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Abstract
The most recent proposals of Machine and Deep Learning algorithms for Network Intrusion Detection
Systems (NIDS) leverage Graph Neural Networks (GNN). These techniques create a graph representation
of network traffic and analyze both network topology and netflow features to produce more accurate
predictions. Although prior research shows promising results, they are biased by evaluation methodolo-
gies that are incompatible with real-world online intrusion detection. We are the first to identify these
issues and to evaluate the performance of a state-of-the-art GNN-NIDS under real-world constraints.
The experiments demonstrate that the literature overestimates the detection performance of GNN-based
NIDS. Our results analyze and discuss the trade-off between detection delay and detection performance
for different types of attacks, thus paving the way for the practical deployment of GNN-based NIDS.
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1. Introduction

As the number and complexity of cyberattacks continue to increase [1], network intrusion
detection has become crucial for modern IT systems. Network Intrusion Detection Systems
(NIDS) based on Machine Learning (ML) algorithms have garnered attention due to their
capability of automatically learning to detect intrusions from network traffic samples [2].

This paper focuses on a novel research direction that utilizes Graph Neural Networks (GNN).
In contrast to traditional Machine Learning (ML) methods that rely solely on independent
network traffic samples, GNNs also take into account discernible topological patterns exhibited
by modern cyberattacks [3, 4]. Previous papers proposing GNN-based NIDS show promising
results and high performance. However, there is still a significant gap between scientific
evaluation and practical deployment of these tools in real-world settings.
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In this paper, we identify and discuss two common pitfalls in the evaluation methodology of
related works that lead to unreliable results. Firstly, they consider randomly sampled subsets of
the original traffic capture to form the train and test sets, respectively. However, such a random
division may conceal some contiguous structural patterns exhibited by malicious traffic that are
important for correct detection. Secondly, they only consider complete evaluation graphs built
on large test sets. There are two issues with this assumption: it is inapplicable in real-world
settings in which it is unknown when it is the right time to construct the graph and perform
the evaluation; it considers huge graphs built over time spans of several hours, thus introducing
unacceptable detection delays.

We propose a novel evaluation methodology that overcomes the identified issues by avoiding a
random division between train and test sets and evaluating the GNN-based detectors by varying
the time-window on which to build the evaluation graphs. In this way, we can assess whether
and how much the completeness of the graph is important for the classification performed by
these tools, and we can evaluate the trade-off between detection delay and detection accuracy.

We apply our methodology to a recent GNN-based NIDS at the state-of-the-art and consider
two publicly available datasets largely employed in related literature. The results show different
performance patterns. Most classifiers exhibit an unstable behavior when the time-windows
are too short, suggesting a lower bound for the detection delay. On the other hand, a subset
of them is robust to these perturbations, suggesting that, in certain situations, the GNN does
not rely on structural patterns for the predictions. These findings provide useful insights for
the deployment of GNN-based NIDS and pave the way for additional investigations aimed at
devising more efficient solutions.

The remainder of this paper is structured as follows. Section 2 provides background on GNN
and discusses related work. Section 3 focuses on the pitfalls of previous approaches and presents
our novel evaluation methodology. Section 4.3 introduces the considered case study, while
Section 5 shows the experimental results. Finally, Section 6 draws the conclusions and provides
insights for future research directions.

2. Background and Related Work

Modern NIDS increasingly involve ML techniques for their tasks. Traditional approaches are
based on network flows (or netflows), which consist of tabular structures in which each entry
summarizes, with a predefined set of statistics and metrics (also referred to as features), the
communication between two endpoints in a network over a certain period of time [5]. In the
traditional supervised learning paradigm, each netflow is associated with a label (that is, benign
or malicious), and is passed to the ML algorithm which learns to distinguish among the classes.

Traditional ML models treat netflows one at a time and independently from each other [2, 6, 7].
Although this assumption allows near real-time predictions and a responsive production of
security alerts, a single netflow might be unable to express the dependencies between multiple
malicious operations typical of modern multi-step attacks [8]. This limitation allows motivated
threat actors to evade detection through adversarial attacks, in which minor changes in the
patterns of a single malicious communication flow can fool the ML detectors [9, 10].

