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Abstract
Cross-Site Scripting (XSS) attacks are among the most exploited vulnerabilities in web applications. As a
countermeasure, various open-source XSS detectors have been released over the years, but none of such
tools has been significantly tested to verify their effectiveness. In this paper, we propose an assessment
of five of the most employed XSS detectors in the wild. The purpose of this analysis is two-folded: (i) to
understand their efficacy in well-known and customized vulnerable environments; (ii) to provide a better
comprehension of their detection mechanisms. We performed our evaluation by testing the detectors
against one publicly available test bench. Additionally, we created two customized test benches that
contain less trivial XSS vulnerabilities. The attained results show how, while most detectors show good
accuracy at detecting trivial XSS vulnerabilities, they could fail as the XSS complexity increases.
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1. Introduction

Websites are becoming increasingly used in our day-to-day life, providing important services
with common domains such as banking, social networking, health services, and administration.
Recent reports showed that attacks on web applications are rising by an average of 22% per
quarter, resulting in 4.7 million web app-related cybersecurity exploitations [1]. When develop-
ing web applications, we typically distinguish between backend and frontend. While backends
are written in various languages (e.g., Python, Java, C++, Go) and executed on the host’s web
server, frontends are almost always developed in JavaScript and executed directly in the user’s
browser. This allows browsers to store sensitive information (session tokens, user preferences)
in a very flexible way. However, at the same time, the use of JavaScript to read and manipulate
this kind of data raises a lot of security vulnerabilities specific to clients.

Cross-Site Scripting (XSS) represents one of the most frequent attacks targeting frontends.
Malicious JavaScript code is sent to the victim’s browser for malicious purposes using trusted
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websites with vulnerable functionalities. This way, attackers can exfiltrate cookies, session
tokens, or sensitive information. According to the Invicti AppSec Indicator [2], 25% of web
targets are vulnerable to XSS, a worrying trend considering the large variety of web-based
vulnerabilities. One way to detect XSS is using black-box tools that automatically detect
vulnerabilities. They can be fast, cheaper than other techniques like code review, and efficient
because they provide an immediate result. However, despite the various tools available in the
wild, there is no assessment of how they behave in real environments and how effective they
are. In this paper, we provide a comprehensive assessment of the most popular XSS open-source
detection tools in the wild. We define a testing methodology by leveraging performance metrics
that allow us to evaluate the behavior of such tools. We propose our evaluation against a well-
known vulnerable test bench and against a customized test bench in which XSS is implemented
in a non-trivial fashion. The attained results show that, while black-box tools perform well
against trivial XSS implementations such as those in the selected vulnerable web app, they tend
to fail when the complexity of the vulnerability rises.

The rest of the paper is structured as follows: in Section 2, we present some background
notions on XSS; Section 3 contains a brief overview of the relevant literature; in Section 4, we
illustrate the proposed methodology, presenting the scanners, the test-benches used and the
employed evaluation metric; in Section 5, we discuss the attained results; Section 6 contains the
concluding remarks.

2. Background

As described in the Introduction, Cross-Site Scripting is the execution of JavaScript code in the
victim’s browser to steal specific data. Although XSS was first discussed in a CERT report in
2000, it is still one of the most common vulnerabilities in web applications, ranked respectively
first and third in OWASP’s top ten reports in 2017 and 2021. This vulnerability is mostly caused
by developers failing to validate or sanitize the user’s input, as described by the Common
Weaknesses Enumeration (CWE) community [3]. Hence, untrusted data can be entered into
the web app, which uses this data inside a page without proper validation. A malicious user
can inject arbitrary code if the browser treats the data as HTML or JavaScript. Recent XSS
research [4] categorizes the vulnerability using two articulations. The first describes where
the XSS originates, namely server-side or client-side. The second describes if the payload is
persistent or non-persistent. The previous two categories depend on how the malicious code is
injected into the web application. However, the tools and test benches we considered in this
work still use the following three categories: (i) Reflected XSS when the user’s JavaScript input
is parsed as part of a request and returned entirely or partially by a web application in the
response; (ii) Stored XSS when the user’s JavaScript input is stored on the target server, and as
the victims connect to the web application, the JavaScript payload is executed; (iii) DOM-based
XSS, similar to Reflected XSS, but in this case, the Document Object Model parses the user’s
JavaScript input to change the HTML page.

