 = �̂�(𝑐1𝑒, ID𝑒) = �̂�(𝑟ℋ1(ID𝑒) · 𝑃 + 𝑟𝑠 ·
𝑃, (𝑠 + ℋ1(ID𝑒))

−1 · 𝑃 ) = �̂�(𝑟(ℋ1(ID𝑒) + 𝑠) · 𝑃, (𝑠 + ℋ1(ID𝑒))
−1 · 𝑃 )

(*)
=

�̂�(𝑃, 𝑃 )𝑟(ℋ1(ID𝑒)+𝑠)·(ℋ1(ID𝑒)+𝑠)−1
= 𝑔𝑟 where equality (*) holds due to the bilinear-

ity property of �̂� (Definition 6, Appendix B).
2. In order for the data owner to compute 𝑟 in the next step, 𝑀𝜎 needs to be determined.

Given step 1 in which it is determined that 𝜔 = 𝑔𝑟 , the following can be computed
𝑐2𝑒 · FDDH(−𝑥𝑒, 𝜔) = 𝑀𝜎 ∈ G1. Correctness holds as follows: 𝑐2𝑒 · FDDH(−𝑥𝑒, 𝜔) =
𝑀𝜎 · FDDH(𝑥𝑒, 𝑔

𝑟) · FDDH(−𝑥𝑒, 𝜔) = 𝑀𝜎 · FDDH(𝑥𝑒 − 𝑥𝑒, 𝑔
𝑟) = 𝑀𝜎 .5 Note that

the data owner randomly chose 𝜎 during encryption, so knowledge of this enables
the computation of the message (𝑀𝜎)−𝜎 := 𝑀 .6

3. Use the epoch secret-key and public parameters (𝑠𝑘𝑒, 𝑝𝑝) in addition to the previous
two steps to compute 𝑟 = ℋ3(< 𝑀𝜎||𝑝𝑘𝑒||ID𝑒 >) ∈ Z*

𝑞 . Message 𝑀 is accepted iff
𝑐1𝑒 = 𝑟(ℋ1(ID𝑒)𝑃 + 𝑃 ′) from the computed 𝑟 value , else failure (⊥) is output.

• Upd(𝑝𝑝, 𝐶𝑒,Δ𝑒+1) → {𝐶𝑒+1,⊥} : recall the update token and ciphertext Δ𝑒+1 :=
(Δ′

𝑒+1, 𝑝𝑘𝑒+1), 𝐶𝑒 = (𝑐1𝑒, 𝑐
2
𝑒) respectively. The server must perform the following steps:

1. Check 𝑝𝑘𝑞𝑒+1 = 1G2 . Abort the update and output failure symbol ⊥ if this does not
hold. Note, validity holds with an honestly generated epoch public key: 𝑝𝑘𝑞𝑒+1 =
(𝑔𝑥𝑒+1)𝑞 = (𝑔𝑞)𝑥𝑒+1 = (1G2)

𝑥𝑒+1 .
2. Compute 𝜔 = �̂�(𝑐1𝑒, ID𝑒) = 𝑔𝑟 ∈ G2. See step 1 of the decryption algorithm for

correctness. Set 𝑐1𝑒+1 := 𝑐1𝑒 .

4Let < · > denote an encoding of the bracket contents to a string {0, 1}*.
5To see the penultimate equation differently, given the definition of the KH-PRF: FDDH(𝑥𝑒 − 𝑥𝑒, 𝑔

𝑟) =
ℋ2(𝑔

𝑟)𝑥𝑒−𝑥𝑒 = ℋ2(𝑔
𝑟)0 = idG1 .

6The technique of using the corresponding randomness for a given epoch to decrypt the ciphertext is utilised in
various UE schemes including [10, 12].
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3. Use step 2 and the given public key 𝑝𝑘𝑒+1 to compute 𝑐2𝑒+1 := 𝑐2𝑒 · FDDH(Δ
′
𝑒+1, 𝜔)

and output 𝐶𝑒+1 = (𝑐1𝑒+1, 𝑐
2
𝑒+1). Consistency is upheld using 𝜔 as follows:

𝑐2𝑒+1 = 𝑐2𝑒 · FDDH(Δ
′
𝑒+1, 𝜔) = 𝑀𝜎 · FDDH(𝑥𝑒, 𝑔

𝑟) · FDDH(−𝑥𝑒 + 𝑥𝑒+1, 𝜔)

= 𝑀𝜎 · FDDH(𝑥𝑒 − 𝑥𝑒 + 𝑥𝑒+1, 𝑔
𝑟) = 𝑀𝜎 · FDDH(𝑥𝑒+1, 𝑔

𝑟).