An alternative and recent research trend aims to address this issue by proposing the usage of



Graph Neural Networks (GNNs) for network intrusion detection [11]. These models belong
to a modern family of Deep Learning (DL) techniques that do not operate over the classical
Euclidean space but accept a graph as an input to the model. The idea behind this approach is
that cyber-attacks present some topological patterns that can be easily detected by looking at
the overall network graph structure. In other words, a graph representation can express the
complex dependencies among different malicious operations so that a GNN-based NIDS can
lead to robust detectors that do not rely on single netflows.

Related literature for GNN-based NIDS has demonstrated the value of these tools both
in traditional and adversarial environments [3, 4, 12]. Previous proposals share the same
operational workflow. First, they need to transform netflow data into a graph representation.
This is a crucial factor that can affect the whole GNN model architecture. For example, the
authors of [3] propose a GNN that operates directly on a flow graph in which each endpoint of
the network represents a node of the graph and the edges are associated with the netflows. On
the other hand, other papers use a line-graph representation in which the netflows are seen as
nodes of the graph (e.g.,[4, 13]), or even ad-hoc graph formats[12]. After having obtained the
graph representation, it can be submitted to the GNN for the learning and evaluation phases.
Multiple model choices apply at this point. The majority of proposals follow a transductive
learning setup in which the complete graph structure is known by the model at the training
time [14, 15]. Few works can also be applied to inductive settings in which the model does not
need to retrain if the topology of the network changes [3, 13].

Despite the good performance of GNN-based NIDS, there is still a significant gap between
research and practice. As we will discuss in Section 3, GNN-based NIDS are evaluated on a
graph built from a random testing subset of the considered dataset, which may conceal some
crucial topology information. Most importantly, this evaluation approach does not consider the
temporal constraints required to build the graph itself in real-world settings. In this paper, our
aim is to bridge this gap by proposing a more realistic evaluation methodology that should be
followed to better assess the detection capabilities of GNN-based NIDS in real-world scenarios.

3. Evaluation methodology

GNN-based NIDS follow a two-step workflow in which the graph is usually built only before
training and evaluating the network. Related works employ an evaluation methodology that
mimics that used for standard ML algorithms, in which a given dataset is randomly separated
into train and test sets, which are then used to create the training and test graphs, respectively.
We identify two main pitfalls with this approach if applied to network intrusion detection.
Firstly, the random division between training and test samples is valid only when the data
samples are evaluated independently of each other, as in classical ML algorithms [16]. Instead,
GNNs link correlated nodes, and hence, a random division can break the underlying topology
of the network structure and lead the models to learn an incorrect graph structure. Secondly, a
similar evaluation methodology builds a test graph using all the data in the test set. As dataset
captures span several hours or even days [17, 18], building a graph on such a large test set
would require waiting for a long time to collect all the netflows transmitted during that period.
This is unfeasible in a realistic scenario as it would introduce excessive detection delays [19].
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Figure 1: DDoS complete graph.

Let us suppose that we build a GNN-based NIDS trained to detect DDoS attacks. These attacks
typically involve multiple attacking hosts 𝑎 sending traffic to a single victim node 𝑣, resulting
in a graph structure as shown in Figure 1. Here, the 𝑛 attacker’s nodes 𝑎𝑖 overflow the victim
node 𝑣1 with multiple netflows 𝑓𝑖, forming the graph on the right. Without loss of generality,
we suppose that the 𝑖 nodes send their traffic in order at times 𝑡𝑖. If considered singularly, the
netflows 𝑓𝑖 of a DDoS attack can show characteristics resembling normal traffic, and can be
misclassified by detectors analyzing them independently (e.g., standard ML-based NIDS) [20].
The strength of applying a GNN for network intrusion detection lies in the fact that these
models do not rely exclusively on netflow features (even if they still play an important role) and
can easily learn to identify such a peculiar structure shown by the DDoS graph, raising alarms
for the involved flows. However, the standard evaluation scenario considered by previous works
uses the entire history of events to build the testing graph employed to assess the performance
of the GNN.