The best way for developers to prevent this vulnerability is to follow the best practices in
coding and perform security reviews of the code along with regular auditing. However, these
actions can be both money and time-consuming. Hence, automatic vulnerability scanners can



be crucial as an alternative to code review practices. In particular, these scanners are especially
used by web application developers and system administrators to test web applications against
vulnerabilities without accessing the source code. They mimic external attacks from malicious
actors and provide cost-effective methods for detecting a wide range of vulnerabilities, provided
they are selected and used correctly.

3. Related Work

Various studies have been presented in the field of web vulnerability scanners. According to the
literature [5, 6], it is possible to employ specific test benches to assess scanners’ performances.
The experimental methodology usually consists of preparation, execution, and reporting phases.
Many works in literature can be found that follow this kind of approach for testing [7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

As described by Sarmah et al. [21], the detection approaches for XSS can be classified into
three main categories: (i) Client-Side detection, which focuses on the browser and can be based
on static [22, 23, 24, 25, 26], dynamic [27, 28, 29, 30], and hybrid analysis [31, 32, 33, 34].
(ii) Server-Side detection, which focuses on the web app server code and can also be based on
static [35, 36, 37, 38], dynamic [39, 40, 41, 42], and hybrid analysis [43, 44].( iii) Client-Server
detection, which controls what is sent to the client and what the server should respond [45].

Many automatic tools have been developed to detect and then mitigate the risk of XSS
attacks. The two main approaches to test vulnerabilities are white-box and black-box testing. In
white-box testing, the source code of the application is put under scrutiny. On the other side,
black-box testing aims to simulate, without knowing the source code, how an attacker exploits
the vulnerability to detect possible flaws in the target [46, 47, 48].

4. Methodology

This section defines and explains the methodology for evaluating scanners against selected test
benches. This methodology can be articulated in the following steps, which will be explained
further in the next subsections:

• Scanners Selection: we illustrate the scanners selected for the evaluation by discussing
the rationale behind their choice.

• Test Benches Selection: the idea is to select test benches that employ various types
of XSS vulnerabilities (reflected, stored, DOM-based) and increasing levels of complex-
ity. With the term complexity, we refer to the presence of filters that complicate the
exploitability of the vulnerability.

• Definition of Metrics: the performances of these scanners can be evaluated from
multiple perspectives. Hence, it is crucial to choose metrics that can provide a clear
overview of the efficacy and efficiency of the analyzed scanners.



4.1. Criteria for Scanner Selection

Specific criteria drove the choice of scanners, the most important being the availability of the
source code, which is essential to fully understand the observed scanners’ behavior. Moreover,
we employed the following additional criteria for our selection: (i) Popularity, which could be
established by the number of stars on GitHub (an overall evaluation of the repository considering
usage, maintenance, and updates). High popularity means that the community extensively
uses the scanners and can also feature a track record of good performance. (ii) Support and
updates, typically ensured to guarantee active development and frequent improvements; (iii)
Documentation, which is essential to make the analyst understand how the tool works and
possible future improvements; (iv) Platform and language support so that the scanner can run
on different operating systems; (v) Easiness to use which makes the scanner more accessible and
more usable.

4.2. Scanners

We selected five open-source scanners for XSS vulnerabilities that match the criteria described
above. In the following, we provide a more detailed description of these scanners, which
are further summarized in Table 1. These scanners can be divided into two main groups:
active (interaction-based) and passive (based on traffic monitoring). There are also tools whose
scanning activity is based on fuzzing (use large amounts of payloads to discover vulnerabilities),
mutation (change and adapt the payload also according to the context), and detection of specific
patterns (response and payload execution analysis).

• OWASP ZAP [49] is the leading free scanner used in industrial environments [50], as
it is available by default in the Kali Linux operating system. It is written in Java and
maintained by the OWASP community, and is based on active and passive activity. Once a
vulnerability is detected, the tool helps manage and prioritize risks by providing a detailed
report.

• XSStrike [51] is a Python scanner that employs fuzzing, mutation, and Machine Learn-
ing techniques to detect vulnerabilities and evade filters. Its context analysis can also
determine whether the payload was executed or filtered.

• Dalfox [52] is a tool written in Go that uses fuzzing, mutation, and detection based on
context awareness to recognize XSS vulnerabilities. Users can choose injection points
and payloads, and crawl websites to discover new endpoints and potentially vulnerable
pages.