We note that only the second component (𝑐2𝑒) of the ciphertext gets updated and the first
component (𝑐1𝑒) remains the same, in line with previous identity-based approaches used in
CL-PKE literature [13, 14]. The first component contains a secure signature of an identifier
for the epoch in which the ciphertext was created, and is crucial for computing the value 𝜔
in the decryption and update process. The fact that 𝑐1𝑒 remains unchanged is the reason why
we do not achieve the stronger PKUE notion of full ciphertext unlinkability, and instead, our
construction only achieves encrypted and updated ciphertext indistinguishability.

Security Results Recall, our security framework presented in Section 3 modelled the first no-
tion of ciphertext indistinguishability in certificateless public key updatable schemes. Intuitively,
this notion captures the indistinguishability of fresh and updated encryptions. Specifically, we
encapsulate security against replayable chosen-ciphertext attacks from an adaptive adversary
(CLUE-IND-RCCA). We defined our concrete CLUE scheme (ΠCLUE) in Section 4 to illustrate
the existence of a CLUE construction satisfying ciphertext indistinguishability, a sketch of
which is provided in Appendix C. Note, to demonstrate provable security we make use of a
modular proof technique first defined in [8] in which we reduce security to an isolated epoch of
our CLUE scheme.

Conclusion In our first contribution of this paper, we formally defined a novel certificateless
public-key updatable encryption primitive CLUE to mitigate the risk of a malicious key genera-
tion centre, when considering applications of a PKUE primitive in a public key infrastructure.
In our second contribution, we provided a security framework to model the first notion of
ciphertext indistinguishability in certificateless public key updatable schemes. In particular,
security against replayable chosen-ciphertext attacks from an adaptive adversary. Our third
contribution was to propose a concrete CLUE scheme (ΠCLUE) derived from a modified pairing-
based CL-PKE scheme [6], which we used as the underlying PKE scheme, and KH-PRFs applied
to support the necessary update mechanism in CLUE. Moreover, we provide a proof sketch that
our construction satisfies ciphertext indistinguishability.
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A. Related Work

Updatable encryption (UE) schemes [12, 15, 8, 16] are traditionally designed in the symmetric
setting, but recent focus has turned to formalise various public-key encryption primitives
imbued with an update functionality [17, 1, 18]. In this paper, we are interested in the PKUE
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primitive defined by the authors of [1]. Both UE and PKUE can be viewed through two lenses
in the literature: Ciphertext-dependent UE schemes [10, 11, 19, 20] and ciphertext-independent
UE schemes [12, 8, 15, 21, 22, 1]. The former requires the data owner to produce a token for
each ciphertext, therefore, it is computationally expensive and inefficient for the data owner.
Additionally, generating individual tokens translates to the storage of epoch keys over a long
time, ultimately defeating the purpose of the UE primitive. Conversely, the latter strain requires
the data owner to generate a single update token which enables the server to sequentially update
ciphertexts using a token derived from the current and new epoch keys alone. Observe that the
CLUE primitive we introduce (Definition 1, Section 2) is designed in the ciphertext-independent
setting.

Proxy re-encryption (PRE), first introduced by [23], is a primitive used for ciphertext decryption
delegation in which a proxy server generates a re-encryption key used to rotate the cryptographic
key a ciphertext is encrypted by from one user to another. Specific to this paper, certificateless-
PRE (CL-PRE) [24, 25, 26, 9] is a primitive introduced following the advent of identity-based
PRE [2] to resolve the issues of key escrow and user revocation simultaneously. The distinctions
between CLUE and CL-PRE directly follow from the fundamental differences of the underlying
updateable primitive ((PK)UE and PRE respectively). Comparisons between the two have been
made in the works of [27, 28, 12, 8]. We highlight the most prevalent difference is that PRE
rotates keys to delegate ciphertext decryption, whereas (PK)UE updates ciphertexts to a new
period. Further, the security framework of the two primitives differs. In particular, PRE does not
typically capture information an adversary can infer from the corruption of the re-encryption
key, nor does it consider the notion of ciphertext unlinkability usually captured in UE security
modelling.