Let us now consider Figure 2. Here, we suppose that the construction of the testing graph
occurs periodically, considering only the netflows coming in a time-window of length 𝜏 . This
reflects a more realistic evaluation scenario in which it is unknown when it is the right time to
build the evaluation graph and perform the prediction. For instance, if we consider the case of
Figure 2, where the test set capture starts at time 𝑡0, the first evaluation graph will comprise
the netflows received between 𝑡0 and 𝑡𝑒 = 𝑡0 + 𝜏 < 𝑡2, when the second netflow of the DDoS
attack is transmitted. The result would not contain the complete DDoS attack scenario and
could complicate the work of the GNN as it has been trained on standard DDoS attacks. Similar
conclusions can be drawn for the other time periods shown in the figure.

We can conclude that previous works employing complete graphs limit their evaluation to
the best-case settings, which are biased by the presence of the whole history of the attack.
To overcome this pitfall, we propose a more reliable evaluation scenario that can be used to
assess GNN-based NIDS that need to be deployed in practice. We avoid a random split between
training and testing sets to let the model learn the actual graph as reported in the dataset capture.
Then, to reflect a more practical deployment scenario, we temporally divide the test set into
different time-constant periods of length 𝜏 . Hence, we build one evaluation graph for each of
the obtained subsets using only the netflows for the corresponding time-period, as shown in
Figure 2. In this way, we simulate a GNN-based NIDS that is invoked periodically at a constant
time-rate of 𝜏 , and is provided with a more realistic evaluation graph that reflects the practical
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Figure 2: Examples of evaluation graphs generated from time windows of 𝜏 dimensions.

scenarios.

4. Case Study

We now present a case study in which we apply our evaluation methodology to assess the
performance of E-GraphSAGE [3], a recently proposed GNN-based NIDS achieving state-of-
the-art performance. We introduce the model, describe the considered datasets and detail the
experimental scenarios.

4.1. E-GraphSAGE

E-GraphSAGE [3] is a variation of the widely used GraphSAGE model [21] that has been adapted
to perform netflow classification. It is considered one of the pioneering GNN models that operate
in an inductive manner in this field and has gained popularity in related literature, with several
studies incorporating it as a key component [22, 23, 4]. E-GraphSAGE operates on flow-graphs
in which each node corresponds to an endpoint of the network (that is, IP address-port pair) as
extracted from the netflows. Through a series of graph convolutional layers and aggregator
functions, it learns to produce low-dimensional embedding representations for each netflow,
taking into account not only the features of the analyzed netflow but also information from its
neighborhood. For additional details, we refer the reader to the original work [3].

For the scope of this paper, it is worth noting that the experimental campaign presented by
the authors of E-GraphSAGE is subject to the pitfalls described in the previous section: the train
and test sets are randomly separated, and it is only evaluated by considering the complete test
graph. Our case study extends the experiments performed in the original work to assess the
capabilities of E-GraphSAGE in more realistic evaluation scenarios. We base our tests on the
implementation of E-GraphSAGE made available by the same authors in [24]. However, we
avoid the standardization phase of the IP addresses and Port numbers intended by the authors,



as it would completely disrupt the network topology [13]. Moreover, unlike the provided
multi-class version, as the best practices for network intrusion detection suggest [25, 26], we
build multiple binary detectors that are specifically tailored to detect each attack in our datasets.

4.2. Datasets

Our experimental campaign is based on two widely used datasets for network intrusion detection:
CTU-13 [17] and ToN-IoT [18].