• XSSer [53] is a Python scanner using multiple payloads for detection by mutating them.
It has an interesting feature called exploitation, through which the detected vulnerability
can also be exploited.

• Wapiti [54] is a Python tool using active and passive scanning with a wide range of
attack payloads, as well as a flexible and customizable scan engine supporting different
analyses according to specific needs.



Scanner GitHub Stars Platform Version Type of XSS
OWASP ZAP 10349 Java 2.12.0 R,S,D

XSStrike 11081 Python 3.1.5 R,S
Dalfox 2264 Go 2.8.2 R,S,D
XSSer 854 Python 1.8.4 R,S,D
Wapiti 508 Python 3.1.3 R,S

Table 1
A comprehensive summary of the employed scanners. In the last column (Type of XSS), we
denoted the three different types of XSS by using their first letter: hence R stands for Reflected, S
for Stored, and D for DOM-based

4.3. Selection of the Test Benches

Test benches are specialized systems or setups to test and evaluate various software, systems,
and devices before releasing them. Choosing such benchmarks properly is crucial to ensure a
fair analysis of web scanners. We analyzed various benchmarks and evaluated them according to
the number of citations in scientific papers, source code availability, updates, and identification
of all XSS types. As a result, we selected the Damn Vulnerable Web Application (DVWA) as
the primary benchmark of this work. Other benchmarks, such as OWASP benchmark [55]
and WAVSEP [56], widely used in previous works, are no more updated (since 2016 and 2014,
respectively), and the given documentation is insufficient.

DVWA is a widely used and well-established platform that has been cited in previous research
studies [15, 19]. It is an open-source PHP web application that is designed to be vulnerable to
various attacks (including XSS). It runs a variety of platforms and environments with a user-
friendly web interface and a MySQL built-in database for easy configuration and management.
Moreover, it features a range of security levels spanning from no security measures (low) to
no vulnerabilities (impossible) to tailor the test to different scenarios and test the scanner’s
limitations. To ensure the code’s isolation, portability, reproducibility, and immutability, we
have executed DVWA via Docker.

However, the XSS vulnerabilities embedded in DVWA are widely known and can be considered
trivial (even for high-difficulty settings). Hence, we developed two custom test benches to
mimic some scenarios where the complexity of the vulnerability increases. We decided to use
standard PHP functions that automatically escape special characters. The reason behind this is to
understand how the tools’ detection mechanisms work when the payload they send is modified or
escaped by the server. Hosting a custom test bench can provide several benefits when evaluating
the effectiveness of automatic web scanners. In particular, it allows a complete environmental
control to ensure consistency and repeatability of the tests. Moreover, we can employ real-world
vulnerabilities to evaluate the scanner’s performance in a tangible environment. Finally, it is
crucial to ensure that the selected scanners were not overfitted to work only with standard test
benches like DVWA. The two test benches, both vulnerable to reflected XSS, can be summarized
as follows:

• Low Security. The first test bench is based on the htmlspecialchars PHP function,
as shown in Listing 1. We used it to filter a user input appended to the src attribute of an
img tag. The function converts special characters that can be interpreted as HTML code



to the relative HTML entity. Using the function properly can help prevent XSS attacks
by ensuring that user-supplied input is properly encoded and escaped. However, this
function could be bypassed. For example, before PHP 8.2 (released at the beginning of
2023 [57]), the function did not filter single quotes, which can be used in combination
with other attributes (i.e. onerror) to execute malicious JavaScript code. To sum up, this
function can be very useful in certain scenarios. For example, suppose the user input
was reflected directly outside a tag attribute. In that case, an attacker can send a payload
like <script>alert(1)</script>, but it would be escaped by the function and replaced
with &lt;script&gt;alert(1)&lt;/script&gt; which wouldn’t be interpreted as HTML.
However, it is useless in the context of our test bench. In fact, we can exploit the XSS by
sending a payload such as nonexistent’ onerror=’alert(1).

1 $src = htmlspecialchars($_GET[’src’]);
2 $image = "<img src=’".$src."’ alt=’Error’ errorwidth=30% height=30%>";
3 echo $image;

Listing 1: An example of vulnerability involving htmlspecialchars

• High Security. The second test bench (shown in Listing 2) combines the htmlspecial-
chars with the strtoupper() PHP function. As the name suggests, this function
converts a string to uppercase. Again, the vulnerability arises from htmlspecialchars, but
the supplied JavaScript code will not run because of the uppercase conversion, preventing
it from execution. Still, there is a way to bypass these restrictions: using an esoteric
language like JSFuck, a programming language designed to test JavaScript boundaries
where code is written with only six characters and can be run in any web browser
or engine interpreting JavaScript. In this way, the attacker can bypass the uppercase
transformation.