B. Definitions and Assumptions

In this Section, we explain the intuition and assumptions required such that ciphertext indistin-
guishability is achieved for construction ΠCLUE from Section 4. We state further definitions and
assumptions are required for security analysis, given in Section C, and note that proofs of the
lemmas are omitted due to lack of space. To start, the first definition presented is used when
defining the pairing map used in the construction ΠCLUE.

Definition 6 (Bilinear Maps). Let additive groups G1,G2 have prime order 𝑞, such that G1 is
generated by 𝑃 , G2 is generated by 𝑄, and multiplicative group G𝑇 is also of prime order 𝑞. A
pairing is a bilinear map �̂� : G1 ×G2 → G𝑇 with the following properties,

1. Bilinearity: ∀𝑎, 𝑏 ∈ F*
𝑞 , ∀𝑃 ∈ G1, 𝑄 ∈ G2 : �̂�(𝑎𝑃, 𝑏𝑄) = �̂�(𝑃,𝑄)𝑎𝑏;

2. Non-Degeneracy: �̂� ̸= 1, that is, the mapping is not the identity map;
3. Computability: there exists an efficient algorithm to determine the output of map �̂�.

Definition 6 can be classified into three types, in line with [29]:

• I : If G1 = G2. This is known as a symmetric bilinear map.
• II : If G1 ̸= G2 and there exists an efficiently computable homomorphism 𝜑 : G2 → G1.
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• III : If G1 ̸= G2 and there does not exist an efficiently computable homomorphism like
𝜑.

Next we introduce the p-Bilinear Diffie Hellman Inversion (p-BDHI) problem, which is used to
prove the security of our construction in Section 4. The p-BDHI problem is stated as follows:

Definition 7 (p-BDHI Problem). Given map �̂� defined as in Definition 6 over groups
(G1,G2,G𝑇 ) and given {𝑃, 𝛼𝑃, 𝛼2𝑃, . . . , 𝛼𝑝𝑃} ∈ G𝑝+1

1 , the p-BDHI problem is considered
hard if it is computationally intractable to compute �̂�(𝑃, 𝑃 )1/𝛼 ∈ G2 in polynomial time.

Key-Homomorphic PRFs The update feature in CLUE is attained using a collision-resistant
homomorphic hash function in the encryption process, which we model as a random oracle.
For our construction, we assume the hash function ℋ2 : G2 → G1 is homomorphic, and we
consider building the hash function from a key-homomorphic PRF.

Definition 8 (Key-Homomorphic PRF [10]). Consider an efficiently computable function F :
𝒦 ×𝒳 → 𝒴 such that (𝒦,⊕) and (𝒴,⊗) are groups. Then (F,⊕,⊗) is a key-homomorphic PRF
if the following properties hold,

1. F is a secure pseudorandom function.
2. For every 𝑘1, 𝑘2 ∈ 𝒦 and every 𝑥 ∈ 𝒳 : F(𝑘1, 𝑥)⊗ F(𝑘2, 𝑥) = F((𝑘1 ⊕ 𝑘2), 𝑥).

Lemma 1. Given the KH-PRF used in ΠCLUE defined as FDDH : Z𝑞 × G2 → G1 with 𝒦 =
(Z𝑞,⊕), 𝒳 = (G2,⊗) the additive and multiplicative groups of prime order q respectively such
that (G1,G2) are cyclic (multiplicative) groups of prime order 𝑞, evaluation of the KH-PRF is
FDDH(𝑘, 𝑥) = ℋ2(𝑥)

𝑘. Further, FDDH(𝑘1 + 𝑘2, 𝑥) = FDDH(𝑘1, 𝑥) · FDDH(𝑘1, 𝑥). That is, FDDH
satisfies Definition 8. Then FDDH is a secure KH-PRF in the random oracle model assuming the
hardness of the decisional Diffie-Hellman problem in G1.