CTU-13 includes thirteen real-world network traffic captures that mix normal traffic with
traffic from different botnet variants. The data is already labeled in a netflow format, which
is suitable for our study. The botnets in the dataset exhibit unique structures, such as DDoS
and Port Scans, with each capture lasting from a few hours to entire days, making it a good
benchmark for GNN-based NIDS. We preprocess the CTU-13 dataset by removing non-TCP
traffic and outliers, as well as explicit IP addresses and port numbers to avoid learning shortcut
patterns [16]. Instead, we use categorical features, such as "IP Address Type" and "Port Type,"
which indicate the network type of the original IP address and the IANA group of the original
port number. The final set of features includes duration, source/destination/total packets,
source/destination/total bytes, bytes/s, packets/s, ratio of src/dst bytes, protocol, port type, IP
address type, flow direction, source/destination state, and type of service. The malicious samples
from each botnet variant are separated into dedicated collections, and those with insufficient
samples or too short of a capture time are excluded from the experiments as they would prevent
a thorough analysis. The final set of botnet variants considered in our experiments is reported
in the first column of Table 1a.

ToN-IoT [18] represents another valid benchmark, considered by the same authors of E-
GraphSAGE in the original paper [3]. Our focus in this work is on the network component
of the dataset, which comprises traces from various cyberattacks and normal traffic from a
medium-sized IoT network. We follow the same preprocessing steps as with the CTU-13 dataset
and divide each attack into separate collections. The final set of features includes duration,
source/destination/total packets, source/destination/total bytes, missed bytes, protocol, DNS
info, SSL info, and HTTP info. In this case, we exclude the Man-In-The-Middle class from the
evaluation due to the limited number of netflows provided in the dataset. The final set of attacks
considered in our experiments is reported in the first column of Table 1b.

4.3. Evaluation methodology implementation

In this section, we describe the implementation of our evaluation methodology outlined in
Section 3 and used in our case study. As mentioned before, we create a separate binary E-
GraphSAGE model for each attack in our datasets. To do this, we extract a train-test set pair
for each attack. However, unlike previous works, we do not randomly divide the samples into
training and test sets.

For the CTU-13 dataset, we divide the malicious samples obtained after the preprocessing
phase into groups based on their capturing date. We then attach the benign flows belonging to
the same time-period to each group. We select the group from the second day of each capture to
form the test set, while the remaining groups are combined to form the training set. To mimic



the typical data imbalance in real-world environments, we enforce a 20 : 1 benign:malicious
ratio in both the training and test sets [16]. The details are shown in Table 1a.

For the ToN-IoT dataset, each malicious capture is divided into two groups, namely training
and testing groups, based on the capture date, as most attacks last exactly two days. For attacks
that last less than a day (Ransomware, Injection, and XSS), the training group includes the first
75% of the samples, and the last 25% forms the testing group. We then merge the benign flows
into the groups. However, the benign samples in this dataset are far fewer than the malicious
ones and are spread across several days. Thus, we form the final training set by merging the
training group with the benign samples from the day with the highest number of benign flows
(175 300 benign flows). Similarly, for the test set, we select the benign samples from the day
with the second highest benign traffic (65 280 flows). In both sets, we maintain the 20 : 1
benign:malicious ratio, as for CTU-13. In this way, we maximize the number of malicious
samples in both training and test sets, while simulating real-world captures for the evaluation
of our classifiers. The details are shown in Table 1a.

We then train the E-GraphSAGE instances on each attack. For this phase, we use the entire
training sets obtained before, as we realistically assume that they involve traffic samples that
have already been captured and labeled in the considered network environment. We repeat the
learning phase for 200 epochs for all the attacks, as done in the original E-GraphSAGE [3] paper.
As discussed in Section 3, we avoid considering the whole test sets of the attacks to assess the
performance of the classifiers. Instead, we build smaller evaluation graphs by splitting the test
sets into time-constant periods of length 𝜏 . This approach simulates the periodical invocation of
the classifiers, and by varying the 𝜏 value we can study the performance evolution of the model
in different time-periods. We select a range of 𝜏 values that can represent realistic evaluation
periods: 1s, 10s, 30s, 1m, 10m, 30m, 1h, 3h. Given a 𝜏 , we randomly select a starting time 𝑡 in
the test set, and include in the evaluation graph just the netflows that present a Timestamp
between 𝑡 and 𝑡+ 𝜏 . We consider valid only those time-periods with at least one malicious and
one benign flow.