1 $src = strtoupper(htmlspecialchars($_GET[’src’]));
2 $image = "<img src=’".$src."’ alt=’Error’ errorwidth=30% height=30%>";
3 echo $image;

Listing 2: An example of vulnerability involving the htmlspecialchars and strtoupper
functions

4.4. Evaluation Metrics

The easiest way to determine how a scanner performs is to look at how the Cross-Site Scripting
vulnerability is detected and exploited, leading to True Positives (TP) or False Positives (FP). A
True Positive is a correctly identified instance of an XSS, meaning that the scanner identified the
vulnerability, confirmed with manual validation. A False Positive is when the scanner identifies
a potential XSS in the target but the generated payload does not work. False positives can occur
for various reasons, such as a lack of understanding of the application logic by the scanner,
outdated payloads, or complex code that is difficult for the scanner to parse correctly.

Another metric to evaluate the scanner’s efficiency is the number of requests sent to the tested
web application. Each request injects various payloads into different application parameters
to detect XSS vulnerabilities. A scanner that makes fewer requests to achieve the same level
of coverage is considered more efficient because it places less load on the web application and



is less likely to disrupt its normal operation. On the other hand, a scanner that generates too
many requests might trigger security mechanisms such as rate limiters, making the scanning
process difficult or even impossible to complete.

5. Results

This section analyzes and evaluates the five automated web scanners described in Section 4.2
against the Damn Vulnerable Web Application (DVWA) and the custom test benches. Regarding
the DVWA test bench, all the scanners were tested against every type of XSS vulnerability
(Reflected, Stored, and DOM-based) at low, medium, and high levels of security. On the other
hand, the custom test benches feature two cases of reflected XSS, as described in Section 4.3.

We manually tested the payloads generated by the scanners on two popular web browsers,
Google Chrome (version 109.0.5414.74), and Firefox (version 108.0.2). As indicated in Sec-
tion 4.4, the presence of a working payload is considered as a true positive. Since every test
bench is vulnerable to XSS, we used the false positive case when the tool correctly detected
an XSS, but the payload did not work. Notably, each tool was set up with the configuration
parameters that, to the best of our knowledge, provided the best results possible.

5.1. Assessment against Test Benches

In the following, we first discuss the attained results for each scanner against the DVWA
testbench, also highlighted in Figure 2 (left). Then, we provide an additional discussion on the
results attained against the custom test benches.

• OWASP ZAP must be used from the browser web page. The attack must be launched
from the Active Scan tab. If it detects an XSS, the tool provides the malicious payload.
It has a success rate of 100% in detecting reflected and stored XSS, generating payloads
without user interaction. The tool also captures all the DOM-based XSS vulnerabilities
using a specific module called DOM XSS Active Scan Rule [58].

• XSStrike generates a different working payload reflected in the response body and asks
the attacker if it is enough or if it should continue generating. It has a success rate of
100% for reflected and stored XSS, but with payloads requiring user interaction. This last
point limits the scope and the impact of the attack as it can infect only users interacting
with it. The tool is not able to generate any DOM-based XSS payload but only highlights
potential JavaScript functions that can be used to inject malicious code.

• Dalfox generates different context-based payloads, marking those that are correctly
reflected and working. It has a success rate of 100% in detecting reflected and stored XSS
with payloads that do not require user interaction. However, it has difficulties in detecting
DOM-Based XSS, and this defect was also confirmed by the author with an open issue in
its GitHub page [59].

• XSSer tries different payloads from its database and reports those working correctly.
However, it generates two false positives, as shown in Appendix B. This may significantly
impact the detection of vulnerabilities, as the user needs to manually check the generated
payloads, leading to a waste of time. Despite this, it can catch all of the DOM-based XSS.



• Wapiti provides a minimal report with a single payload working on the analyzed page.
It had a success rate of 100% for reflected and stored XSS, generating payloads without
user interaction. However, the tool does not support the detection of DOM-based XSS.