Updatable Encryption Assumptions Construction CLUE is designed with deterministic ci-
phertext updates, therefore, the security of ΠCLUE assumes the properties of randomness-
preserving re-encryption; the underlying CL-PKE scheme ΠPKE is tidy and simulatable token
generation. The formal definitions of these properties are utilised in the security proof of
Theorem 1 to argue that the indistinguishability of fresh and updated ciphertexts is satisfied.
We present them below. Due to lack of space, we omit the proofs of Lemmas and defer the
reader to the full version of this paper.

Definition 9 (Randomness-Preserving Re-Encryption [8]).

Given the updatable scheme CLUE is designed for deterministic updates, an updated ci-
phertext is randomness-preserving assuming CLUE encrypts with uniformly chosen ran-
domness (Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒) and Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒; 𝑟) for uniformly chosen 𝑟 are iden-

tically distributed). If for all (𝑝𝑝,𝑚𝑠𝑘)
$← Setup(1𝜆); for all old and new epoch
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key pairs 𝑘𝑒 := (𝑝𝑘𝑒, 𝑠𝑘𝑒), 𝑘𝑒+1 := (𝑝𝑘𝑒+1, 𝑠𝑘𝑒+1) generated from running the
Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK algorithms in epoch 𝑒 and (𝑒+ 1) respec-
tively; for all valid ciphertexts 𝐶 ∈ 𝒞𝒮𝒫 and for all tokens Δ𝑒+1←Set-Token(𝑝𝑝, (𝑝𝑘𝑒, 𝑠𝑘𝑒)),
we then have the following:

Enc(𝑝𝑝,Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒), 𝑝𝑘𝑒+1, ID𝑒) = Upd(𝑝𝑝, 𝐶𝑒,Δ𝑒+1).

Lemma 2. The scheme ΠCLUE satisfies randomness preserving re-encryption given in Definition
9.

Definition 10 (Randomness-Recoverable Tidy Encryption Scheme). A public-
key encryption scheme is called randomness-recoverable if there is an associ-
ated efficient deterministic algorithm RDec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒) for epoch 𝑒 such that
∀(𝑝𝑘𝑒, 𝑠𝑘𝑒),𝑀, 𝑟 :RDec(𝑝𝑝, 𝑠𝑘𝑒, Enc(𝑝𝑝, 𝑝𝑘𝑒,𝑀 ; 𝑟)) = (𝑀, 𝑟). We call a randomness-
recoverable public-key encryption scheme tidy if ∀(𝑝𝑘𝑒, 𝑠𝑘𝑒, 𝐶𝑒) :

RDec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒) = (𝑀, 𝑟) =⇒ Enc(𝑝𝑝, 𝑝𝑘𝑒,𝑀 ; 𝑟) = 𝐶𝑒.

Lemma 3. The CL-PKE scheme ΠPKE implicit in ΠCLUE satisfies the randomness recoverable tidy
encryption property given in Definition 10.

Assumption 1 (Reversible Update Tokens). Update token Δ−1 is called a reverse token of
Δ if for every pair of epoch keys (𝑘𝑒old = (𝑝𝑘𝑒old , 𝑠𝑘𝑒old), 𝑘𝑒𝑛𝑒𝑤 = (𝑝𝑘𝑒new , 𝑠𝑘𝑒new)) in key-
space 𝒦𝒮𝒫 such that Δ ∈ supp(Set-Token(𝑝𝑝, 𝑠𝑘𝑒old , 𝑥𝑒new)), we have reversible token Δ−1 ∈
supp(Set-Token(𝑝𝑝, 𝑠𝑘𝑒new , 𝑥𝑒old).

Definition 11 (Simulatable Token Generation). The CLUE scheme ΠCLUE defined in Section
4 has simulatable token generation if the following properties hold:

1. There exists a PPT algorithm denoted Sim-Set-Token(𝑝𝑝) which samples a pair of update
tokens (Δ,Δ−1) of the token and reverse token respectively.