5. Results

In this Section, we present our experimental campaign. We evaluate the E-GraphSAGE classifiers
in two scenarios. The first scenario, which we refer to as the baseline evaluation, follows the
procedure used in related literature and discussed in Section 3 (see Figure 1). Here, we construct
a complete graph representation from each entire test set and proceed evaluating each classifier
on it. This approach allows us to validate the E-GraphSAGE algorithm in the common evaluation
setting. On the other hand, the second scenario, which we refer to as the Reduced Time Window
scenario, considers the proposed novel evaluation methodology. Here, we divide the test sets
into shorter time periods of varying lengths, as described in the previous section. For each time
period length 𝜏 , we extract 100 different graphs by varying the starting time 𝑡. We then average
the results across the 100 graphs for each 𝜏 .

We evaluate the classifiers considering the standard metrics used in network intrusion
detection, namely F1-Score, Recall (Detection Rate), and Precision. Considering an attack sample



Table 1
Distribution of CTU-13 and ToN-IoT datasets. Time refers to the total capture time in days (or hours);
Training and Testing Sets report the groups (i.e., days (hours) of capture) used to form the training
and testing sets, respectively (between parenthesis we report the number of malicious samples in each
set).

(a) CTU-13
Botnet Time Training Set

(#Mal)
Testing Set

(#Mal)

Neris 3 days
Days 1, 3
(61 638)

Day 2
(10 300)

Rbot 5 days
Days 1, 3, 4, 5

(22 960)
Day 2
(5 003)

Virut 2 days
Day 1
(15 959)

Day 2
(16 686)

Murlo 2 days
Day 1
(2 809)

Day 2
(2 999)

(b) ToN-IoT

Attack Time Training Set
(#Mal train)

Testing Set
(#Mal testing)

DDoS 2 days
Day 1
(8765)

Day 2
(3264)

DoS 2 days
Day 1
(8765)

Day 2
(3264)

Bkdr 2 days
Day 1
(8765)

Day 2
(3264)

Scan 2 days
Day 1
(8765)

Day 2
(3264)

Rans 1 day
Hours 1-18

(8765)
Hours 18-24

(3264)

Psw 2 days
Day 1
(8765)

Day 2
(3264)

Inj 1 day
Hours 1-18

(8765)
Hours 18-24

(3264)

XSS 1 day
Hours 1-18

(8765)
Hours 18-24

(3264)

as positive, the three metrics can be computed as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝐹1− 𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(1)

in which TP, FP, TN and FN refer to the True Positive, False Positive, True Negative and False
Negative predictions returned by the classifier. These metrics range between 0 and 1, with
higher values indicating better performance.

5.1. Baseline performance

We now present the results of the E-GraphSAGE classifiers’ performance in the baseline scenario
for the CTU-13 and ToN-IoT datasets in Tables 2a and 2b, respectively. All metrics show high
scores, indicating the quality of the detectors. In the CTU-13 dataset (Table 2a), all classifiers
achieve F1-scores above 0.95 for all botnets, with an average of 0.972. The precision scores are
almost perfect, with an average of 0.991, evidencing a low number of false positives, while the
recall lies at 0.955, which is a solid indicator of good detection rates. The best performance is
provided by the Murlo classifier, with an average F1-Score of 0.997. Similarly, for the ToN-IoT
dataset, the classifiers achieved an average F1-score of 0.956, which is consistent with the
state-of-the-art results [3, 4]. We remark that for both the DoS and Backdoor attacks, the
classifiers achieve a perfect score for all the metrics. Instead, the E-GraphSAGE algorithm
struggles to identify Ransomware attacks, as the F1-Score does not surpass 0.844. However, this
behavior is expected since Ransomware attacks usually involve few hosts and do not exhibit
unique topological structures that can be extracted by the GNN.