Overall, all the examined tools can correctly detect reflected XSS on DVWA at low and
medium security levels. Most tools correctly identify stored XSS, and only two have failed to
detect it on the high-security level of DVWA. DOM-based XSS is more difficult to detect because
the page’s JavaScript code needs to be executed.

On the right part of Figure 2, we show the performances achieved by the tools against our
custom test benches. Only Wapiti is able to generate a working payload against the Low
Security custom test bench. A clearer view of the behavior of the examined tools is provided in
Table 2, which reports the payloads generated by each tool.

OWASP ZAP Xsstrike Dalfox Xsser Wapiti
Tools

0

1

2

3

D
et

ec
tio

ns

Number of Detections for DVWA

Reflected
Stored
Dom-based

OWASP ZAP Xsstrike Dalfox Xsser Wapiti
Tools

0

1

2

3

D
et

ec
tio

ns

Reflected XSS Detection

DVWA
Evasive

Figure 1: On the left, the histogram shows the number of detections (out of 3) for each tool on the
DVWA. On the right, the histogram shows the number of detections (out of 3 for DVWA and out of 2
for the evasive test bench) for each tool.

Tool Payload Result
OWASP ZAP javascript:alert(1); FP
XSStrike ’AutofocUs onfocUS=’(confirm)() FP
Dalfox ’onload=prompt.apply(null,1) class=dalfox FP
XSSer FN
Wapiti ’onload=’alert(/w024qjvkbf/)’onerror=’alert(/w024qjvkbf/) TP

Table 2: Payloads generated by each tool against the Low Security custom test bench. TP
represents True Positives (the XSS is detected, and the payload is correct), FP represents
False Positive (the XSS is detected, but the payload does not work), FN represents False
Negatives (the vulnerability is not detected).

OWASP ZAP, XSStrike, and Dalfox are able to detect the XSS vulnerability but not to properly
exploit it, generating syntactically correct payloads that are not executed. XSSer completely



fails at detecting the vulnerability, and Wapiti is the only scanner that is able to generate a
working payload. The reasons why the payloads were not executed can be various. Since XSS
is a client-side vulnerability, one of the reasons is that the evolution of browsers highly impacts
whether a payload will work, thus filtering too simple ones. For example, ZAP’s payload uses
javascript:, which will not work on modern versions of Chrome and Firefox because an
img tag cannot load anything that is not of image type.

Another reason is the HTML context in which the payload is injected. XSStrike uses the
autofocus+onfocus trick to automatically focus a certain tag on the page when loaded, triggering
the payload execution automatically. However, this trick will not work on img tags because
they are not focusable.

Finally, none of the tools could even detect the vulnerability embedded in the High Security
test bench. This clearly shows that, when the sophistication of the vulnerability increases,
automatic scanners dramatically drop their detection capabilities. In particular, the analyzed
scanners heavily rely on searching a reflection of the payloads they send inside the server’s
response. Our evasive test bench performs changes in the payload (HTML characters filtering
and uppercase transformation), making the reflection harder to detect. More detailed results for
each tool can be found in Appendix B.

5.2. Detection Performances

In this section, we provide a more detailed overview of the performances of the examined
scanners. First, we show a chart comparing the number of requests made by each analyzed
tool. As said in Section 4.4, this is an important metric that can underline the capacity of a
tool to generate context-specific payloads or just brute-force a list of payloads against the web
application. Figure 2 provides an overview of the scanners’ performances in terms of the number
of requests and standard deviation, calculated over all test benches (DVWA and custom) and
security levels. We considered only the true positives for each tool to make this calculation.
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Figure 2: Average, standard deviation, minimum and maximum requests performed by each tool. On
the left box plot all the tools are compared, and on the right a detail of XSStrike and Wapiti.

The Figure reports some interesting details. For example, XSSer tries all possible payloads in
its list before providing the final result. On the contrary, XSStrike and Wapiti tend to generate
only a few payloads to reach the goal. However, the great performances of XSStrike are also



related to the need for interaction by the user, who always has to confirm whether another
payload should be generated or not.

Overall, a scanner that can detect XSS with fewer requests is better because it puts less stress
on the website. However, a tool that can detect all kinds of XSS while making a very low number
of requests has not emerged from this analysis. Therefore, it becomes crucial to find a trade-off
between detection performances and efficiency.