2. For arbitrary (fixed) 𝑘𝑒old := (𝑝𝑘𝑒old , 𝑠𝑘𝑒old) which is generated from running the
Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK algorithms, the following token (Δ)
distributions are the same:

• Distribution induced by running (Δ, ·) $← Sim-Set-Token(𝑝𝑝);
• For epoch key 𝑘𝑒new := (𝑝𝑘𝑒new , 𝑠𝑘𝑒new) the distribution is induced by running

(Δ, ·) $← Set-Token(𝑝𝑝, 𝑠𝑘𝑒old , 𝑥𝑒new).

Lemma 4. The CLUE scheme ΠCLUE defined in Section 4 satisfies simulatable token and reversible
token generation given in Definition 11.
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C. Security Analysis

In this Section, we provide a sketch analysis of security for our construction ΠCLUE. Due to
lack of space, we provide an overview of our proof, deferring the reader to the full version
of this paper for a detailed proof of correctness and security. Observe that when proving
CLUE-IND-RCCA security ofΠCLUE to achieve ciphertext indistinguishability, we assume several
properties regarding the underlying building blocks. This proof method follows directly from
[8] who proposed a generic transformation demonstrating that it is sufficient to consider
the underlying encryption and key-rotation capabilities of a scheme (almost) separately and
therefore reduce proving to the standard-setting. Now, we present a detailed statement of
security.

Theorem 1. Given ΠCLUE is a deterministic updatable encryption scheme satisfying randomness-
preserving tidy updates (Lemma 2); simulatable token generations (Lemma 4) and the underlying
certificateless encryption scheme ΠPKE satisfies CLUE-IND-RCCA in an isolated epoch, then the
construction ΠCLUE satisfies security notion CLUE-IND-RCCA assuming the intractability of the
p-BDHI problem formalised in Definition 7 (Appendix B).

Sketch Proof. We take a two-step modular approach in proving Theorem 1, adapting
the techniques of [8] to suit our security model, such that we can reduce the proof
of security from the updatable setting (CLUE) to the standard setting. That is, we
provide a proof reduction to the security of the underlying CL-PKE scheme ΠPKE :=
(Setup,Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Enc,Dec) of construction ΠCLUE.
The first step of the proof is used to prove that ΠPKE satisfies a security notion akin to
CLUE-IND-RCCA for an isolated epoch of ΠCLUE, labelled CL-PKE-IND-RCCA (full details
are provided in the full version of this paper). Again, security is against the adaptive adversary
𝒜 = (𝒜I,𝒜II) defined in Section 3. Briefly, we are able to prove this notion is satisfied by
observing that the authors of [6] demonstrated that ΠPKE satisfies the strictly stronger notion
of CL-PKE-IND-CCA security against adversary 𝒜 in the random oracle model assuming the
hardness of Definition 7. Moreover, we prove this security notion holds for ΠPKE following the
implication [30, 9] that satisfaction of CCA security implies that the same construction will also
satisfy CL-PKE-IND-RCCA security.

In the second step of the proof we look at proving the security of the updatable construction
ΠCLUE over multiple epochs. In more detail, this part of the proof sees a series of hybrid games
H𝑙 built for epochs 𝑒𝑙 ∈ {0, . . . , �̂�+ 1} of ΠCLUE where �̂� is the maximum number of epochs
in which an adversary 𝒜 can query oracles (Figure 1). Suppose we have adversary 𝒜 against
ΠCLUE, defined in Section 3. We use𝒜 to construct an adversary ℬ𝑙 against the standard CL-PKE
construction ΠPKE [6] which is proven CL-PKE-IND-RCCA secure in the first part of our proof.
Constructing adversaries in this way enables us to demonstrate the indistinguishability of games
H𝑙−1,H𝑙 for the epochs of the CLUE scheme 𝑒𝑙 ∈ {0, . . . , �̂�+ 1}. Thus, updatable security can
be reduced to the security of ΠPKE in an isolated epoch of the CLUE scheme.

16


	1 Introduction
	2 Certificateless Updatable Encryption
	3 Security Modelling for CLUE
	4 Construction
	A Related Work
	B Definitions and Assumptions
	C Security Analysis