Overall, these results demonstrate the efficacy of the E-GraphSAGE classifiers in the standard
evaluation scenario where the complete graph is considered during the testing phase. However,
as explained in Section 3, this approach may overestimate performance in real-world settings
where complete graphs are not available.

Table 2
Baseline performance of the E-GraphSAGE classifiers over the two considered datasets

(a) Baseline performance on the CTU-13 dataset.
Botnet F1-score Recall Precision
Neris 0.985 0.990 0.980
Rbot 0.954 0.913 1.000
Virut 0.954 0.921 0.988
Murlo 0.997 0.999 0.996
average
(std. dev.)

0.972
(0.021)

0.955
(0.045)

0.991
(0.008)

(b) Baseline performance on the ToN-IoT dataset.
Attack F1-score Recall Precision
DDoS 0.942 0.992 0.897
DoS 1.000 1.000 1.000
Bkdr 1.000 1.000 1.000
Scan 0.953 0.962 0.944
Rans 0.844 0.812 0.879
Psw 0.968 0.940 0.999
Inj 0.958 0.993 0.926
XSS 0.986 1.000 0.972

average
(std. dev.)

0.956
(0.050)

0.962
(0.064)

0.952
(0.048)

5.2. Reduced Time Window results

We now consider the Reduced Time Window scenario in which we apply the proposed evaluation
methodology. The results for the two datasets are provided in Table 3 and 4, respectively. For
each attack, we show three average scores in the first three subrows, computed based on 100
evaluation graphs with different 𝜏 values indicated in the columns. The cells in each table are
colored from red to white, with darker red indicating a larger loss compared to the baseline
value. Additionally, we present the average number of malicious and benign samples in the
evaluation graphs for each 𝜏 in the last subrow.

After examining Tables 3 and 4, we observe three distinct performance patterns. For several
classifiers, we notice a correlation between lower performance scores and shorter 𝜏 values. As
discussed in Section 3, this intuitive trend arises as a result of the GNN struggling to detect
topological patterns of malicious communication in evaluation graphs created from shorter
𝜏 values. For the CTU-13 dataset (Table 3), this tendency is particularly evident for the Neris
detector, in which we register a significant drop of over 30% in the F1-score when 𝜏 is set
to 1 second (from 0.985 to 0.671), and a monotone raise when 𝜏 grows. Another example
is the Murlo classifier, which maintains low scores for 𝜏 values below 10 minutes. Other
meaningful cases for the ToN-IoT dataset (Table 4) are represented by the classifiers for the
DDoS, Ransomware, Injection and XSS attacks which show steep declines in F1-scores going
from 0.942, 0.844, 0.958 and 0.986 to 0.683, 0.593, 0.500 and 0.844, respectively, when 𝜏 is
set to 1 second.

We also observe a subset of classifiers that exhibit minimal sensitivity to the reduction of
time intervals used to construct the evaluation graphs. For instance, the Virut botnet detector of
the CTU-13 dataset passes from an F1-score of 0.954 to 0.943 when 𝜏 is set to 1 second (loss of
just 1%), and it converges to the baseline within the 10 seconds time-window. A similar trend



is offered by the Password-Cracking classifier (F1-score from 0.968 to 0.924), while the scores
for the DoS and Backdoor classifiers are not even impacted. This unexpected behavior might
imply that the E-GraphSAGE detectors for these attack categories may not rely on malicious
topological patterns for detection, but rather on the netflow features. These results also suggest
that, for certain attacks, it might be convenient to employ more traditional ML techniques that
offer comparable performance, while being far less complex and better explainable.

While most of the classifiers fall into the first two categories, there are two exceptions worth
noting. The classifier for Rbot in the CTU-13 dataset rapidly recovers to scores close to the
baseline already from the smallest time-windows. However, it shows a significant performance
decrease when considering evaluation graphs built on captures lasting 30 minutes and 1 hour
(the baseline F1-score of 0.954 drops to 0.794 and 0.721, respectively). Similarly, the Scan
detector for the ToN-IoT dataset resembles the behavior of the second group appearing robust
even when 𝜏 is set to 1 second, but it exhibits a severe Precision drop at the 3 hours interval
(from 0.944 to 0.777). Although these classifiers perform well for small evaluation graphs, they
represent meaningful cases in which the topological features can weaken detection performance
for large evaluation graphs.