Table 3 provides a general overview of the type of working payload generated by each tool
during their detection (and exploitation) attempts against the low-security setting of the DVWA
(reflected XSS). In particular, we can identify two main categories of payloads generated by the
tools. The first category uses the script tags to execute JavaScript: this standard way works
in the most basic examples of XSS. OWASP ZAP, XSSer, and Wapiti belong to this category.
However, we can still notice some differences, such as the capitalization of the word script to
evade WAFs (Web Application Firewalls) or using different arguments for the alert function.

The second category contains the non-script tags payloads used by XSStrike and Dalfox. In
this case, instead of script tags, we can use any other tag with attributes that can be exploited to
execute JavaScript code. For example, XSStike uses the onmouseover attribute, which triggers
the execution of the payload when the user hovers on the tag with the mouse (in the case of
the tag html, this is triggered whenever the user moves the mouse on the page). Dalfox uses a
payload containing the onload attribute, which triggers the execution of JavaScript code when
the tag loads. There are countless tags and attributes that can be exploited in this way.

Tool Payload
OWASP ZAP </pre><scrIpt>alert(1);</scRipt><pre>
XSStrike <HtmL/+/onMOuseOVEr%09=%09[8].find(confirm)//
Dalfox <sVg/onload=alert.bind()(1) class=dalfox>
XSSer ”><SCRIPT>alert(’<random digits>’)</SCRIPT>
Wapiti <ScRiPt>alert(’w4a815881u’)</sCrIpT>

Table 3: Comparison between the different payloads generated by the tools for reflected XSS in
low-security settings (DVWA).

6. Conclusions and Future Work

In this paper, we proposed an assessment of five popular XSS open-source scanners against
various test benches. The attained results show that, while such scanners are very good
at detecting (and in many cases, exploiting) XSS vulnerabilities, their accuracy dramatically
decreases when the complexity of such vulnerabilities increases.

We are also aware that this study features several limitations, with the presented results being
still preliminary. Despite the amount of diligence and study put into the configuration of the
scanners, there may exist the possibility that some results can be affected by misconfiguration
or lack of parameters in the commands used to launch the scanners. Moreover, the number of
examined test benches can be significantly increased to evaluate the scanners further, and we
plan to analyze more real-world scenarios in future work.



Nevertheless, we think we succeeded in highlighting some problems with popular XSS
scanners that need to be addressed, thus opening intriguing lines of research toward a more
accurate detection of XSS attacks. In this regard, a possible direction for future work is to update
the scanners’ code to improve their payload generation and detection mechanisms (for example,
DOM-based XSS). This becomes especially important as new vulnerabilities like Prototype
Pollution and Client-Side Template Injection (CSTI) are providing new ways to obtain XSS by
abusing vulnerable JavaScript code.
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Appendices
A. Commands used to run the tests

For each tool used from a CLI we listed the used commands.

XSStrike:

1 python3 xsstrike.py -u http://192.168.1.14:80/vulnerabilities/xss_r/?name=XSS --skip-dom --
headers <headers>

2 python3 xsstrike.py -u "http://192.168.1.14:80/vulnerabilities/xss_s/" --data "txtName=&
mtxMessage=&btnSign=Sign+Guestbook" --skip-dom --headers <headers>

Dalfox:

1 ./dalfox url http://192.168.1.14:80/vulnerabilities/xss_r/?name= -H "Cookie: security=<
security_level>; PHPSESSID=<phpsessionid>"

2 ./dalfox file raw_data.txt --rawdata --skip-mining-all --http
3 ./dalfox url http://192.168.1.14:80/vulnerabilities/xss_d/?default= -H "Cookie: security=<

security_level>; PHPSESSID=<phpsessionid>" --deep-domxss --mining-dom

XSSer:

1 ./xsser -u ’http://192.168.1.14:80/vulnerabilities/xss_r/?name=XSS’ --cookie="PHPSESSID=<
phpsessionid>; security=<security_level>" --auto -s

2 ./xsser -u ’http://192.168.1.14/vulnerabilities/xss_s/’ -p "txtName=XSS&mtxMessage=XSS&
btnSign=Sign+Guestbook" --cookie="PHPSESSID=<phpsessionid>; security=<security_level>"
--auto -s

3 ./xsser -u ’http://192.168.1.14:8001/vulnerabilities/xss_d/’ -g "?default=XSS" --cookie="
PHPSESSID=<phpsessionid>; security=<security_level>" --Dom --auto -s