In summary, these results endorse our novel evaluation methodology, confirming that pre-
vious approaches using complete test graphs may lead to upper-bound performance and an
overestimated sense of security. Furthermore, they assume great significance for the practical
deployment of these tools in real-world settings, offering valuable insights into the optimal
time-window length combinations for achieving the highest detection rates. Finally, they also
suggest that for certain cases, employing conventional ML algorithms that do not take into
account topological structures may be more appropriate for network intrusion detection.

Table 3
Performance of E-GraphSAGE on the botnets of the CTU dataset.

𝜏Botnet Metric Baseline 1s 10s 30s 1m 10m 30m 1h 3h

Neris

F1-Score 0.985 0.671 0.725 0.759 0.781 0.808 0.897 0.920 0.979
Recall 0.990 0.673 0.765 0.748 0.771 0.784 0.861 0.888 0.987

Precision 0.980 0.713 0.753 0.803 0.812 0.855 0.946 0.960 0.971
Mal:Ben - 3 : 12 11 : 136 21 : 407 62 : 814 468 : 8 231 1 471 : 25 703 2 575 : 51 500 10 300 : 206 000

Rbot

F1-Score 0.954 0.885 0.930 0.940 0.935 0.904 0.794 0.721 0.954
Recall 0.913 0.868 0.885 0.898 0.889 0.859 0.748 0.748 0.913

Precision 1.000 0.920 1.000 0.999 0.998 0.959 0.849 0.849 0.999
Mal:Ben - 1 : 1 5 : 11 15 : 131 31 : 172 301 : 928 722 : 3 542 1 209 : 6 483 5 002 : 23 076

Virut

F1-Score 0.954 0.943 0.955 0.948 0.949 0.957 0.956 0.957 0.952
Recall 0.921 0.956 0.958 0.937 0.934 0.926 0.927 0.930 0.939

Precision 0.988 0.960 0.968 0.972 0.977 0.990 0.988 0.987 0.967
Mal:Ben - 1 : 3 4 : 27 14 : 76 29 : 153 289 : 1 440 851 : 4 289 1 639 : 8 752 10 300 : 206 000

Murlo

F1-Score 0.997 0.851 0.875 0.714 0.706 0.835 0.907 0.959 0.969
Recall 0.999 0.890 0.881 0.738 0.749 0.820 0.886 0.942 0.947

Precision 0.996 0.856 0.872 0.710 0.692 0.879 0.953 0.981 0.997
Mal:Ben - 1 : 2 4 : 7 4 : 18 4 : 36 39 : 359 141 : 1 028 279 : 1 976 838 : 5 905



Table 4
Performance of E-GraphSAGE on the attacks of the ToN-IoT dataset.

𝜏Attack Metric Baseline 1s 10s 30s 1m 10m 30m 1h 3h

DDoS

F1-Score 0.942 0.683 0.730 0.734 0.795 0.975 0.969 0.967 0.955
Recall 0.992 0.680 0.715 0.713 0.876 0.984 0.984 0.987 0.982

Precision 0.897 0.690 0.756 0.794 0.814 0.969 0.957 0.950 0.935
Mal:Ben - 1 : 1 1 : 7 4 : 21 7 : 44 73 : 444 213 : 1342 417 : 2705 1049 : 8198

DoS

F1-Score 1.000 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000
Recall 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Precision 1.000 1.000 1.000 0.991 1.000 1.000 1.000 1.000 1.000
Mal:Ben - 1 : 1 2 : 6 8 : 20 18 : 40 186 : 420 525 : 1276 944 : 2596 944 : 2596

Bkdr

F1-Score 1.000 1.000 1.000 0.998 0.998 0.998 0.988 0.998 0.992
Recall 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Precision 1.000 1.000 1.000 0.995 0.997 0.997 0.983 0.996 0.989
Mal:Ben - 1 : 1 1 : 7 2 : 21 5 : 44 53 : 445 161 : 1351 312 : 2705 824 : 8193

Scan

F1-Score 0.953 0.960 0.989 0.988 0.985 0.986 0.962 0.926 0.869
Recall 0.962 0.955 0.983 0.984 0.983 0.986 0.981 0.977 0.975

Precision 0.944 0.970 0.998 0.994 0.988 0.987 0.950 0.895 0.777
Mal:Ben - 1 : 1 7 : 7 19 : 22 34 : 45 203 : 463 361 : 1373 544 : 2748 1061 : 8199

Rans

F1-Score 0.844 0.593 0.631 0.726 0.806 0.826 0.878 0.858 0.859
Recall 0.812 0.586 0.617 0.719 0.801 0.747 0.802 0.797 0.797

Precision 0.879 0.610 0.660 0.756 0.863 0.999 0.999 0.971 0.958
Mal:Ben - 13 : 1 44 : 7 87 : 23 145 : 45 1117 : 446 1895 : 1334 2342 : 2696 2984 : 8243

Psw

F1-Score 0.968 0.924 0.972 0.966 0.980 0.991 0.984 0.980 0.989
Recall 0.940 0.915 0.953 0.948 0.967 0.990 0.997 0.999 0.999

Precision 0.999 0.940 1.000 0.995 0.995 0.991 0.972 0.964 0.980
Mal:Ben - 1 : 1 3 : 7 11 : 22 23 : 45 215 : 463 570 : 1372 1009 : 2703 2119 : 8132

Inj

F1-Score 0.958 0.500 0.617 0.727 0.643 0.902 0.944 0.947 0.952
Recall 0.993 0.477 0.563 0.663 0.557 0.864 0.933 0.944 0.960

Precision 0.926 0.560 0.758 0.908 0.887 0.952 0.956 0.953 0.946
Mal:Ben - 1 : 1 7 : 7 19 : 22 36 : 43 340 : 447 904 : 1341 1558 : 2706 2225 : 8196

XSS

F1-Score 0.986 0.844 0.944 0.967 0.984 0.997 0.996 0.997 0.995
Recall 1.000 0.834 0.934 0.965 0.976 0.999 0.999 1.000 0.999

Precision 0.972 0.879 0.979 0.979 0.994 0.994 0.994 0.995 0.990
Mal:Ben - 1 : 1 5 : 7 16 : 22 32 : 44 284 : 461 703 : 1390 1139 : 2777 2141 : 8261

6. Conclusions

The use of Graph Neural Networks (GNN) in detecting network intrusions has garnered the
attention of the research community due to its ability to generate strong detections by lever-
aging topological structures and netflow features. While previous studies have demonstrated
promising outcomes, there remains a significant disparity between research and practical ap-
plications. In this paper, we identify and discuss two common pitfalls within the evaluation
methodology considered by related work that make it unsuitable for real-world settings: the
random division between train and test sets may hide crucial topological patterns, while the
use of complete evaluation graphs hinders online detection. We propose a novel evaluation
method that avoids these issues and apply it to a recent state-of-the-art GNN-based NIDS. The
results of our experimental campaign offer essential aspects to consider for the deployment of
these tools in practice. First, it highlights how most of the detectors work effectively only when
the time-windows considered to build the evaluation graphs are sufficiently large, leading to



delayed detection. Second, it suggests that in some cases, the detectors ignore the topological
patterns for classification, and their inclusion might even result in decreased performance.
Therefore, in such scenarios, traditional ML algorithms relying exclusively on netflow features
may be a more suitable and less expensive option. Our results show which attack categories can
actually benefit from a GNN-based approach and analyze the trade-off between detection delay
and detection performance. Future work will extend our case study to other state-of-the-art
GNN-based NIDS proposed in the literature and aim to validate our findings using explainability
methods and tools.
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