Wapiti:
1 wapiti -u ’http://192.168.1.14/vulnerabilities/xss_r/?name=’ -H ’Cookie: PHPSESSID=<

phpsessionid>; security=<security_level>’ -m xss
2 wapiti -u ’http://192.168.1.14/vulnerabilities/xss_s/?txtName=f&mtxMessage=f&btnSign=Sign+

Guestbook’ --skip "btnSign" -H ’Cookie: PHPSESSID=<phpsessionid>; security=<
security_level>’ -m xss,permanentxss:post

B. Detailed Results

Test bench T S R U N Payload

DVWA

R
L TP no 374 </pre><scrIpt>alert(1);</scRipt><pre>
M TP no 374 </pre><scrIpt>alert(1);</scRipt><pre>
H TP no 255 </pre><img src=x onerror=prompt()><pre>

S
L TP no 581 </div><script>alert(1);</script><div>
M TP no 586 <img src=x onerror=alert(1);>
H TP no 586 <img src=x onerror=alert(1);>

D
L TP no 402 #<script>alert(5397)</script>
M TP no 402 #<script>alert(5397)</script>
H TP no 402 #<script>alert(5397)</script>

Evasive R
L FP no 315 javascript:alert(1);
H FN

Table 4
OWASP ZAP Results



Test bench T S R U N Payload

DVWA

R
L TP yes 4 <HtmL/+/onMOuseOVEr%09=%09[8].find(confirm)//
M TP yes 4 <html/+/ONMOUSEovEr+=+[8].find(confirm)%0dx//
H TP yes 4 <hTML%0doNpoinTeRenTER%09=%09confirm()%0dx//

S
L TP yes 10 <dETaiLs%0doNTOGgle%0a=%0aa=prompt,a()//
M TP yes 9 <HTmL%09ONpoiNtERENteR%0a=%0a[8].find(confirm)//
H TP yes 7 <hTML%0dONpOinteREnTeR%0d=%0dconfirm()//

Evasive R
L FP no 29 ’AutofocUs onfocUS=’(confirm)()
H FN

Table 5
XSStrike Results

Test bench T S R U N Payload

DVWA

R
L TP no 633 <sVg/onload=alert.bind()(1) class=dalfox>
M TP no 633 <sVg/onload=alert.bind()(1) class=dalfox>
H TP no 633 <sVg/onload=prompt(1)>iting headless

S
L TP no 42 ”><Svg/onload=alert(1) class=dalfox>
M TP no 55 <xmp><p title=”</xmp><svg/onload=print(1)>
H TP no 120 <xmp><p title=”</xmp><svg/onload=alert(1)>

D
L FN
M FN
H FN

Evasive R
L FP no 2284 ’onload=prompt.apply(null,1) class=dalfox
H FN

Table 6
Dalfox Results

Test bench T S R U N Payload

DVWA

R
L TP no 1293 ”><SCRIPT>alert(’<random digits>’)</SCRIPT>
M TP no 1293 ”><SCRIPT>alert(’<random digits>’)</SCRIPT>
H FP no 1293 <–<img/src= onerror=<random digits>>–!>

S
L TP no 1293 ”><SCRIPT>alert(’<random digits>’)</SCRIPT>
M TP no 1293 ”><SCRIPT>alert(’<random digits>’)</SCRIPT>
H FP no 1293 <BODY BACKGROUND=”<random digits>”>

D
L TP no 1304 Y#<script>alert(’<random digits’>)</script>
M TP no 1304 Y#<script>alert(’<random digits’>)</script>
H TP no 1304 Y#<script>alert(’<random digits’>)</script>

Evasive R
L FN
H FN

Table 7
XSSer Results

Test bench T S R U N Payload

DVWA

R
L TP no 15 <ScRiPt>alert(’w4a815881u’)</sCrIpT>
M TP no 31 <ScRiPt>alert(’wl1rewj2d3’)</sCrIpT>
H TP no 63 <SvG/oNloAd=alert(/wvh1utxups/)>

S
L TP no 9 <ScRiPt>alert(’wkd6pjqju7’)</sCrIpT>
M TP no 19 <ScRiPt>alert(’w7hazq4o4x’)</sCrIpT>
H TP no 79 <SvG/oNloAd=alert(/w64b26uhsj/)>

Evasive R
L TP no 56 ’onload=’alert(/w024qjvkbf/)’onerror=’alert(/w024qjvkbf/)
H FN

Table 8
Wapiti Results
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